

WWILEY

MySQI./ PHP
Database
Applications

Second Edition

Brad Bulger
Jay Greenspan
David Wall

MySQL /PHP
Database
Applications,
Second Edition

Brad Bulger, Jay Greenspan,
and David Wall

Wiley Publishing, Inc.

MySQL’/PHP Database Applications,
Second Edition

MySQL /PHP
Database
Applications,
Second Edition

Brad Bulger, Jay Greenspan,
and David Wall

Wiley Publishing, Inc.

MySQL®/PHP Database Applications, Second Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
ISBN: 0-7645-4963-4

Manufactured in the United States of America
10987654321

20/RW/RQ/QT

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH
A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Cataloging-in-Publication Data: 2002114859

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or registered trademarks
of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. MySQL is a registered trademark of MySQL AB Company. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

@Wﬂey Publishing, Inc. is a trademark of Wiley Publishing, Inc.

About the Authors

Brad Bulger can remember when computers were as big as refrigerators and old-
timers would come into the machine room and call them “mini.” After working for
several companies that no longer exist, he is now a member of The Madfish Group
(http://www.madfishgroup.com), where he builds Web sites for money. He would
still like to know when the future is going to get here but has a sneaking suspicion
he already knows.

Jay Greenspan is a New York-based writer, editor, and technical consultant. He
has contributed to sites run by Apple Computer and Wired Digital, and is author of
MySQL Weekend Crash Course. He runs Trans-City Productions, Inc. (http://www.
trans-city.com), a firm that provides editorial services to high-tech companies.

David Wall is a freelance technical consultant, lecturer, and writer. He specializes
in Linux/Apache/MySQL/PHP (LAMP) servers and in Voice over IP technologies
from IBM and Cisco Systems. His consultancy, David Wall Enterprises (http://
www.davidwall.com), has offices in Washington, D.C., and Sydney.

Credits

ACQUISITIONS EDITORS
Debra Williams Cauley
Jim Minatel

PROJECT EDITORS
Kevin Kent
Neil Romanosky

TECHNICAL EDITORS
Zak Greant
Bill Patterson
Liz Warner

COPY EDITOR
S. B. Kleinman

EDITORIAL MANAGER
Mary Beth Wakefield

VICE PRESIDENT & EXECUTIVE
GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND
EXECUTIVE PUBLISHER
Bob Ipsen

VICE PRESIDENT AND PUBLISHER
Joseph B. Wikert

EXECUTIVE EDITORIAL DIRECTOR
Mary Bednarek

PROJECT COORDINATOR
Maridee Ennis

GRAPHICS AND PRODUCTION
SPECIALISTS

Beth Brooks

Jennifer Click

LeAndra Hosier

Michael Kruzil

PERMISSIONS EDITOR
Carmen Krikorian

MEDIA DEVELOPMENT SPECIALIST
Angela Denny

PROOFREADING AND INDEXING
TECHBOOKS Production Services

To Lizma, who’s still here; Jon Postel, who isn’t;
and a free Internet, which might not be much longer

For Catou

Preface

Welcome. If you are thumbing through these pages, you're probably considering
writing Web-based applications with PHP and MySQL. If you decide to go with
these tools, you'll be in excellent company. Thousands of developers — from total
newbies to programmers with years of experience — are turning to PHP and MySQL
for their Web-based projects, and for good reason.

Both PHP and MySQL are easy to use, fast, free, and powerful. If you want to get
a dynamic Web site up quickly, there are no better choices. The PHP scripting lan-
guage was built for the Web. All the tasks common to Web development can be per-
formed in PHP with an absolute minimum of effort. Similarly, MySQL excels at tasks
common to dynamic Web sites. Whether you're creating a content-management sys-
tem or an e-commerce application, MySQL is a great choice for your data storage.

Is This Book for You?

Quite a few books deal with PHP, and a few cover MySQL. We’ve read some of these
and found a few to be quite helpful. If you're looking for a book that deals with the
gory details of either of these packages, you should probably look elsewhere.

The focus of this book is applications development. We are concerned with what
it takes to get data-driven Web sites up and running in an organized and efficient
way. The book does not go into arcane detail of every aspect of either of these tools.
For example, in this book you will not find a discussion of PHP’s LDAP functions
or MySQL'’s C application program interface (API). Instead, we focus on the pieces
of both packages that affect one another. We hope that by the time you're done
with this book you’ll know what it takes to get an application up and running using
PHP and MySQL.

How This Book Is Organized

We have organized the book into five parts.

Part 1: Working with MySQL

Before you code any PHP scripts you need to know how to design a database, cre-
ate tables in your database, and get the information you want from the database.
Part I of this book shows you just about everything you need to know to work with
MySQL.

Preface

Part 11: Working with PHP

As an applications developer, you will spend the bulk of your time writing scripts
that access the database and present HTML to a user’s browser. Part II starts by
showing you the basics of the PHP scripting language, covering how PHP works
with variables, conditions, and control structures. Part II also covers many of PHP’s
functions and discusses techniques for writing clean, manageable code.

Part 111: Simple Applications

In this part we present two of the nine applications in this book: a guestbook and a
survey. Here you see the lessons from Parts I and II put into practice as we build
working applications.

Part TV: Not So Simple Applications

Here the applications become more complex, as we present applications commonly
used on the Web. You see how you can design a content management system, a
discussion board, a shopping cart, and other useful applications. Along the way
we show you some tips and techniques that should be helpful as you write your
applications.

Part V: Appendixes

The appendixes cover several topics of interest to the MySQL/PHP developer. In
them you can find installation and configuration instructions, quick reference
guides to PHP and MySQL functions, a regular expressions overview, and guides to
MySQL administration. In addition, you can find a few helpful resources, some
snippets of code, and instructions on using the CD-ROM.

Acknowledgments

I owe so many people so many bags of chocolate peanuts for helping me that I
should start a chocolate-peanut farm. Making this book happen, trying to cover
products under very active development, has been like trying to paint an oil por-
trait of a manic chameleon in a camouflage factory. I must single out Debra
Williams Cauley, Acquisitions Editor, and Kevin Kent, Development Editor, for their
help and their patience — they have been the essence of diplomacy; Jay Greenspan,
for getting me into this; and Liz Warner, for all disclosed and undisclosed forms of
assistance, but especially for helping me stay sane(ish). Thanks so much to MySQL
AB for the generous use of the MySQL Function Reference in Appendix J, and to
Zak Greant, Erik Granstrom, Bill Patterson, and David Sides, CEO of Dolphin, for all
their assistance. To everyone who helped, thank you—you have our gratitude. —
Brad Bulger

Thanks to my friends, family, and colleagues for their support and freely shared
expertise during the creation of this book. — David Wall

xi

xii

Contents at a Glance

Preface...... ix

Acknowledgments. xi

Introduction. i XXV
Part 1 Working with MySQL
Chapter 1 Database Design with MySQL 3
Chapter 2 The Structured Query Language for Creating and

Altering Tables 23
Chapter 3 The Structured Query Language for Inserting,

Editing, and Selecting Data 53
Part 11 Working with PHP
Chapter 4 Getting Started with PHP — Variables 91
Chapter 5 Control Structures 117
Chapter 6 PHP’s Built-in Functions 133
Chapter 7 Writing Organized and Readable Code 191
Part 111 Simple Applications
Chapter 8 Guestbook 2003, the (Semi-)Bulletproof

Guestbook i i 229
Chapter 9 SUIVeY .. it it e 261
Part 1V Not So Simple Applications
Chapter 10 Threaded Discussion 311
Chapter 11 Content-Management System 349
Chapter 12 Catalogviiiiiii it i e 397
Chapter 13 Problem-Tracking System 441
Chapter 14 Shopping Cart, 477
Chapter 15 XMLParsingcoiuiiinnneneennn. 505
Chapter 16 SOAP .. e e 519
Chapter 17 Project Management 537

Part V Appendixes
Appendix A What'sonthe CD-ROM 557
Appendix B HIML Formsoo i, 561
Appendix C Brief Guide to MySQL/PHP Installation and
Configuration 571
Appendix D MySQL Utilities oo, 583
Appendix E MySQL User Administration 597
Appendix F PHP Function Reference 607
Appendix G Regular Expressions Overview 659
Appendix H Helpful User-Defined Functions 669
Appendix I PHP and MySQL Resources 691
Appendix J MySQL Function Reference 697
Index....... ..o 735
End-User License Agreement 765

Xiii

Contents

Preface...... ix
Acknowledgments..............., xi
Introduction. L i XXV
Part 1 Working with MySQL
Chapter 1 Database Design with MySQL 3
Why Use a Relational Database? 3
Blasted Anomalies i 5
The update anomalycoiuiiiiniiiinn e 5
The delete anomalyottt 8
The insert anomaly oo vttt i it e 8
Normalization i, 10
Firstnormal form i 10
Second normal form i i, 11
Third normal form i, 13
Types of Relationships, 15
The one-to-many relationship 15
The one-to-one relationship 16
The many-to-many relationship 17
Advanced Database Conceptscovuuennn.. 19
Referential integrity 19
Transactionsttt e 20
Stored proceduresot e 21
SUMMATY .« vttt ettt e e et e s 22
Chapter 2 The Structured Query Language for Creating
and Altering Tables 23
Essential Definitions 24
Null values i e 24
Indexes . ..ottt e e 26
The create database Statement 26
The use database Statement 27
The create table Statement 28
Column Types ... cvv e 29
String cOlUMN TYPeS « v v v vttt et e 29
Numeric column typesc.ooiiuiiinneennn.n. 33
Date and time typesco vt ittt ittt e 35

Creating Indexesc.iuuiiniininennneennn 37

XV

Xvi

Contents

Chapter 3

Table Typest e 39
MyISAM . ..o e 39
InnoDB Tables 40
BerkeleyDB e 41
Heap . o oot 41

The alter table Statement 41
Changing a tablename 41
Adding columnsttt e 42
Dropping columnsttt 43
Adding indexesiiiii e 43
Dropping indexesttt 43
Changing column definitions 43

Using the show Command 44
show databases i i 44
showtables 45
showcolumns 46
showindex i 46
show tablestatus i, 47
show createtable il 47

GUI Tools for Manipulating MySQL Tables and Data 48
Using phpMyAdmin it 48
MySQL Control Centercuuiiuiineenennnnn 50
Using MacSQLottt e 50

Summary e 52

The Structured Query Language for Inserting,

Editing, and Selecting Data 53

The insert Statement, 53

The update Statement 55

The delete Statement 59

The replace Statement iio... 61

The Basic select Statement 64
The whereclause i, 67
OTdeT DY . vttt e e e 73
Hmit .o e 73
group by and aggregate functions 74

Joining Tables 80
The two-table join (equi-join)t 80
The multi-table join 81
The outerjointtt 82
Theselfjoin i 85
Unions e 86
Correlated subqueriesot 86

Summary e 87

Contents

Xvii

Part 11 Working with PHP
Chapter 4 Getting Started with PHP — Variables 91
Assigning Simple Variables Within a Seript 91
Delimiting Strings« oo i it 94
Assigning arrays within ascript 96
Assigning two-dimensional arrays in a script 99
Accessing Variables Passed from the Browser 100
HTML forms variables oL, 100
Passing arraysttt e 102
Cookies . ..o vt e e 104
SESSIONS & vt e e 106
Using Built-In Variables 108
PHP variables o 108
Apache variables e 109
Other Web server variables 111
Testing Variables 112
ISSET() v v et e e e e e e e 112
empty() ..o e 112
IS null() & vt e 113
IS ANt o v e ot e e e e e 113
is_double() & vt e e 113
IS StNg() «ve et 113
IS ATay() « v v e e et e e e 113
1S_D00I) vt e e e 113
is_object() . aa i e 114
IS_TESOUTCE() « v v v vt e et e e e e et et e e e 114
is_scalar() .o e e 114
BOttYPe() + i e e 114
Changing Variable Types 114
Typecastingo v vt e 114
Using settype() « .o vvvv v vttt 115
intval(), doubleval(), and stringval() 115
Variable Variables 115
SUMMATY . oo e 116
Chapter 5 Control Structures 117
The if Statement i 117
Determining true or falsein PHP 118
Comparison Operatorsve vt eenenennenn.. 122
Logical operators vuiiinin i 123
Complex if statements it 123
if ..elsestatements i, 125
if ... elseif statements i i 125

switch ... case e 126

Xviii

Contents

Chapter 6

Chapter 7

LoOPpS .« v e 127
While .. o e e 127
do..while 129
fOr e 129
foreach e 130
continue and break i i 131

Summary e 132

PHP’s Built-in Functions 133

Function Basics i 134
ATGUMENTS « vttt et e e e e e 134
Return valuesottt e e 135

Function Documentation 136

Important PHP Functions 137
String handling functions 137
Regular expression functions 142
Variable functions i 148
Type-conversion functions o oL, 149
Array functions e e 155
Object/class functionscoiiiiuneennn... 163
Print functions i e 164
Date/time functionsuu it enen.. 166
File-system functions 170
Script Control functions 175
Random number generator functions 177
Session functions i e 179
MySQL functionsciiiii i 179
HTTP header functions oo, 179
Image functionst 181
Mail function oot e 183
URL functionsiiiiiii i iennennnnn 184
Error functions oot e 186
Output buffering 187
Information functions 188

Summary e 189

Writing Organized and Readable Code 191

Indentingo 191
Codeblocks . ..o v v e 192
Functioncalls 194
SQL Statements . . . v vt v ittt e e e et et e 196

Includest e 197
include() and require()ttt e 199

include_once() and require_once() 199

Contents

Xix

User-Defined Functions 200
Function basics i i i 200
Returning values 203
Using a variable number of arguments 205
Variable sCopeot e 206

Object-Oriented Programming 209
Classes, Continuedciiirnnnnnnnnnn 210
Objectcloningt 218
DeStruCtorS . o v v vttt e 219
EXCOptions . . o oo vttt e 219

Object-Oriented Code versus Procedural Code 220

Comments i 221

SUMMATY ..o e e 224

Part 111 Simple Applications
Chapter 8 Guestbook 2003, the (Semi-)Bulletproof

Guestbook 229

Determining the Scope and Goals of the Application229
NECESSATY PALES + v v v v v e e e e et e e e e e e 230
What do we need to prevent?00t 231

Designing the Database 234

Code OVerviewttt 235

Code Breakdown 236
From functions/basic.php 236
Interesting code flow 255

SCIIPES e 259

SUMMATY ..o e e 259

Chapter 9 SUrvVey ... 261

Determining the Scope and Goals of the Application 261
NECESSATY PALES + v v v v v e e e e et e e e e e e 262
Preventive measureso, 265

Designing the Database 266

Code OVervVIewttt 270

Code Breakdown 274
HTML functionsouiiiiiii .. 276
The survey application 294

Interesting Code Flow 298
admin/questions.php i 298
admin/get_winnerphp 303
admin/winners.php e 303
claimphp e 304

SUMMATY ..o e e 308

XX

Contents

Part 1V Not So Simple Applications
Chapter 10 Threaded Discussion 311
Determining the Scope and Goals of the Application 312
Whatdoyouneed?oiuiiniinninenennnnnn. 312
What do you need to prevent? 314
TheDatai ... 316
Code OVerviewt 320
Code Breakdown L. 321
Reusable functions i 321
Functions from /book/discussion/functions 321
Error-handling and debugging functions 332
Summary 347
Chapter 11 Content-Management System 349
Determining the Scope and Goals of the Application350
NECeSSary PABeS « v v v v v vt i e e 350
What do we need to prevent?, 353
Designing the Database 355
Code OVerviewttt 361
Code Breakdown 362
Functions from /dsn i, 362
Functions from /book/functions/database 365
Functions from [content/functions 374
Interesting Code Flow 387
content/authenticate.php oo oo 387
content/admin/userphp oo 389
content/story.php e 392
Summary 395
Chapter 12 Catalogccoiiiii 397
Determining the Scope and Goals of the Application398
NECeSSary PAGES « v v v v v it i e e 398
What do we need to prevent? 402
TheDatao 403
Code OVerviewot 408
The object-oriented approach 408
Accessing the filesystem oL 408
Uploading filesot 409
Code Breakdown 410
Objectsintheoryt iinnennenn 410
Classes v vttt e 411
Sample script . ..o oo 434

Summary 439

Contents

xxi

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Problem-Tracking System 441
Determining the Scope and Goals of the Application 441
Whatdoyouneed?c.iiiiuiininenennenn 442
What do you need to prevent? 444
Designing the Database 444
Code OVerviewttt 452
Code Breakdown 453
Reusable functions from /book/tracking/functions.php 453
SCIIPES & vt et e e e 464
SUMMATY ...t 475
Shopping Cart 477
Determining the Scope and Goals of the Application 477
Whatdoyouneed?ttt 478
What do you need to prevent? 479
TheDatao i 479
Configuration Overview, 480
Configuring for encryption and security 480
Configuring Apache for credit-card authorization 482
Configuring for session handling 483
Code OVerview, 484
Session functions o i i 484
Dealing with the credit-card processor 486
Code Breakdown 486
Classes .o v vt ii i e e 486
SCIIPES o« v e et e e e 492
SUMMATY ... e 504
XML Parsingcoouiiniiiiniiin .. 505
Scope and Goals of Application 506
Code OVerview, 508
An introduction to parsers e 508
Using Simplexml i 509
Code Breakdown i, 511
Laying the groundwork 512
SUMmMAary e 518
SOAP .. 519
Overview of SOAP 520
The SOAP envelope vt v ittt it i i e 520
The SOAP bodycciiiiiiiiiiiinnnn. 521
A typical request/response pair 522
Code OVerviewttt 524
The essence of NuSOAP i, 525

A simple NuSOAP servicecall 526

xxii

Contents

Determining the Goals of the Application 527
Code Breakdown 528
The Barnes & Noble application 528
The Babelfish application 532
Writing a SOAP server application 534
Summary 535
Chapter 17 Project Management 537
Determining the Goals of the Application 537
NECESSATY PAGES « v v v v v e e et et e e e e 537
Designing the Database 541
USeI tYPS « v v v et e et e e e e 541
Application USeTs v ittt e 542
Project and task status i i 542
PrOjectS « v vt e e 542
Project-user mappingsttt e 543
Tasks oo i i 543
Files . oo e e 543
Code OVerviewo i, 544
Logging in and establishing a session 544
Showing active projectsottt 544
Creating a new projectcuvimeunennennn. 545
Uploading afile i, 545
Viewing afile 545
Adding a USeT . .o vttt e e 545
Code Breakdown 545
Session managementiiie e 545
Authentication i e 546
Viewing projects’ statuso v v v ittt e 548
Uploading afile i, 552
Displaying the contents of afile 553
Summary e 553
Part V Appendixes
Appendix A What'sonthe CD-ROM 557
Appendix B HIML Forms 561
Appendix C Brief Guide to MySQL/PHP Installation and
Configuration, 571
Appendix D MySQL Utilitieso, 583
Appendix E MySQL User Administration 597
Appendix F PHP Function Reference 607
Appendix G Regular Expressions Overview 659
Appendix H Helpful User-Defined Functions 669

Contents xxiii

Appendix I PHP and MySQL Resources 691
Appendix J MySQL Function Reference 697
Index............ i i 735

Introduction

Soon we will head off on a fabulous journey, a journey on which we will explore
the ins and outs of MySQL and PHP database applications in great detail. It’s going
to be a fun trip; we just know it.

Okay, maybe we're being a bit optimistic. If you're anything like us, points of
this particular journey will be a lot more tedious than they are exciting. Let’s face
facts: Application development isn’t always the most exciting thing in the world.
And as with any other venture that involves programming, some very frustrating
times are sure to be ahead, whether because of a syntax error you can’t find or a
piece of code that won’t do what you think it ought to do. But despite all that, here
you are, and we think there is a very good reason for that.

Web applications are the present and the future. No matter your background,
whether you have a history with Visual Basic or COBOL, or maybe just some HTML
and JavaScript, your résumé is only going to improve with some Web application
development experience. We don’t think there’s a better combination of tools to
have under your belt than PHP and MySQL. The numbers bear us out. PHP and
MySQL are becoming increasingly popular, and the demand for people who can use
these tools will only increase.

A bit later in this introduction we go into a more detailed explanation of why
you should use PHP and MySQL. However, before we can get to that, we want take
a bit of time to go over the architecture of Web applications. Once we’ve done this,
we can explain in detail why PHP and MySQL should be the centerpieces of your
application-development environment. Once we’ve sold you on these tools, we pre-
sent a very quick and grossly under-coded application. As you look over this appli-
cation, you can see the basic syntax and principles behind PHP and MySQL.

o

Basic Architecture

At the most basic level, the Web works off a client/server architecture. Simply
stated, that means that both a central server and a client application are responsi-
ble for some amount of processing. This setup differs from that of a program such
as Microsoft Word, which operates just fine without any help from a server. Those
of you who used older VAX machines might remember the days of dumb terminals,
which had no processing power whatsoever. Depending on where you work today,

As we proceed with the book, we assume that you have read and under-
stand everything presented in this introduction.

XXV

XXVi

Introduction

perhaps in a university or a bank, you might still use applications that are in no
way dependent on the client. In other words, applications in which all the work is
done on the central computer.

The client

In this book, you’'ll learn how to use MySQL and PHP to create applications that
make use of a single client: the Web browser. This is not the only possibility for
Internet-based applications. For very sophisticated applications that require more
client-side processing or that need to maintain state (we talk about maintaining
state later in the introduction) a Java applet may be necessary. But unless you're
coding something like a real-time chat program, client-side Java is completely
unnecessary.

So the only client you need to be concerned with is the Web browser. The appli-
cations need to generate HTML to be rendered in the browser. As you probably
already know, the primary language of browsers is the Hypertext Markup
Language, or HTML. HTML provides a set of tags that describe how a Web page
should look. If you are new to the concept of HTML, get on the Web and read one
of the many tutorials out there. It shouldn’t take long to learn the basics. Some of
the best include:

National Center for Supercomputer Applications (http://archive.
ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html)

@ Davesite (http://www.davesite.com/webstation/html/)

& Webmonkey (http://hotwired.lycos.com/webmonkey/teachingtool/)

Of course, most browsers accept more than HTML. All kinds of plug-ins, includ-
ing RealPlayer, Flash, and Shockwave, are available, and most browsers also have
some level of support for JavaScript. Some can even work with XML. But, like most
Web developers, we are taking a lowest-common-denominator approach in this
book. We're going to create applications that can be read in any browser. We don’t
use JavaScript, XML, or anything else that could prevent some users from render-
ing the pages we serve. HTML it is.

The server

Almost all of the work of Web applications takes place on the server. A specific
application, called a Web server, is responsible for communicating with the
browser. A relational-database server stores whatever information the application
requires. Finally, you need a language to broker requests between the Web server
and the database server; it is also used to perform programmatic tasks on the infor-
mation that comes to and from the Web server. Figure I-1 represents this system.

Introduction

XXVvii

Relational

Database
(MySQL, Oracle, MS
SQL

Tﬁ

L | Middleware

Web Server PHP, ColdFusior
(Apache, IIS) ASP, JSP
—
A
Internet

Web Browser
(Internet Explore
Netscape)

Figure 1-1: Architecture of Web applications

But, of course, none of this is possible without an operating system. The Web
server, programming language, and database server you use must work well with
your operating system.

THE OPERATING SYSTEM

Many operating systems are out there. Windows 98/2000/CE/XP and Macintosh OS
are probably the most popular. But that’s hardly the end of it. Circumstances might
have forced you to work with some obscure OS for the past few years. You might
even be under the impression that your OS is the best thing going. That’s fine. But
if you're planning on spending a lot of time on the Web and on running applica-
tions, you're best off getting to know either Windows NT/2000 or some version of
Unix. These two account for well over 90 percent of all the servers on the Web. It is
probably easier for you to learn a little NT/2000/XP or Unix than it is to convince
everybody else that the AS/400 is the way to go.

XXViii

Introduction

Apple’s Mac OS X is based on a FreeBSD/Unix foundation and gives you
everything you expect from a Unix OS.

ol

Which should you use? Well, this question is a complex one, and the answer for
many will be based partially on philosophical approach. In case you're unaware of
it, let’s take a moment to talk about the broad topics in this philosophical debate.

If you don’t know what we are talking about, here are the basics. PHP and
MySQL belong to a class of software known as open source. This means that the
source code for the heart of the applications is available to anyone who wants to
see it. These applications make use of an open-source development model, which
enables anyone who is interested to participate in the development of the project.
In the case of PHP, coders all over the world participate in the development of the
language and see no immediate pay for their substantial work. Most of the people
who participate are passionate about good software and code for the enjoyment of
seeing people like you and me develop with their tools.

This method of development has been around for some time, but it has gained
prominence as Linux has become increasingly popular. More often than not, open-
source software is free of charge. You can download the application, install it, and
use it without getting permission from anyone or paying a dime to anyone.

Suffice it to say that Microsoft, Oracle, and other traditional software companies
do not make use of this method of development.

If you are not an open-source adherent, there are excellent reasons for choosing
NT/2000/XP. Usually, the thing that steers people towards NT/2000/XP is inertia. If
you or your company has been developing with Microsoft products for years, it is
probably going to be easier to stay within that environment than to make a change.
If you have a team of people who know Visual Basic, you are probably going to
want to stick with NT/2000/XP. But even if this is the case, there’s nothing to pre-
vent you from developing with PHP and MySQL. Both products run on Windows
95/98 and Windows NT/2000/XP/CE.

But in the real world, almost all PHP/MySQL applications are running off some
version of Unix, whether Linux, BSD, Irix, Solaris, HP-UX, or one of the other flavors.

The major advantage of Unix is its inherent stability. Boxes loaded with Linux
have been known to run for months or years without crashing. Linux and BSD also
have the advantage of being free of charge and able to run on standard PC hardware.
If you have any old 486, you can load it up with Linux, MySQL, PHP, and Apache
and have yourself a well-outfitted Web server. You probably wouldn’t want to put it
on the Web, where a moderate amount of traffic might overwhelm it, but it can
serve nicely as a development server, a place where you can test your applications.

THE WEB SERVER
The Web server has what seems to be a fairly straightforward job. It sits there, run-
ning on top of your operating system, listening for requests that somebody on the

Introduction

XXiX

Web might make, responding to those requests, and serving out the appropriate Web
pages. In reality, it is a bit more complicated than that, and because of the 24/7
nature of the Web, the stability of the Web server is a major issue.

There are many Web servers out there, but two dominate the market. These are
Apache and Microsoft’s Internet Information Server (IIS).

INTERNET INFORMATION SERVER 1IS is deeply tied to the Windows environment
and is a key component of Microsoft’s Active Server Pages (ASP). If you've chosen
to go the Microsoft way, you'll almost certainly end up using IIS.

There is a certain amount of integration between the programming language and
the Web server. At this point, PHP 4 and 5 integrate well with IIS.

APACHE The Apache Web server is the most popular Web server there is. It, like
Linux, PHP, and MySQL, is an open-source project. Not surprisingly, Apache works
best in Unix environments, but also runs just fine under Windows.

Apache makes use of third-party modules. Because it is open source, anyone
with the skill can write code that extends the functionality of Apache. PHP most
often runs as an Apache extension, known as an Apache module.

Apache is a great Web server. It is extremely quick and amazingly stable. The
most frequently stated complaint about Apache is that, like many pieces of Unix
software, the graphical tools for manipulating the application are limited. You alter
Apache by specifying options on the command line or by altering text files. When
you come to Apache for the first time, all this can be a bit opaque.

Though Apache works best on Unix systems, versions also run on Windows
operating systems. Nobody, not even the Apache developers, recommends that
Apache be run on a busy server under Windows. If you have decided to use the
Windows platform for serving Web pages, you're better off using IIS.

But there are conditions under which you’ll be glad Apache does run under
Windows. You can run Apache, PHP, and MySQL on a Windows 98 machine and
then transfer those applications to Linux with practically no changes to the scripts.
This approach is the easiest way to go if you need to develop locally on Windows
but to serve off a Unix/Apache server.

MIDDLEWARE

PHP belongs to a class of languages known as middleware. These languages work
closely with the Web server to interpret the requests made from the World Wide
Web, process these requests, interact with other programs on the server to fulfill the
requests, and then indicate to the Web server exactly what to serve to the client’s
browser.

The middleware is where you’ll be doing the vast majority of your work. With a
little luck you can have your Web server up and running without a whole lot of
effort. And once it is up and running, you won't need to fool with it a whole lot.

But as you are developing your applications, you spend a lot of time writing code
that makes your applications work. In addition to PHP, several languages perform
similar functions. Some of the more popular choices are ASP, Perl, and ColdFusion.

XXX

Introduction

RELATIONAL DATABASES

Relational database management systems (RDBMSes) provide a great way to store
and access complex information. They have been around for quite a while. In fact,
they predate the Web, Linux, and Windows, so it should be no surprise that there
are many RDBMSes to choose from. All the major databases make use of the
Structured Query Language (SQL).

Some of the more popular commercial RDBMSes are Oracle, Sybase, Informix,
Microsoft’s SQL Server, and IBM’s DB2. In addition to MySQL, there are now two
major open-source relational databases. Postgres has been the major alternative to
MySQL in the open-source arena for some time. For a while, Borland released its
Interbase product under an open-source license and allowed free download and
use. The results of that release are a software project called Firebird.

Why These Products?

Given the number of choices out there, you might be asking yourself why you should
choose PHP and/or MySQL. We answer this question in the following sections.

Why PHP?

Programming languages are a lot like shoes. Some look good to some people yet
look really ugly to others. To carry the analogy a little further, some shoes just fit
well on some feet.

What we mean is this: When it comes to Web programming, all languages do
pretty much the same things. They all interact with relational databases, they all
work with file systems, and they all interact with Web servers. The question of
which language is best is rarely a matter of a language’s ability or inability to per-
form certain actions. It’s usually more a matter of how quickly and easily you can
do what you need to do.

1T’S FAST AND EASY
What about speed? There are really only three things that we know for sure when it
comes to comparing the speeds of Web-programming languages.

¢ Applications written in C will be the fastest.

@ Programming in C is rather difficult and takes much longer than program-
ming in any of the other languages mentioned so far.

¢ Comparisons among languages are extremely difficult.

From everything we know, we feel safe in saying that PHP is as fast as anything out
there.

More often than not, choosing a language comes back to the same issues involved
in buying shoes. You want to go with what’s most comfortable. If you're like us,

Introduction

XXXi

you find that PHP represents the perfect combination of power, structure, and ease
of use. Again, this is largely a matter of opinion, but we do believe that the syntax
of PHP is superior to those of ASP and JSP. And we believe it puts more power at
your fingertips more quickly than ColdFusion and is not as difficult to learn as Perl.

In the end, we believe PHP offers you the best opportunity to develop powerful
Web applications quickly. That generalization made, we do believe there are other
excellent reasons for choosing PHP.

1T’S CROSS-PLATFORM
In the rundown of Web architecture, we mentioned that PHP runs on Windows
2000/NT/CE/XP and Unix and with both IIS and Apache. But the cross-platform
abilities of PHP go far beyond these platforms. If you happen to be using Netscape,
Roxen, or just about anything else, it is likely PHP works with it.

Yes, ASP can be run on Linux, ColdFusion can work on Solaris and Linux, and
JSP is adaptable across many platforms. At this point, PHP works as well on as
wide a variety of systems as any other available product.

1T ACCESSES EVERYTHING
What do you need to access in the course of creating your Web applications?
LDAP? IMAP mail server? Oracle? Informix? DB2? Or maybe you need an XML
parser or WDDX functions.

Whatever you need to use, it is more than likely that PHP has a built-in set of
functions that make getting whatever you need very easy. But what if it doesn’t
have something built in that you’'d like? That brings us to our next point.

1T’S CONSTANTLY BEING IMPROVED

If you are new to open-source development, you might be surprised by the high
quality of the software. There are thousands of very technical, very talented pro-
grammers out there who love to spend their time creating great, and mostly free,
software. In an active project such as PHP, a variety of developers look to improve
the product almost daily.

It is truly remarkable. If you happen to find a bug, you can submit a report to a
mailing list that the core developers read. Depending on its severity, it is likely that
the bug will be addressed within a couple of hours to a couple of days.

When PHP was put together, it was done so in a modular fashion. This makes
adding greater functionality reasonably easy. If there are sets of functions you’d like
added to PHP, there’s a good chance that someone can do it with minimal effort.

YOUR PEERS CAN SUPPORT YOU

Most languages have active mailing lists and development sites. PHP is no excep-

tion. If you run into trouble — if there’s a bug in your code that you just can’t figure

out or if you can’t seem to fathom some function or another —someone among the

hundreds subscribed to PHP mailing lists will be happy to check and fix your code.
The open-source nature of PHP creates a real feeling of community. When you

get into trouble, your PHP-hacking brethren will feel your pain and ease it.

Xxxii

Introduction

1T°S FREE

If you have a computer, Linux, Apache, and PHP are all completely free.

Why MySQL?

This one is perhaps a little tougher to answer. Although MySQL has much to rec-
ommend it, it also has a variety of competitors, many of whom may be better suited
for a particular task.

In Part I of this book we discuss MySQL in some detail. In these chapters we
mention features available in other relational databases that MySQL does not sup-
port. (If you know your way around databases and are curious, these include stored
procedures, triggers, and subqueries.)

Given these limitations, MySQL is definitely not the best choice in certain envi-
ronments. If you are planning on starting, for example, a bank or a savings and
loan, MySQL probably isn’t for you.

But for the majority of people using the majority of applications, MySQL is a
great choice. It is particularly well suited for Web applications.

1T’S COST-EFFECTIVE
Think you need an Oracle installation? Get ready to shell out tens of thousands of
dollars at a minimum. There’s no doubt that Oracle, Sybase, and Informix create
terrific databases, but the cost involved is prohibitive for many.

MySQL is free for development and can be used in a live production environ-
ment for a minimal cost (see https://order.mysql.com/index.php?infopage=1
for more details on licensing MySQL).

1T’S QUICK AND POWERFUL

MySQL might not have every bell and whistle available for a relational database,
but for most users it has plenty. If you are serving out Web content or creating a
moderately sized commerce site, MySQL has all the power you need.

For small to-medium-sized databases, MySQL is extremely fast. The developers
of MySQL take great pride in the speed of their product. For applications like the
ones presented in Parts IIl and IV of this book, it is unlikely you’ll find a database
that’s any faster.

1T°S IMPROVING ALL THE TIME

MySQL is improving at a staggering rate. The developers release updates frequently
and are adding impressive (and we do mean impressive) features all the time. It’s
even possible that at the time you're reading this book MySQL will support sub-
queries and stored procedures.

Introduction

Xxxiii

Your First Application

Enough of the prelude. Now we turn to writing an application so you can see how
all these parts come together in a real live application. By the time you have fin-
ished reading this introduction, you should have a pretty good idea of how it all
comes together.

Tool check

You need a few key elements to get going. We run through them here so you know
what you need.

SOFTWARE

This is a Web-based application, so you're clearly going to need a Web server. You
will probably be using Apache, whether you are using Windows or Unix. You need
to install Apache so that it can access the PHP language.

In addition, you need to have MySQL installed. And PHP has to be able to rec-
ognize MySQL. Apache, MySQL, and PHP are provided on the accompanying CD,
and installation instructions are provided in Appendix C. You might want to install
these packages before proceeding, or you can just read along to get an idea of what
we're doing and install the packages later when you want to work with the more
practical examples in this book.

TEXT EDITOR/INTEGRATED DEVELOPMENT ENVIRONMENT

To code PHP and your Web pages, you need, at a minimum, a text editor. You can
use Notepad or something similarly basic, but if you're starting without an alle-
giance to any particular editor, we suggest you get something with good syntax
highlighting. On Windows, Macromedia HomeSite (www.macromedia.com) is a tool
that works well with PHP, and we've heard excellent things about Editplus
(www.editplus.com).

If you have been working on Unix for some time, it is likely that you already
know and love some text editor or another, whether it be Emacs, vi, or Kedit. If not,
any of these are fine, though the first two do take some getting used to. If you're
working on Unix, but don’t have the patience to learn vi, try Pico. It's very easy
to use.

In the last couple of years, a few companies have released integrated develop-
ment environments (IDEs) for use with PHP. Zend Technologies (www.zend.com),
whose employees have been deeply involved with PHP for years, sells a suite of
products that can make your PHP coding life much easier. Based on code that was
originally open source, NuSphere Corporation (www.nusphere.com) has also cre-
ated a very competent IDE for Windows and Linux.

XXXV

Introduction

Application overview

We start this book with an example of a simple Web application that stores user
information, a place where users can enter their names, email addresses, URLs, and
maybe even comments —in essence, a guestbook.

The guestbook is a simplified example, something you would never want to
run on a live Web server.We re-create this application in a more robust form
in Chapter 8.

Creating the database

Now that you know exactly what you need, the first step is to create a database that
stores this information. To do this, you use the language common to most every
database server: SQL. You read a lot more about this later, so don’t worry if you don’t
understand everything right away. Just read through the rest of the Introduction
and then read Chapter 1.

Start up the MySQL command-line client. If you're working on Unix, typing
mysql at the shell should do the trick (or you might have to go to the directory that
contains the MySQL executable — typically /mysql/bin or [usr/local/mysql/bin).

If you are on Windows, you need to go to the DOS prompt, find the path to
mysql.exe, and execute it. Then, at the prompt, create a new database. When you're
done, you should have something that looks very much like this:

[jay@mybox jayl$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 716 to server version: 4.0.1-Tog

Type 'help' for help.

mysql> create database guestbook;
Query 0K, 1 row affected (0.00 sec)

mysql>

Now, within the database named guestbook you need a table that stores the user
information. This table is also created in the MySQL monitor. The command to cre-
ate the table isn’'t very complex. You basically need to let MySQL know what kind
of information to expect, whether numbers or strings, and whether or not any of
the information can be omitted (or NULL). Details appear in Chapter 2, but for now
just note that the basic command is create table; you get something that looks
about like the following:

Introduction

XXXV

mysql> use guestbook;
Database changed
mysql> create table guestbook

-> (

-> name varchar(40) null,

-> location varchar(40) null,
-> email varchar(40) null,
-> url varchar(40) null,
-> comments text null

->)

-> ;

Query 0K, 0 rows affected (0.00 sec)
mysql>
Then you have to give your application permission to use the table:

mysql> grant delete, insert, select, update on guestbook
-> to nobody@localhost identified by 'ydobon';
Query 0K, 0 rows affected (0.00 sec)

Then you issue a quick statement that forces the server to re-read the permis-
sions tables, effectively putting the new ones into effect:

mysql> FLUSH PRIVILEGES;

So now you have a database named guestbook and a table, also named guest-
book, within the database. Now it’s time to write an application in PHP that will
enable you to insert, edit, and view information kept in this guestbook.

Your PHP script

Now’s the time to move to the text editor. In the course of configuring your Web
server, you need to let it know which files should be handed off to PHP so the
engine can interpret the page. Most often these files have a .php extension, though
it is possible to have PHP interpret anything, including .html files. These scripts live
inside the folder designated to hold Web pages. For Apache, this is usually /htdocs.

BASIC SYNTAX

One neat thing about PHP is that it lets you move between straight HTML and com-
mands that are part of the PHP programming language. It works like this: The sec-
tions of your script between the opening tag (<?php) and the closing tag (?>) are
interpreted by the PHP engine, and portions not within these tags are treated as
plain HTML. Check out the following PHP page.

XXXVi

Introduction

<?php

echo "Hi, "
7>

mom.

When run through the Web server, this code creates a Web page that prints,
simply, Hi, mom. PHP’s echo command manages the first part of the line. But, of
course, PHP can do quite a bit more than that. Like any other programming lan-
guage, it can work with variables and make decisions.

<?php
echo "Hi, mom. "

$var = date("H");
if ($var <= 11)
{
echo "good morning";
}
elseif ($var > 11 and $var < 18)
{
echo "good afternoon";
}
else
{
echo "good evening";
}
7>

In the preceding code, after printing out the greeting, there is some real pro-
gramming. We have used PHP’s built-in date function to grab the hour of the day
in 24-hour format. That value is immediately assigned to a variable named $var.
Then a decision is made, and the appropriate text is printed, depending on the time
of day. Notice the syntax here. Each PHP command ends with a semicolon (:). In
the if statement, curly braces ({}) hold the commands to be executed depending
on the condition. And the condition itself is held within parentheses (()).

The date() function and echo, which are used in the previous example, are just
two of the hundreds of functions built into PHP, many of which you learn to use in
the course of this book. If you are going to access the database, you're going to
need a few more.

CONNECTING TO THE DATABASE

While you're installing PHP you should let it know that you plan on using MySQL
with it. If you don’t do this, what we discuss now won’t work. Even if PHP is aware
that you're using MySQL, in your specific scripts you must identify the exact data-
base you need access to. In this case, that is the guestbook database you just created.

Introduction

XXXVii

mysqgl_connect("localhost","nobody", "ydobon")

or die("<h3>could not connect to MySQL</h3>\n");
mysql_select _db("guestbook™")

or die("<h3>could not select database 'guestbook'</h3>\n");

The first line in the preceding code tells MySQL that the Web server (the entity
running the script) is on the local machine, has a username of nobody, and has a
password of ybodon. Then, if the connection is successful, the specific database is
selected with the mysql_select_db() command. With these lines safely tucked
away in your scripts, you should be able to manipulate the database with your
commands.

Because you're going to need these lines in every page in this application, it
makes sense to save some typing, put them in a file of their own, and include them
in every page. If you've done any programming at all, you know that this involves
dumping the entire contents of that file into the file being accessed. These lines are
kept in a file called dbconnect.php. At the top of every other file in this application
will be the following line:

include('dbconnect.php');

INSERTING INFORMATION INTO THE DATABASE

Because you have yet to put any users in the database, we start by reviewing the
script that enables you to do that. But first, we need to tell you a little bit more
about PHP variables. A bit earlier in this introduction in the section “Basic Syntax,”
we showed that you can create variables within a PHP script, but because this is a
client/server environment, you're going to need to get variable data from the client
(the Web browser) to PHP. You usually do this with HTML forms.

There’s a basic rundown of HTML forms in Appendix B. Check that if you need
to. For now we just want to point out that every form element has a name and that
when a form is submitted, the names of those form elements become available as
variables in the PHP script the form was submitted to.

In older versions of PHP, these variables would automatically be created as
global variables: If you submitted a form with a field named firstname, the script
receiving the form would have a variable named $firstname defined when it
began. This can lead to some serious security problems, however. So now, the val-
ues are available as elements in the system-defined “superglobal” arrays, such as
$_GET (for fields passed in as part of the URL) and $ POST (for fields submitted
from forms). The simplest of these to use is $__REQUEST, which combines GET, POST,
and cookie values. If you're not understanding all of this right now, don’t worry
about it; these concepts are covered in greater detail later in the book, particularly
in Chapter 9.

As soon as the following form is submitted, the wvariables $ REQUEST
['surname'] and $_REQUEST['submit'] become available in the PHP script
myscript.php. The value of $_REQUEST['surname'] is whatever the user enters into
the text field. The value of $_REQUEST['submit'] is the text string submit.

XXXViii

Introduction

<form action="myscript.php">

<input type="text" name="surname">

<input type="submit" name="submit" value="submit">
</form>

Before we show the script itself, now is a good time to note that Web program-
ming is slightly different from other types of programming in one important respect:
It is stateless. To display a page, a Web server must first receive a request from a
browser. The language they speak is called HTTP, the Hypertext Transfer Protocol.
The request includes several things — the page the browser wishes to see, the form
data, the type of browser being used, and the IP address the browser is using. Based
on this information, the Web server decides what to serve.

Once it has served this page, the server maintains no connection to the browser.
It has absolutely no memory of what it served to whom. Each HTTP request is dealt
with individually with no regard to what came before it. For this reason, in Web
programming you need to come up with some way of maintaining state. That is, if
you are progressing through an application, you need some way of letting the
server know what happened. Essentially, you need ways of passing variables from
page to page. This comes up in our applications. The applications have three ways
in which to do this: by passing hidden form elements, by using cookies, or by using
sessions.

Now back to the script.

<form action="myscript.php">

<input type="text" name="surname">

<input type="submit" name="submit" value="submit">
</form>

You can decide what you display on a page based on the variable information
that comes from HTML forms. For example, you can find out whether the preceding
form has been submitted by checking if the variable name $ REQUEST['submit']
has a value of submit. This very technique comes into play when it we create the
page for inserting information into the database.

There is one page in our application, called sign.php, that has an HTML form.
The action of the form (the program to run as a result of the submission) in this
page is create_entry.php. Here’s the page in all its glory:

<h2>Sign my Guest Book!!!</h2>
<form method="post" action="create_entry.php">
Name:

<input type="text" size="40" name="name">

Introduction

XXXiX

Location:

<input type="text" size="40" name="location">

Email:

<input type="text" size="40" name="email">

Home Page URL:

<input type="text" size="40" name="url">

Comments:

{textarea name="comments" cols="40" rows="4"
wrap="virtualv></textarea>

<input type="submit" name="submit" value="Sign!">
<input type="reset" name="reset" value="Start Over">

</form>

When the user fills out this form and submits it, the information is sent to
create_entry.php. The first thing to do on this page is to check if the form has been
submitted. If it has, take the values entered into the form and use them to create a
query to send to MySQL. Don’t worry about the specifics of the query just yet. Just
know that it inserts a row into the database table you created earlier.

<?php
include("dbconnect.php");

if ($_REQUEST["submit"] == "Sign!")
{
$query = "insert into guestbook
(name,location,email,url,comments) values (
.$_REQUEST["name"]

.$_REQUEST["Tocation"]

.$_REQUEST["email"]

.$_REQUEST["url™]
.$_REQUEST["comments"]
‘"V) "

x1

Introduction

mysql_query($query);
7>
<h2>Thanks!!</h2>
<h2>View My Guest Book!!!</h2>
<?php
}
else
{

include("sign.php");
}
7>

If the form, which is in sign.php, hasn’t been submitted, it is included and, there-
fore, shows the same form. You might notice that this page is submitted to itself.
The first time the create_entry.php page is called, the form in sign.php is displayed.
The next time, though, the data are inserted into the database.

Figures I-2 and I-3 show the pages that this script creates.

A http://madfish.com:8080/book/guesthook/sign.php - Microsoft Internet Explorer

JEiIe Edit Miew Favorites Tools Help |

| Address | pitp://192.168.1.1/book /questbook./sian php | @6o
L2 0 AR BN Ik s Ei
Back Fanward Stop Refresh Home Search Favortes History il Frint Edit

=l

Sign my Guest Book!!!

Name: IJay Greenspan

Location: ISan Francisco

Email: |jgreen_1 {Eyahoo.com
Home Page TRL: |http:,-",!\v\rww.phpmysqlbook.com

Lowve it. ;I

Comments: =l

Start Ower |

|

Astart| | € €D) W 3y 1 || &f[6)] BeBlevBI SEPUB 941 aM
Figure I-2: create_entry.php the first time through

Introduction

xli

3 http://madfish.com:8080/bookiguesthook/create_entry.php - Microsoft Internet Explorer [HEIE

JEiIe Edit View Favorites Tools Help |
JAﬁdreSS I@ http: #Amadfish. com: 8020/book Aguestbook Acreate_entry. php j & Go
L IEI A T B~ R RS A A /[
Back Fonward Stop FRefresh Home Search Favorites History M ail Frint Edit
=l
Thanks!!
View My Guest Book!!!
E
s €2 @HE B | &6 wH BLFeePd BEDLB 942 aM

Figure 1-3: create_entry.php after submission

VIEWING INFORMATION IN THE DATABASE

This shouldn’t be too tough. You already know that the file needs to include
dbconnect.php. Other than that, we've already mentioned that databases store
information in tables. Each row of the table contains information on a specific
person who signed the guestbook, so to view all the information the page needs to
retrieve and print out every row of data. Here’s the script that can do it (you should
notice that it’s pretty sparse):

<?php include("dbconnect.php"); 7>

<h2>View My Guest Book!!</h2>

<?php

$result = mysql_query("select * from guestbook™")
or die(mysqgl_error());

while ($row = mysql_fetch_array($result))
{

xlii Introduction

echo "Name:";
echo $row["name"];
echo "
\n";
echo "Location:";
echo $row["Tocation"];
echo "
\n";
echo "Email:";
echo $row["email"];
echo "
\n";
echo "URL:";
echo $row["url"];
echo "
\n";
echo "Comments:";
echo $row["comments"];
echo "
\n";
echo "
\n";
echo "
\n";

}

mysql_free_result($result);

7>

<h2>Sign My Guest Book!!</h2>

The query in the preceding code asks MySQL for every row in the database. Then
the script enters a loop. Each row in the database is loaded into the variable $row,
one row at a time. Rows continue to be accessed until none is left. At that time, the
script drops out of the while loop.

As it works through the loop, each column in that row is displayed. For example,
the following code prints out the email column for the row being accessed:

echo $row["email"]

When run, the simple script at the beginning of this section prints out every row
in the database. Figure I-4 shows what the page will look like.

Introduction

xliii

3 http://192.168.1.1/book/guesthookiview.php - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help |

| Address |&] hitp.//132.168.1.1 /book Aguestbook Aview. php ~| @to
) W QA G 3| B =/
Back Fonward Stop FRefresh Home Search Favorites History M ail Frint Edit
View My Guest Book!!

Name:Jay Greenspan
Location: San Francisco
Email:jgreen1@yahoo.com
URL: http:/fwww trans-city. com

Comments:I love it.

Name:John Doe

Location: Norway
Email:jdoe@nodomain com
URL:

Comments:Hello there.

e e e .. =
Asurt] [€ 4P E W B A || &f[6] BP0l BAPUBL 955 AM

Figure 1-4: view.php

And that about does it for our first application.

WHY YOU SHOULD NOT USE THIS APPLICATION
Again, we strongly recommend against putting the application discussed in this
introduction anywhere that the general public can get to it. If you want a guest-
book, use the application made exclusively for this book, which you find in Chapter
8. We call this application Guestbook 2003. But we cover a lot of ground and pre-
sent a lot of information before we get there.

We hope you enjoy the read!

Part

Working with MySQL

CHAPTER 1
Database Design with MySQL

CHAPTER 2
The Structured Query Language for Creating
and Altering Tables
CHAPTER 3

The Structured Query Language for Inserting,
Editing, and Selecting Data

Chapter 1

Database Design with
MySQL

IN THIS CHAPTER

¢ Identifying the problems that led to the creation of the relational database
¢ Learning the normalization process

¢ Examining advanced database concepts

THE BULK OF THIS CHAPTER is for those of you who have made it to the early twenty-
first century without working with relational databases. If you're a seasoned data-
base pro, having worked with Oracle, Sybase, or even something like Microsoft
Access or Paradox, you may want to skip this little lesson on database theory.
However, we do suggest that you look at the final section of this chapter, where we
discuss some of MySQL'’s weirder points. MySQL’s implementation of SQL is incom-
plete, so it might not support something you want to use.

Why Use a Relational Database?

If you're still here and are ready to read with rapt attention about database theory
and the wonders of normalization, you probably don’t know much about the his-
tory of the relational database. You may not even care. For that reason, I'll keep this
very brief. Dr. E. F. Codd was a research scientist at IBM in the 1960s. A mathe-
matician by training, he was unhappy with the available models of data storage,
finding them all prone to error and redundancy. He worked on these problems and
then, in 1970, published a paper with the rousing title “A Relational Model of Data
for Large Shared Data Banks.” In all honesty, nothing has been the same since.

A programmer named Larry Ellison read the paper and started work on software
that could put Dr. Codd’s theories into practice. If you've been a resident of this
planet during the past 20 years, you may know that Ellison’s product and company
took the name Oracle and that he is now one of the richest individuals in the world.
His earliest product was designed for huge mainframe systems. Responding to mar-
ket demands over the years, Oracle, and many other companies that have sprung up
since, have designed systems with a variety of features geared toward a variety of

Part 1: Working with MySQL

operating systems. Now relational databases are so common that you can get one
that runs on a Palm Pilot.

To understand why Dr. Codd’s theories have revolutionized the data-storage
world, it’s best to have an idea of what the troubles are with other means of data
storage. Take the example of a simple address book — nothing too complex, just
something that stores names, addresses, phone numbers, emails, and the like. If you
have no persistent, running program to put this information into, the file system of
whatever OS you're running becomes the natural choice for storage.

For a simple address book, a delimited text file can be created to store the infor-
mation. If the first row serves as a header and commas are used as delimiters, the
text file might look something like this:

Name, Addrl, Addr2, City, State, Zip, Phone, Email

Jay Greenspan, 211 Some St, Apt 2, San Francisco, CA, 94107,
4155551212, jay@not.real

Brad Bulger, 411 Some St, Apt 6, San Francisco, CA, 94109,
4155552222, brad@not.real

John Doe, 444 Madison Ave, , New York, NY, 11234, 2125556666,
nobody@mysqglphpapps.com

This isn’t much to look at, but it is at least machine-readable. Using whatever
language you wish, you can write a script that opens this file and then parses the
information. You will probably want it in some sort of two-dimensional or associa-
tive array so that you'll have some flexibility in addressing each portion of each
line of the file. Any way you look at it, there’s going to be a fair amount of code to
write. If you want this information to be sortable and queryable by a variety of cri-
teria, you're going to have to write scripts that will, for instance, sort the list alpha-
betically by name or find all people within a certain area code. What a pain.

You might face another major problem if your data needs to be used across a
network by a variety of people. Presumably more than one person is going to need
to write information to this file. What happens if two people try to make changes at
once? For starters, it’s quite possible that one person will overwrite another’s
changes. To prevent this from happening, the programmer has to specify file lock-
ing if the file is in use. While this might work, it’s kind of a pain in the neck for the
person who gets locked out. Obviously, the larger the system gets the more unman-
ageable this all becomes.

What you need is something more robust than the file system —a program or
daemon that stays in memory seems to be a good choice. Furthermore, you’ll need
a data-storage system that reduces the amount of parsing and scripting that the
programmer needs to be concerned with. No need for anything too arcane here. A
plain, simple table like Table 1-1 should work just fine.

Now this is pretty convenient. It's easy to look at and if a running program
accesses this table it should happen pretty quickly. What else might this program
do? First, it should be able to address one row at a time without affecting the oth-
ers. That way, if two or more people want to insert information into this table they

Chapter 1: Database Design with MySQL

won’t be tripping over each other. It would be even spiffier if the program provided
a simple and elegant way to extract information from a table such as this. There
should be a quick way to find all of the people from California that doesn’t involve
parsing and sorting the file. Furthermore, this wondrous program should be able to
accept statements that describe what you want in a language very similar to
English. That way you can just say: “Give me all rows where the contents of the
state column equal CA.”

Yes, this program is great, but it isn’t enough. Major problems still need to be
dealt with. These problems, which we’ll discuss in the following pages, are the same
ones that made Dr. Codd write his famous paper, and the same ones that made Larry
Ellison a billionaire.

Blasted Anomalies

Dr. Codd’s goal was to have a model of information that was dependable. All of the
data-storage methods available to him had inherent problems. He referred to these
problems as anomalies. There are three types of anomalies: update, delete, and insert.

The update anomaly

Now that you can assume that a table structure can quickly and easily handle mul-
tiple requests, you need to see what happens when the information gets more com-
plex. Adding some more information to the previous table introduces some serious
problems (Table 1-2).

Table 1-2 is meant to store information for an entire office, not just a single per-
son. Since this company deals with other large companies, there will be times when
more than one contact will be at a single office location. For example, in Table 1-2
two contacts are present at 1121 43rd St. At first this may appear to be okay; you
can still get at all the information available relatively easily. The problem comes
when the BigCo Company decides to up and move to another address. In that case,
you'd have to update the address for BigCo in two different rows. This may not
sound like such an onerous task, but consider the trouble if this table has 3,000
rows instead of 3 —or 300,000 for that matter. Someone, or some program, has to
make sure the data are changed in every appropriate place.

Another concern is the potential for error. It's very possible that one of these
rows could be altered while the other one remained the same. Or, if changes are
keyed in one row at a time, it’s likely that somebody will introduce a typo. Then
you'd be left wondering if the correct address is 1121 or 1211.

The better way to handle this data is to take the company name and address and
put that information in its own table. This process of separating a table out into
multiple new tables is usually called decomposition. The two resulting tables will
resemble Table 1-3 and Table 1-4.

Now the information pertinent to BigCo is in its own table, Companies. If you
look at the next table (Table 1-4), Contacts, you'll see that we’ve inserted another

Working with MySQL

Part 1

wod " | Lewyoy@Apoqgou 999945495¢lLcC Ayae
[esJd l0UppeJq CCCCSSSsSly Juapisald

[ead " Jougkel Z1T1SSSS 1y JUIPISAIG DIA

|lew Juoyd 31313 3oL3U0d

30(uyor 1S Uy viby Auedwo) 03] €

13b|ng peig 1S PIEY LZLL Auedwo) 03big z
uedsuaaig Aer 1S pIEY LTLL Auedwo) o0)big L
Jdweu }ejuod ssaippe”Auedwod dweu Auedwod p!

J9VHOLS F79V1 JILVINTT190dd ¢-1 F8v]

woo - sddedyd | bsAw @fpogou
[ead 30U@pPRI]

lead j0upkel

[lew?

99995GS¢lc vECLL
¢Cressssiy 60LY6
888859551lY L0L¥6

Juoyd diz

AN
L8]
I

Jjels

YOA MIN "Ny UOSIPB|A vt J0(q uyor
0dsduelq UeS 9 1dy 1S dWos LIy 136|ng peig
0351dUBI{ UES z vy IS3wWoS |1z uedsudaug Aer

A1 zippe Lippe Jweu

I9VHOLS V1va 404 F19VL F1dINIS L-1 F1av]

ith MySQL

ign w

: Database Des

Chapter 1

wod - sddedyd | bsAw@Apogou
[e3Jd - 30U@prU]

[eaJ - 10upkel

[lew?

9999545¢C1l¢C
CCCessaesly
CLCLSSSSLy

Juoyd

Aaxdeq
JU3pISAId

JUIPISAI] NIA

3113 39e3U0d

30Q uyor
13b|ng peig

uedsuaalg Aer

SweuT1deuU0d

pr Auedwod pI 39e3U0d

SIOVINOD -1 F1av]

IS Uy vvvy
IS pIEy Ll

ssaippe Auedwod

Auedwo) 033 z
Auedwo) 0)big L
Jweu Auedwod pr Auedwod

SAINVAINOD €-1 F18v]

Part 1: Working with MySQL

column, company_id. This column references the company_id column of the
Companies table. In Brad’s row, you see that the company_id (the second column)
equals 1. You can then go to the Companies table, look at the information for
company_id 1, and see all the relevant address information. What’s happened here
is that you've created a relationship between these two tables —hence the name
relational database.

You still have all the information you had in the previous setup, you've just seg-
mented it. In this setup you can change the address for both Jay and Brad by alter-
ing only a single row. That’s the kind of convenience you want to be after.

Perhaps this leaves you wondering how you get this information un-segmented.
Relational databases give you the ability to merge, or join, tables. Consider the fol-
lowing statement, which is intended to give all the available information for Brad:
“Give me all the columns from the contacts table where contact_id is equal to 1,
and while you're at it throw in all the columns from the Companies table where the
company_id field equals the value shown in Brad’s company_id column.”

In other words, in this statement, you are asking to join these two tables where
the company_id fields are the same. The result of this request, or query, looks some-
thing like Table 1-5.

In the course of a couple of pages, you've learned how to solve a data-integrity
problem by segmenting information and creating additional tables. But we have yet
to give this problem a name.

When we learned the vocabulary associated with relational databases from a
very thick and expensive book, this sort of problem was called an update anomaly.
There may or may not be people using this term in the real world; if there are, we
haven’t met them (people in the real world call it “breach of contract” when
addressing their consultants). However, we think this term is pretty apt. In Tables
1-1 and 1-2, if you were to update one row in the table, other rows containing the
same information would not be affected.

The delete anomaly

Now take a look at Table 1-6, focusing on row 3.

Consider what happens if Mr. Doe is deleted from the database. This may seem
like a simple change but suppose someone accessing the database wants a list of all
the companies contacted over the previous year. In the current setup, when you
remove row 3, you take out not only the information about John Doe, you remove
information about the company as well. This problem is called a delete anomaly.

If the company information is moved to its own table, as you saw in the previ-
ous section, this delete anomaly won’t be a problem. You can remove Mr. Doe and
then decide independently if you want to remove the company he’s associated with.

The insert anomaly

Our final area of concern is problems that will be introduced during an insert.
Looking again at the Table 1-6, you can see that the purpose of this table is to store
information on contacts, not companies. This becomes a drag if you want to add a

: Database Design with MySQL

Chapter 1

woo - sddedyd | bsAu@Apogqou 999955SZLT Axyoe oquyor IS YWY bbby Auedwo) 0)3111 €
Lead jou@pedq zzeesSSssly JU3PISAId 13bjng peig IS pigy Lzll Auedwo) 03big z
Lead j0uphel ZLZISSGSLY 3U3pISald NI uedsuaalg Aer 1S pigy LTl Auedwo) 0)big L
|lew? Juoyd 31 dweu ssaippe dweu pr Auedwod
T19B1U0D T19B1U0D “Auedwod “Auedwod
ATYIWONY 313734 HLIM 319V1 9-1 F1av]
[ead 30UppeUIq CCCCSSSSlYy Ju9pisald 13b|ng peig 1S pigy Lell Auedwo) 0)big l
lew duoyd Elalih] Jdweu p1I3doe3u0d ssalppe Jdweu prAuedwod
T19B1U0D T10B1U0D “Auedwod “Auedwod

SITNS3Y AY3IND S-1 Fav]

10

Part 1: Working with MySQL

company but not an individual. For the most part, you'll have to wait to have a
specific contact to add to the database before you can add company information.
This is a ridiculous restriction. The solution is to store contact information in one
table and company information in another. By storing company information in its
own table, you can add a new company there even if you (as yet) have no contacts
to go with it. Ditto for contacts with no matching companies.

Normalization

Now that we’ve shown you some of the problems you might encounter, you need to
learn the ways to find and eliminate these anomalies. This process is known as nor-
malization. Understanding normalization is vital to working with relational data-
bases. But to anyone who has database experience normalization is not the be-all
and end-all of data design. Experience and instinct also play a part in the creation
of a good database. The examples in this book will usually be normalized. However,
in some cases, a denormalized structure is preferable, for performance reasons, code
simplification, or so on.

One other quick caveat. The normalization process consists of several normal
forms. Normal forms are standards of database regulation that promote efficiency,
predictability of results, and unambiguousness.

In this chapter we cover first, second, and third normal forms. In addition to
these, the normalization process can involve four other (progressively more rigor-
ous) normal forms. (For the curious, these are called Boyce-Codd normal form,
fourth normal form, fifth normal form, and Domain/Key normal form.) We know
about these because we read about them in a book. In the real world, where real
people actually develop database applications, these normal forms aren’t discussed.
If you get your data into third normal form that’s about good enough — mainly
because data in the third normal form meets the requirements of the first and sec-
ond normal forms, by definition. Yes, a possibility exists that anomalies will exist
in third normal form, but if you get this far you should be OK.

First normal form
Getting data into first normal form is fairly easy. Data need to be in a table struc-
ture and to meet the following criteria:

@ FEach column must have a unique name and define a single attribute of

the table as a whole.

@ Each row in the table must have a set of values that uniquely identifies
the row (this is known as the primary key of the table).

4 No two rows can be identical.

Chapter 1: Database Design with MySQL

11

¢ Each cell must contain an atomic value, meaning that each cell contains
only one value. No arrays or any other manner of representing more than
one value can exist in any cell.

¢ No repeating groups of data are allowed.

The final item here is the only one that may require some explanation. Take a
look at Table 1-7.

As you've already seen with these data, row 1 and row 2 contain two columns
that contain identical information. This is a repeating group of data. Only when
you remove these columns and place them in their own table will these data be in
first normal form. The separation of tables that we did in Tables 1-3 and 1-4 will
move this data into first normal form.

Before we move on to chat about second and third normal form, you're going to
need a couple of quick definitions. The first is of the term primary key. The primary
key is a column or set of columns by which each row can be uniquely identified.

Primary keys, while very important, are difficult to understand both in theory
and in practice. The theory is straightforward: Each row in the column designated
as the primary key must have a unique value. In practice, the easiest way to get a
series of unique numbers is to use a series of sequential numbers, in which the
value of the primary key column in each row increments the previous row’s pri-
mary key value by one. Because this is such a popular solution to the primary key
problem, all database servers of any consequence create the incremental values for
you as records are created. MySQL has such a mechanism; you use it by designat-
ing your primary key column as type auto_increment.

Depending on your data, all kinds of values will work for a primary key. Social
Security numbers work great, as do email addresses and URLs. The data just need to
be unique. In some cases, two or more columns may comprise your primary key.
For instance, to continue with the address-book example, if contact information
needs to be stored for a company with many locations, it is probably best to store
the switchboard number and mailing address information in a table that has the
company_id and company_location as its primary key.

Next, we need to define the word dependency, which means pretty much what
you think it means. A dependent column is one that is inexorably tied to the pri-
mary key. It can’t exist in the table if the primary key is removed.

With that under your belt, you are ready to tackle second normal form.

Second normal form

This part of the process only comes into play when you end up with one of those
multi-column primary keys that we just discussed. Assume that in the course of
dividing up your address tables you end up with Table 1-8. Here, the company_name
and company_location columns comprise the multi-column primary key.

Working with MySQL

Part 1

12

Woo " [Lewloy@Apoqou
Lead 10UgpeJdq

[ead 10u@kel

|lew

999996S¢lc
¢CCehsasly
[AYART IR

Juoyd

Adye]
JUPISAI

JUIPISAI] NIA

apn
T10B1U0D

20(Q uyor
13b|ng peig

uedsuaaig Aer

Jweu
T10B1U0D

IS YWy vvvy

IS piEY Ll
IS piEY Ll

ssaippe
“Auedwod

Auedwo) 03911317
Auedwo) 0)big
Auedwo) 0)big

dweu
“Auedwod

p1-Auedwod

V1vd 40 SdNOYY HNILVIdIY HLIM F19VL L-1 318V

Chapter 1: Database Design with MySQL

13

TasLe 1-8 TABLE NOT IN SECOND NORMAL FORM

company_name company_location company_ceo company_address
BigCo Company San Francisco Bill Hurt 1121 43rd St.
LittleCo Company Los Angeles Bob Ouch 4444 44th St.

You should be able to see pretty quickly that an insertion anomaly would work
its way in here if you were to add another location for BigCo Company. You'd have
the CEO name, Bill Hurt, repeated in an additional row, and that’s no good.

You can get this table into second normal form by removing rows that are only
partially dependent on the primary key. Here, the CEO is dependent only on the
company_name column. It is not dependent on the company_location column. To
get into second normal form, you move rows that are only partially dependent on
a multi-field primary key into their own table (see Tables 1-9 and 1-10). Second
normal form does not apply to tables that have a single-column primary key.

TasLe 1-9 TABLE IN SECOND NORMAL FORM

company_id company_name company_ceo
1 BigCo Company Bill Hurt
2 LittleCo Company Bob Ouch

TasLe 1-10 TABLE IN SECOND NORMAL FORM

company_id company_location company_address
1 San Francisco 1121 43rd St.
2 Los Angeles 4444 44th St

Third normal form

Finishing up the normalization process, third normal form is concerned with tran-
sitive dependencies. A transitive dependency describes a situation in which a col-
umn exists that is not directly reliant on the primary key. Instead, the field is reliant

14

Part 1: Working with MySQL

on some other field, which in turn is dependent on the primary key. A quick way to
get into third normal form is to look at all the fields in a table and ask if they all
describe the primary key. If they don’t, you're not there.

If your address book needs to store more information on your contacts, you
might find yourself with a table like Table 1-11.

TasLe 1-11 TABLE NOT IN THIRD NORMAL FORM

contact_ contact_ assistant_ assistant_
contact_id name phone name phone
1 Bill Jones 4155555555 John Bills 2025554444
2 Carol Shaw 2015556666 Shawn Carlo 6505556666

You might think we’re doing OK here. But look at the assistant_phone column
and ask if that really describes the primary key (and the focus of this table), which
is your contact. It’s possible, even likely, that one assistant will serve many people,
in which case it’s possible that an assistant name and phone will end up listed in
the table more than once. That would be a repeating group of data, which you
already know you don’t want. Tables 1-12 and 1-13 are in third normal form.

TasLe 1-12 TABLE IN THIRD NORMAL FORM

assistant_id assistant_name assistant_phone
1 John Bills 2025554444
2 Shawn Carlo 6505556666

TasLe 1-13 TABLE IN THIRD NORMAL FORM

contact_id contact_name contact_phone assistant_id

1 Bill Jones 4155555555 1

2 Carol Shaw 2015556666 2

Chapter 1: Database Design with MySQL

15

Types of Relationships

In the applications you'll see later in this book we create a bunch of tables that
don’t have anomalies. We include columns that maintain relationships among these
tables. You'll encounter three specific types of relationships in database land.

The one-to-many relationship

This is by far the most common type of relationship that occurs between two tables.
When one value in a column references multiple fields in another table, a one-to-
many relationship is in effect (Figure 1-1).

Industries
industry_id industry_name
1 Utilities
2 Construction
|: 3 Banking
Companies
company_id company_name industry_id
1 Big Co Corporation 1
2 Little Co Corporation |1
3 Joe's Utility 1
4 Leadfoot Builders 2
5 Angel's Cement Boots |2 >
6 Al's Bank 3

Figure 1-1: Tables with a one-to-many relationship

Figure 1-1 shows a classic one-to-many relationship. Here, each company is
associated with a certain industry. As you can see, one industry listed in the indus-
try table can be associated with one or more rows in the company table. This in no
way restricts what you can do with the companies. You are absolutely free to use
this table as the basis for other one-to-many relationships. Figure 1-2 shows that
the Companies table can be on the “one” side of a one-to-many relationship with a
table that lists city locations for all the different companies.

16

Part 1: Working with MySQL
Industries
industry_id industry_name
1 Utilities
2 Construction
’, 3 Banking
Companies
company_id company_name industry_id
1 Big Co Corporation 1
2 Little Co Corporation |1
3 Joe's Utility 1
4 Leadfoot Builders 2 >
15 Angel's Cement Boots | 2
6 Al's Bank 3
co_location_id company_id city
1 2 San Francisco
7 2 New York
3 2 Chicago
4 5 Dallas

Figure 1-2: Tables with two one-to-many relationships

The one-to-one relationship

A one-to-one relationship is essentially a one-to-many relationship where only one
row in a table is related to only one row in another table. During the normalization
process, we mentioned a situation in which one table holds information about cor-
porate executives and another holds information about their assistants. This could
very well be a one-to-one relationship if each executive has one assistant and each
assistant works for only one executive. Figure 1-3 gives a visual representation of

this relationship.

Chapter 1: Database Design with MySQL

17

Executives
execid exec_first_name |exec_last_name
1 Jon Dust
M 2 Melinda Burns
3 Larry Gains
Assistants
asst_id exec_id asst_first_name |asst_last_name
1 1 Walter James
2 2 James Walter
3 3 Nancy Els

Figure 1-3: Tables with a one-to-one relationship

The many-to-many relationship

Many-to-many relationships work a bit differently from the other two kinds of
relationships. For instance, suppose that the company keeping the data has a vari-
ety of newsletters that it sends to its contacts, and suppose that it needs to add this
information to the database. There’s a weekly, a monthly, a bi-monthly, and an
annual newsletter, and to keep from annoying clients, the newsletters must only be
sent to those who request them.

To start, you could add a table that stores the newsletter types (Table 1-14).

TaBLe 1-14 NEWSLETTERS TABLE

newsletter_id newsletter_name

1 Weekly

2 Monthly

3 Bi-monthly
4 Annual

Table 1-14 can’t be directly related to another table that stores contact informa-
tion. So it’s not sufficient to define which clients have requested which types of
newsletters. The only way to make that work is to add a column to the Contacts table
that stores the newsletters that each contact receives. Right away, you should notice
a problem with Table 1-15. In Table 1-15 the Newsletters column contains more

18

Part 1: Working with MySQL

than one value. The value looks a lot like an array. As mentioned earlier, this should
never occur within a database — you want only atomic values in each column.

TasLe 1-15 REVISED CONTACTS TABLE

contact_id contact_first_name contact_last_name Newsletters
1 Jon Doe 13,4
2 Al Banks 234

In situations like this you’ll need to create another table, of a type often known
as a mapping table because it maps the relationship of one table to another. Figure
1-4 shows how the relationship between these values can be made to work.

contact_id contact_first_name | contact_last_name
1 Jon Doe
M 2 Al Banks
newsletter_id newsletter_name
1 Weekly
2 Bi-Weekly
3 Annual
|: 4 Semi-annual
contact_id newsletter_id
< 1 1
1 2
2 2
< 2 3
2 4

Figure 1-4: Tables with a many-to-many relationship

With this structure, any number of contacts can have any number of newsletters
and any number of newsletters can be sent to any number of contacts.

Chapter 1: Database Design with MySQL

19

TIP Newcomers to databases often overlook many-to-many relationships and
‘@% instead choose designs that require excessive columns within a table or
N\

NS

arrays within a column. Make sure to consider a many-to-many relationship

if your structure seems unmanageable.

Advanced Database Concepts

For a long time MySQL was a polarizing piece of software in the applications-
development community. It had (and still has) aspects that many developers loved:
it's free (at least, when used in applications that conform to the GNU Public
License), it doesn’t take up a whole lot of resources, it’s very quick, and it’s easy to
learn compared to packages like Oracle and Sybase. However, it didn’t originally
offer features common in other databases, such as subselects or joins in updates,
and these shortcomings kept many from adopting MySQL for their applications. But
since the publication of the first edition of this book a lot of work has been done on
MySQL, and it now offers at least partial support for the features discussed in the
following sections.

Referential integrity

Every example used so far in this chapter has made use of foreign keys. A foreign
key is a column that references the primary key of another table in order to main-
tain a relationship. In Table 1-4, the Contacts table contains a company_id column,
which references the primary key of the Companies table (Table 1-3). This column
is a foreign key to the Companies table.

In Chapter 2 we demonstrate how to create tables in MySQL. It's easy enough to
create tables with all the columns necessary for primary keys and foreign keys.
However, in MySQL foreign keys are not universally available.

In packages like Oracle, Sybase, or PostgreSQL, tables can be created that explic-
itly define foreign keys. For instance, with Oracle the database system could be
made aware that the company_id column in the Contacts table has a relationship to
the company_id column in the Companies table. This capability is potentially a
very good thing and is known as a foreign-key constraint. If the database system is
aware of a relationship, it can check to make sure the value being inserted into the
foreign-key field exists in the referenced table. If it does not, the database system
will reject the insert. The capability of the database server to reject records because
they don’t satisfy the requirements of linked tables is known as referential integrity.

With MySQL, at the time of this writing, foreign-key constraints are only avail-
able when you're using the InnoDB table type. You'll see how to work with foreign-
key constraints in InnoDB in Chapter 2.

20

Part 1: Working with MySQL

To demonstrate the importance of foreign-key constraints we’ll show you how
you'd achieve the same effect using MySQL table types other than InnoDB. Before
inserting or updating records in your table, you have to take some extra steps.

To be ultra-safe, you would need to go through the following steps in order to
insert a row in the Contacts table (Table 1-4), for example:

1. Get all the values for company_id in the Companies table.

2. Check to make sure the value for company_id to be inserted into the
Contacts table exists in the data you retrieved in Step 1.

3. If it does, insert values.

The developers of MySQL had long argued that referential integrity was not nec-
essary and that including it would slow down MySQL. Further, they argued that it
is the responsibility of the application interacting with the database to ensure that
the inserted data is correct. There is a logic to this way of thinking. In Parts IIl and
IV of this book we present several applications that would work just fine without
enforcing referential integrity or the method of checking shown above. In general,
in these applications, all the possible values are pulled from a database anyway and
there’s very little opportunity for errors to creep into the system.

But there’s no doubt that having the option of enforcing referential integrity is a
good thing.

Transactions

In relational databases, things change in groups. As shown in a variety of applica-
tions in this book, many changes require that rows be updated in several tables
concurrently. An e-commerce site may contain code that works in the following
manner:

1. Insert a customer into the Customers table.

2. Check the inventory table to see that a sufficient quantity of the item
exists to place the order.

3. Add invoice information into the Invoice table.

4. Reduce the quantity available for the item in the inventory table by the
quantity ordered.

When you're working with a series of steps like this, serious problems can occur.
If the operating system crashes or power goes out between steps three and four, the
database will contain bad data. It’s also important to remember that MySQL and
other relational databases are multi-threaded, which means that they can process
directives from multiple clients simultaneously. Imagine what would happen with
the previous listing if two orders were placed almost simultaneously for an item
that was nearly out of stock. Two threads (in the case of an e-commerce site, two

Chapter 1: Database Design with MySQL

21

customers working through their browsers) could find themselves requesting the
final item at the same time. If precautions are not taken, it’s possible that one per-
son might receive confirmation that the order is available when in fact it is not.

To prevent such occurrences, most sophisticated database systems make use of
transactions. A transaction is a bundle of commands treated as an indivisible unit.
If any one of these commands fails to go through, the whole group of commands
fails, and the database returns to the state it was in before the first command was
attempted. This is known as a commit/rollback approach. Either all the requests are
committed to the database, or the database is rolled back to the state it was in prior
to the transactions. This works both to prevent threads from stepping on each other
and to protect data in the event of a crash.

With the example given above, if in Step 2 the application were to discover that
no items are left, a ROLLBACK command will be given and no items will be removed
from the inventory. In the case of a crash, the in-progress transactions will be auto-
matically rolled back.

A transaction-capable database must support the four properties that go by the
acronym ACID, which are defined as follows:

¢ Atomicity — The operations that make up each transaction are treated col-
lectively as a single, or atomic, unit. Either all changes are committed or
none are.

¢ Consistency — The available data will never be in an inconsistent state;
either other threads will see the data in the state it was in prior to the
transaction, or other threads will see the data in the state it winds up in
after the transaction is completed.

@ Isolation — Each transaction is isolated from all others. The effects of
Transaction A are not visible to Transaction B until Transaction A is com-
pleted. If a transaction is in progress, the interim state of the data will not
be visible to other transactions.

¢ Durability — When a transaction is complete, the changes are permanent.
Even if a database crashes, the information from a committed transaction
will be available and complete.

In older versions of MySQL transactions were not supported. This was a major
problem for many developers, who could not fathom the idea of designing proper
applications without this feature. Now MySQL features several table types (includ-
ing InnoDB and BerkeleyDB) that support transactions. You read more about these
tables in Chapter 2.

Stored procedures

The big fancy database systems allow for procedural code (real computer code, sim-
ilar to PHP or Perl) to be placed within the database. Using stored procedures pro-
vides a couple of key advantages. First, it can reduce the amount of code needed in

22

Part 1: Working with MySQL

middleware applications. If MySQL accepted stored procedures (which it unfortu-
nately does not—yet), a single PHP command could be sent to the database to
query data, do some string manipulation, and then return a value ready to be dis-
played in your page.

The other major advantage comes when you are working in an environment in
which more than one front-end is accessing the same database. Consider a situation
in which there happens to be one front-end written for the Web and another, acces-
sible on Windows machines, written in Visual C++. It would be a pain to write all
the queries and transactions in two different places. You'd be much better off writ-
ing stored procedures and accessing those from your various applications. Stored
procedures are planned for MySQL version 5.0.

Summary

At this point you should have a pretty good idea of how relational databases work.
The theory covered here is really important, as quality data design is one of the cor-
nerstones of quality applications. If you fail in the normalization process, you
could create difficulties that will haunt you for months or years.

In the applications in Parts III and IV of this book, you see how we approach and
normalize several sets of data.

Now that you know how tables in a relational database work, move on to
Chapter 2, where you see how to make these tables in MySQL.

Chapter 2

The Structured Query
Language for Creating
and Altering Tables

IN THIS CHAPTER

Creating tables and databases in MySQL

Choosing the proper column type and column attributes for tables
Choosing the proper tables for your applications

Altering existing tables

Using phpMyAdmin

Using MySQLCC

Using MacSQL

® 6 6 6 6 o o

IN CHAPTER 1 you learned that tables are the basis of all the good things that come
from working with relational databases. You can do a fair amount with these tables,
as you'll see throughout this book. So it should come as no surprise that creating
and maintaining them requires some knowledge.

If you're coming to MySQL from a background in Microsoft’s SQL Server or
a desktop package like Access, you may be used to creating tables with a slick
WYSIWYG (what you see is what you get) interface. There’s no doubt that working
with a graphical interface can be a lot more pleasant than figuring out the syntax
of a language — any language. In fact, you can use any of several GUI tools to cre-
ate and manipulate tables, and we’ll discuss some of these later in the chapter.
However, even if you plan on installing and using a GUI tool, you should take some
time to learn how to create and maintain tables using the Data Definition Language
(DDL), which is part of SQL. Specifically, it will be a great help to you to understand
the create and alter commands. Before too long you will have to use these com-
mands within your scripts. There also may be an occasion when you don’t have
access to the graphical interface, and you’ll need this knowledge to fall back on.

23

24

Part 1: Working with MySQL

Essential Definitions

Before we get to creating tables and databases in MySQL, you’ll need to understand
a couple of items. The concepts we're about to present are very important — make
sure you understand how to deal with these before you move forward in your data-
base design.

Null values

One of the first decisions you will have to make for every column in your table is
whether or not to allow null values. If you remember back to your basic math, you
may recall the null set — a group that contains nothing. In relational databases, null
has the same meaning: A null field contains nothing,.

The concept of nothing is different from the concept of zero. A field that is null
is distinctly different from a field containing a text string with no characters (a
zero-length string) or a numerical value of 0. The difference is that empty strings
and zeros are values.

This SQL statement . . .

select * from mytable where myfield = 0;

returns rows in which the myfield column contains the numerical value 0. In
contrast, the statement . . .

select * from mytable where myfield = :

returns an entirely different set of rows: those with nothing at all in their
myfield columns.

Value comparisons do not work with null. Since null is the absence of value, any
comparison with any value (including another null) is meaningless. In Chapter 3
you can see that using null values requires that the application developer be very
careful when writing table joins. To give you a quick preview, consider what would
happen if we wanted to join Table 2-1 and Table 2-2:

'I'IP-, In your SQL select statements (covered in Chapter 3), you can deter-
‘@% mine if a field contains a null value in a couple of ways. First, you can use
\

]

MySQL's isnull () function.For example, to find rows in a table where the

middle_name column contains null values, you could run the following
query:

select * from names where isnull(middle_name);

Or, to exclude null values from the query result:

select * from names where !isnull(middle_name);

Chapter 2: The Structured Query Language for Creating and Altering Tables

25

The exclamation point means “not.”

Youcanalsousetheis nullandis not null statements.For example:

select * from users were addr2 is null;
select * from users where addr2 is not null;

TasLE 2-1 CONTACTS

first_name last_name fantasy_spouse_id
Jay Greenspan 1
Brad Bulger NULL

TaBLE 2-2 desired_spouse

fantasy_spouse_id First_name last_name

1 Nicole Kidman

If you wanted to find the authors of a great book on MySQL and PHP and their
dream spouses, you would have to join these tables on the fantasy_spouse_id
field. (Don’t worry if you don’t understand the exact syntax, it will be covered in
the next chapter.)

SELECT * FROM contacts, desired_spouse
WHERE contacts.fantasy_spouse_id =
desired_spouse.fantasy_spouse_id;

This statement works fine for Jay, but there’s going to be a problem for Brad
because he’s a happy bachelor and his fantasy_spouse_id field is null. He will not
show up in the result set even though the goal of the query is to get all the people
in the contacts table and the associated fantasy spouses, if the retrieved contacts
have them.

Again, this is just a preview, an example of why null is so important. In Chapter
3 you can see how the outer join solves problems like this.

26

Part 1: Working with MySQL

Indexes

Arguably the single greatest advantage of a relational database is the speed with
which it can query and sort tremendous amounts of information. To achieve this
great speed, MySQL and all other database servers make use of optimized data-
retrieval mechanisms called indexes.

An index allows a database server to create a representation of a column that it
can search with amazing speed. Indexes are especially helpful in finding a single
row or group of rows from a large table. They can also speed up joins and aggre-
gate functions, like min() and max(), which we cover in Chapter 3.

Given these advantages, why not just create an index for every column for every
table? There are some very good reasons. First, indexes can actually slow some things
down. It takes time for your database server to maintain indexes. You wouldn’t
want to create overhead for your server that is not going to be a benefit to you
down the road. Also, on some occasions the indexes themselves are slower. If you
need to iterate through every row in a table, you're actually better off not using an
index. Also, unnecessary indexes will use a lot of disk space and memory.

A table’s primary key is often the subject of searches (for obvious reasons). Thus
the column or columns that you declare as your primary key in a table definition
will automatically be indexed.

We'll talk more about creating indexes later in this chapter.

The create database Statement

Before you can get to creating your tables, you'll need to create a database to hold
them. This should take all of a second. The basic create database statement is
fairly simple and can be run from any interface that has access to MySQL.

The general syntax is as follows:

create database database_name

ol

When naming databases, or for that matter columns or indexes, avoid using
names that will cause confusion down the road. On operating systems in which file
names are case-sensitive, such as most Unix systems, database names will also be
case-sensitive. Come up with conventions that you plan on sticking to, such as
using all-lowercase names for tables and columns. Spaces are not allowed.

Though MySQL can work around potentially bad choices, you should avoid
using words that MySQL uses in the course of its business. For instance, naming a

In case you're wondering, after running this command, MySQL creates a
folder in which it stores all the files needed for your database. On our Linux
machines the database folders are stored in /usr/local/mysql/lib.

Chapter 2: The Structured Query Language for Creating and Altering Tables

27

table “Select” is a really bad idea. Chapter 6 of the MySQL reference manual lists
over 150 reserved words. If you stay away from words used by SQL or MySQL func-
tions, you should be okay.

From the MySQL command-line client, you can simply type in the following
command:

mysql> create database my_database;

TIP £ The MySQL command-line client is in the bin/ directory of your MySQL
‘W% installation and has the file name mysqgl (in Unix) or mysgl.exe (in DOS/
NS Windows).

From PHP, you can use the mysql_query() function. The following piece of
code would create two databases. (Keep in mind that you need to log into MySQL
as a user with the proper rights for the code to work.)

$conn = mysql_connect("localhost","username”, "password")
or die ("Could not connect to localhost");

mysql_query(" CREATE DATABASE IF NOT EXISTS my_database ") or
die ("Could not create database");

The use database Statement

Before you can begin making tables in MySQL you must select a database that
has been created. Though you can do this in individual SELECT statements, it’s eas-
ier to define a default working database with the use command. If you are access-
ing MySQL through the MySQL command-line client, you will have to enter this
statement:

use database_name

If you're accessing a database through PHP, use the mysql_select_db()
function:

$conn = mysql_connect("localhost","username", "password")
or die ("Could not connect to localhost");

mysql_select_db("test", $conn) or
die ("Could not select database");

28

Part 1: Working with MySQL

The create table Statement

Once you have created and selected a database, you are ready to create a table. The
basic create table statement is fairly simple and takes this basic form:

create table table_name
(
column_name_1 column_type column_attributes,
column_name_2 column_type column_attributes,
primary key (column_name),
index index_name(column_name)
Jtype=table_type

Column types, column attributes, and details on indexes are covered in the fol-
lowing sections. Before we get to those, we should mention two simple column
attributes:

¢ null | not null
¢ default

The first gives you the opportunity to allow or forbid null values. If you don’t
specify nul1 or not null it is assumed that null values are allowed. The second, if
declared, sets a value if none is declared when you insert a row into the table. (If a
column is defined as “not nul1” and no default value is specified, MySQL assigns
a default value for the column based on its data type. See the “CREATE TABLE
Syntax” section of the online MySQL Language Reference Manual for details.)

Here’s an example create statement that demonstrates these two attributes, and
a few others.

create table topics (

topic_id integer not null auto_increment,
parent_id integer default 0 not null,
root_id integer default 0,

name varchar(255),

description text null,

create_dt timestamp,

modify_dt timestamp,

author varchar(255) null,

author_host varchar(255) null,

primary key(topic_id),
index my_index(parent_id)
Ytype=myisam;

Chapter 2: The Structured Query Language for Creating and Altering Tables 29

This statement creates a table named topics with nine columns and two indexes,
one for the primary key and one for the parent_id column. In the preceding state-
ment four column types are used: integer, varchar, text, and timestamp. These
and many other column types are discussed in further detail in the following exam-
ple. Before you set out to create tables you should have a good understanding of all
the column types available as well as of ways to create indexes.

To create tables from the command-line client, key in the entire command. From
PHP, use the mysql_query () function as follows:

$conn = mysql_connect("localhost","username","password") or
die ("Could not connect to localhost");

mysql_select_db("test", $conn) or
die("could not select database");

$query = "create table my_table (
col_1 int not null primary key,
col_2 text

"

mysql_query($query) or
die(mysql_error());

Column Types

MySQL provides you with a range of column types. While several are similar, sub-
tle yet important differences exist among them. Give this section a read and choose
carefully when deciding on column types for your tables.

String column types
Eight MySQL column types are suitable for storing text strings:

char

varchar
tinytext/tinyblob
text/blob
mediumtext/mediumblob
Tongtext/longblob

enum

® 6 6 6 O O 0o o

set

30

Part 1: Working with MySQL

char
Usage: char(length)

The char column type has a maximum length of 255 characters. This is a fixed-
length type, meaning that the field will be right-padded with spaces when a value
is inserted that has fewer characters than the maximum length of the column. So if
a column has been defined as char(10) and you want to store the value happy,
MySQL will actually store happy and then five spaces. The spaces are removed from
the result when the value is retrieved from the table. Values longer than the column
width are truncated.

varchar
Usage: varchar(Tength)

This type is nearly identical to char and is used in many of the same places. It
also has a maximum length of 255 characters. The difference is that varchar is a
variable-length column type, meaning that values will not be padded with spaces.
Instead MySQL will add one character to each varchar field to store the length of
the field.

MySQL removes spaces from the end of strings in varchar fields, but this behav-
ior might change in future releases of the language.

ol

If you define a column as varchar with a column length of less than four,
MySQL will automatically change the column to the char type. Similarly, if

you try to mix charsand varchars with a column length of more than four,
they all become varchars.

Using char or varchar

For the most part, there is little practical difference between char and varchar.
Which one you decide to use will depend on which will require more space, the
trailing spaces in a char column or the size byte in varchar. If your field stores
something like last names, you'll probably want to allow 25 characters, just to be safe.
If you were to use the char column type and someone had the last name Smith, your
column would contain 20 trailing spaces. There's no need for that; you're much better
off using varchar and allowing MySQL to track the size of the column. However,
when you want to store passwords of five to seven characters, it would be a waste to
use varchar to track the size of the column. Every time a varchar field is updated,
MySQL has to check the length of the field and change the character that stores the
field length. You'd be better off using char (7).

Chapter 2: The Structured Query Language for Creating and Altering Tables

31

tinytext/tinyblob
Usage: tinytext/tinyblob

These are the first of the four binary (or blob) column types. You can use
these columns to store both large strings and binary objects. Notice that we have
paired a text and a blob column here and in the following three listings. The only
difference between the paired items is the way in which MySQL will sort and com-
pare the values stored in the columns. For blob-column types (blob, tinyblob
mediumblob, Targeblob), MySQL will perform case-sensitive comparisons. For
text-column types (tinytext, text, mediumtext, Targetext), MySQL will perform
case-insensitive comparisons.

For example, if you were to make a table with the following create statement:

create table blob_test
(
blob_column text
)3
and then insert a row with the following data into the table:

insert into blob_test (blob_column) values ('THIS IS A STRING FOR MY BLOB');

MySQL would run case-insensitive comparisons. Therefore, the following select
statement would return the inserted row:

mysql> select * from blob_test where blob_column like 'this%"';

e e R R LR LR E T +
| blob_column |
e e R R LR LR E T +
| THIS IS A STRING FOR MY BLOB |
e e R LR LR LR e +

If, however, the column were declared as a b1ob:

create table blob_test?
(

blob_column blob
);

and the same data were inserted, the previous select statement would not
match the row.

32

Part 1: Working with MySQL

All of the statements used in this example will be explained in the remain-
der of Chapter 2 and in Chapter 3.

All of these types (tinytext/tinyblob, text/blob, mediumtext/mediumblob,
and Targetext/largeblob) are variable column types, similar to varchar. They
differ only in the size of the string they can contain. The tinytext/tinyblob
type has a maximum length of 255, so in fact it serves the same purpose as
varchar(255). An index can be created for an entire tinytext column, but remem-
ber that tinytext and tinyblob fields preserve trailing whitespace characters.

text/blob
Usage: text/blob
The text/blob type has a maximum length of 65,535 characters.

mediumtext/mediumblob
Usage: mediumtext/mediumblob

The mediumtext/mediumblob type has a maximum length of 16,777,215
characters.

longtext
Usage: Tongtext/TongbTlob

The Tongtext type has a maximum length of 4,294,967,295 characters. However,
this column currently is not very useful, as MySQL allows strings of only 16 million
bytes.

enum
Usage: enum ('valuel', 'value2', 'value3' ?) [default 'value']

With enum, you can limit the potential values of a column to those you specify.
It allows for 65,535 values, though it’s difficult to imagine a situation in which
you'd want to use this column with more than a few potential values. This type is
of use when, for example, you want to allow only values of yes or no. The create
statement that makes use of enum will look like this:

create table my_table (
id int auto_increment primary key,
answer enum ('yes', 'no') default 'no
)

set
Usage: set ('valuel', 'valueZz', 'value3' ?) [default 'value']

Chapter 2: The Structured Query Language for Creating and Altering Tables

This column type defines a superset of values. It allows for zero or more values
from the list you specify to be included in a field. You will not see this column type
used in this book: We do not like to see multiple values in a single field, as it vio-
lates very basic rules of database design. (Reread Chapter 1 if you don’t know what
we mean by this.) You can see an example of where set makes sense in the MySQL
grant tables, which are discussed in Appendix E.

TIP £ Bear in mind that set columns can yield big savings in storage space and
‘M improvements in performance as databases get bigger. Suppose you have
\

-/

20,000,000,000 rows and you need to store the state of eight binary

switches for each row. To normalize this out would require a bigint and a
tinyint for each switch. Even without indexes you are looking at about
185GB for the table.Using a set column,you would require only 37.25GB for
this problem. However, this isn't something you'll see in this book.

Numeric column types

MySQL provides you with seven column types suitable for storing numeric
values. Note that the following are synonyms: int and integer; double, double
precision, and real; and decimal and numeric.

int/integer
tinyint

mediumint

float

L 4

L 4

L 4

® bigint
L 4

@ double/double precision/real
L 4

decimal/numeric

Be aware that real is synonymous with f1oat when running in ANSI mode.

For all numeric types the maximum display size is 255. For most numeric

types you will have the option to zerofilla column — to left-pad it with zeros.

For example, if you have an int column that has a display size of 10 and you
insert a value of 25 into this column, MySQL will store and display
0000000025.The numeric column types may also be defined as signed or
unsigned.signed is the default definition.

34

Part 1: Working with MySQL

int/integer
Usage: int(display size) [unsigned] [zerofilll]

If you use the unsigned flag, this column type can store integers from O to
4,294,967,295. If you use the signed flag, the range is from -2,147,483,648 to
2,147,483,647. int will often be used with auto_increment to define the primary
key of a table:

create table my_table (
table_id int unsigned auto_increment primary key,
next_column text

);

Note that we’ve used an unsigned column because an auto_increment column
has no need for negative values.

tinyint
Usage: tinyint(display size) [unsigned] [zerofill]

If unsigned, tinyint stores integers between O and 255. If signed, the range is
from -128 to 127.

mediumint
Usage: mediumint(display size) [unsigned] [zerofilll]

If you use the unsigned flag, mediumint stores integers between -8,388,608 and
8,388,607. If you use the signed flag, the range is from 0 to 1677215.

bigint
Usage: bigint(display size) [unsigned] [zerofill]

If you use the signed flag, bigint stores integers between -9,223,372,036,854,
775,808 and 9,223,372,036,854,775,807. If you use the unsigned flag, the range is
from O to 18,446,744,073,709,551,615.

float

Float has two distinct usages.

¢ Usage: float(precision) [zerofill]

In this usage, f1oat stores a floating-point number and cannot be
unsigned. The precision attribute can be < 24 for a single-precision
floating-point number, and between 25 and 53 for a double-precision
floating-point number.

¢ Usage: float[(M,D)] [zerofill]

This is a small (single-precision) floating-point number and cannot be
unsigned. Allowable values are -3.402823466E+38 to -1.175494351E-38,
zero, and 1.175494351E-38 to 3.402823466E+38. M is the display width
and D is the number of decimals. If the float attribute is used without an

Chapter 2: The Structured Query Language for Creating and Altering Tables

35

argument or with an argument of < 24, the column will store a single-
precision floating-point number.

double/double precision/real
Usage: double[(M,0)] [zerofilll]

This column stores a double-precision floating-point number and cannot be
unsigned. Allowable values are -1.7976931348623157E+308 to -2.2250738585072
014E-308, zero, and 2.2250738585072014E-308 to 1.7976931348623157E+308. M
is the display width and D is the number of decimals.

decimal
Usage: decimal[(M[,D]1)] [zerofill]

Numbers in a decimal column are stored as characters. Each number is stored as a
string, with one character for each digit of the value. M is the display width, and D
is the number of decimals. If M is left out, it’s set to 10. If D is 0, values will have no
decimal point. The maximum range of decimal values is the same as for double.
Remember, though, that decimal, like all real types, can cause rounding errors.

Date and time types

MySQL provides you with five column types suitable for storing dates and times:

¢ date
& datetime

¢ timestamp

® time

¢ year

MySQL date and time types are flexible, accepting either strings or numbers as

part of insert statements. Additionally, MySQL is pretty good at interpreting dates
that you give it. For instance, if you create this table:

create table date_test(
id int unsigned auto_increment primary key,
the_date date

the following insert statements are all interpreted correctly by MySQL:

insert into date_test (a_date) values ('00-06-01");
insert into date_test (a_date) values ('2000-06-01");
insert into date_test (a_date) values ('20000601");
insert into test6 (a_date) values (000601);

36

Part 1: Working with MySQL

a similar integer. Using strings for date values may save you from encounter-

TIPt MySQL prefers to receive dates as strings, so 000601 is a better choice than
'\

ing some errors down the road.

Extracting information from date and time columns can be a challenge. MySQL
provides many functions that help manipulate these columns.

date
Usage: date

The date column type stores values in the format YYYY-MM-DD. It will allow val-
ues between 1000-01-01 and 9999-12-31.

datetime
Usage: datetime [null | not nulll [default]

The datetime type stores values in the format YYYY-MM-DD HH:MM:SS. It will
allow values between 1000-01-01 00:00:00 and 9999-12-31 23:59:59.

timestamp
Usage: timestamp(size)

This is a handy column type that will automatically record the time of the most
recent change to a row, whether from an insert or an update. Size can be defined
as any number between 2 and 14. Table 2-3 shows the values stored with each col-
umn size. The default value is 14. Bear in mind that if there are multiple
‘Timestamp’ fields, only the first will be automatically changed. A timestamp field
can later be forced to update by explicitly assigning it to NULL.

TaBLE 2-3 timestamp FORMATS

Size Format

2 YY

4 YYMM

6 YYMMDD

8 YYYYMMDD

10 YYMMDDHHMM
12 YYMMDDHHMMSS

14 YYYYMMDDHHMMSS

Chapter 2: The Structured Query Language for Creating and Altering Tables

37

time
Usage: time

This type stores time in the format HH:MM:SS and has a value range from
-838:59:59 to 838:59:59. The reason for the large values is that the time column
type can be used to store the results of mathematical equations involving times.

year
Usage: year[(2]4)]

In these post-Y2K days it's hard to imagine that you'd want to store your years
in two-digit format, but you can. In two-digit format, allowable dates are those
between 1970 and 2069, inclusive. The digits 70-99 are prefaced by 19, and 01-69
are by 20.

Four-digit—year format allows values from 1901 to 2155.

Creating Indexes

MySQL can create an index on any column. There can be a maximum of 16 indexed
columns for any standard table. (MyISAM tables support 32 indexes by default and
can be made to support 64.) The basic syntax is as follows:

index [7index_name] (indexed_column)

TIP Although the index name is optional, you should always name your indexes.
‘@% It becomes very important should you want to delete or change your index
\
NS

using the SQL alter statement. If you don't specify a name, MySQL will

base the index name on the first column in your index.

Another way to create an index is to declare a column as a primary key. Note
that any auto_increment column must be defined as part of a unique index and is
normally (but not necessarily) the primary key of the table. In the following code,
the id_col column is indexed:

create table my_table (
id_col int unsigned auto_increment primary key,
another_col text

)

38

Part 1: Working with MySQL

The primary key can also be declared like other indexes, after the column defin-
itions, as in the following code:

create table my_table (
id_col int unsigned not null auto_increment,
another_col text,
primary key(id_col)

)

Indexes can span more than one row. If a query uses two rows in concert during
a search, you can create an index that covers the two with this statement:

create table mytable(

id_col int unsigned not null,

another_col char(200) not null,

index dual_col_index(id_col, another_col)
)

The preceding index will be used for searches that start on id_col and can
include another_col. Indexes of this kind work from left to right. So this index
will be used for searches that are exclusively on id_col. However, it will not be
used for searches on another_col.

You can also create indexes on only part of a column. For char, varchar, and
blob columns, you can create indexes for the initial portion of a column. Here the
syntax is as follows:

index index_name (column_name(column_Ilength))
For example:

create table my_table(
char_column char (255) not null,
text_column text not null,
index index_on_char (char_column(20)),
index index_on_text (text_column(200))
)

An index can also assure that unique values exist in every row in a table by
using the unique constraint, as follows.

create table my_table(
char_column char (255) not null,
text_column text not null,
unique index index_on_char (char_column)
)

Chapter 2: The Structured Query Language for Creating and Altering Tables

39

Table Types

MySQL offers several table types: MyISAM, BDB, InnoDB, and Heap. The default
table type is MyISAM. The syntax for declaring a table type is as follows:

create table table_name (
column_name column_type column_attributes
Ytype=table_type

In Chapter 1 we discussed transactions and the importance of that concept to
relational databases and the applications built around relational databases. For a
long time MySQL didn’t support transactions, and this absence was seen by many
as a fatal flaw. A lot of developers wouldn’t go near MySQL because of it.

But that is no longer the case: MySQL does support full ACID transactions (see
Chapter 1 for the definition of ACID). But in order to make use of transactions you
need to use table types that support this feature. The following discussion of the
table types available in MySQL is extremely important. Make sure to read it care-
fully and keep up on changes to MySQL table types by checking the MySQL online
manual semi-regularly. If you have further questions about MySQL table types you
should consult the online manual for the latest information.

MylSAM

On most installations MyISAM is the default MySQL table type. A couple of gener-
ations back it was the only table type available in MySQL. MyISAM tables are
extremely fast and stable; however, they do not support transactions. They only
offer table-level locking of data.

MyISAM tables are optimized for speed in retrieving data with select state-
ments. Because of the optimization and lack of transaction support, MyISAM tables
are best for tables that are going to run select operations far more frequently than
they run update or delete operations.

For example, if you are creating a shopping cart (as we do in Chapter 14) you
likely have a table or two dedicated to the product catalog and other tables dedi-
cated to recording user information and orders. The tables that hold catalog infor-
mation (the items available in your store) probably won't change all that
frequently — at most a couple of times a day. And if your store is doing well, these
data will be queried frequently, as users browse the items you have available.
MyISAM tables are perfect for tables that serve this purpose. The tables that store
shopping-cart data and record sales information are going to be subject of insert
and update queries far more frequently than they will be subject of select queries.
For these sorts of tables you're much better off using one of the transactional table
types: InnoDB, Gemini, or BerkeleyDB.

On almost all systems, MyISAM will be the default table type. You'll be able to
run any valid create statement, and MySQL will create a MyISAM table, even if

40

Part 1: Working with MySQL

you don’t include a type attribute in your create statement. If you want to be extra
careful, however, you can include type=myisam in your statement, like so:

create table mytable(
coll int,
col2 text

) type=myisam;

InnoDB Tables

InnoDB tables provide full ACID transaction support (see Chapter 1 for the defini-
tion of ACID) and row-level locking. Though other transactional table types are
available in MySQL, InnoDB is probably the transactional table that most readers of
this book will decide to use. MySQL AB (the company that maintains MySQL) pack-
ages InnoDB tables with its standard distribution and is working closely with
Innobase (www.innobase.com) to see that these tables work well with MySQL.

If you're hosting your application at an ISP, you’ll want to make sure that the
host supports InnoDB tables before you write your applications for those tables.
You can check to see that these tables are available by running the following query:
show variables 1ike 'have%'.

mysql> show variables like 'have%';

|
|
|
|
have_symlink |

have_openssl | NO
+

e e e +
| Variable_name | Value |
e e e +
| have_bdb NO |
| have_innodb YES |
| have_isam YES |
| have_raid NO |
| |
| |

6 rows in set (0.30 sec)

As you can see from the preceding output, the value for have_innodb is YES. If
the value on your or your ISP’s system is NO, InnoDB tables are not available.
To create InnoDB tables add type=innodb to your create statement, as follows:

create table mytable(
coll int,
col? text

) type=innodb;

Chapter 2: The Structured Query Language for Creating and Altering Tables

41

In the applications presented in this book, we have chosen to implement
transactions using InnoDB tables. Even if you come to this book with a

o

strong background in relational databases, you will need to read Chapter 12,
where we discuss InnoDB’s transactional model in detail.

BerkeleyDB

BerkeleyDB tables come from Sleepycat software. This table type provides transac-
tion support but offers only page-level locking. While these tables are reasonably
good, there’s very little reason to use Berkeley tables when InnoDB tables are avail-
able. And at this point InnoDB tables are available to just about everyone.
Sleepycat’s Web site is www.sleepycat.com.

Heap

Heap tables are actually memory-resident hash tables. They are not stored in any
physical location and therefore will disappear in case of a crash or power outage.
But because of their nature, they are blazingly fast. You should use these tables
only for temporary tables — but remember that all users can access heap tables.

The alter table Statement

If you're not happy with the form of your table, you can modify it with the alter
table statement. Specifically, this statement enables you to rename tables,
columns, and indexes; add or drop columns and indexes; and change the defini-
tions of columns and indexes. It also enables you to change tables from one type to
another (from MyISAM to InnoDB, for example). This statement always starts with
alter table table_name. The rest of the command depends on the action needed,
as described in the following sections.

Changing a table name

The syntax for changing a table name is as follows:
alter table table_name rename new_table_name

To rename a table named users to users_old, you would use the following
command:

alter table users rename users_old;

42

Part 1: Working with MySQL

If you have MySQL version 3.23.27 or higher you can make use of the
rename statement.The basic syntax of this statement is as follows:

ok

Adding columns

When adding a column, include all column definitions expected in the create
statement (column name, type, null|not null, default value, and so on). The basic
syntax is as follows:

rename table_name TO new_table_name

alter table table_name add column column_name column_attributes

For example, to add a column to a table named users that stores a cell-phone
number, you could run the following command:

alter table users add column cell_phone varchar(14) not null;

In MySQL you can also specify the location of a column — that is, where in the
listing of columns it should appear (first, last, or before or after a specific column).
Use the word first at the end of your alter statement to place your inserted col-
umn as the first column in the table; use the phrase after column-name to place
the column after a column that already exists, as shown in the following examples.
So if you wanted to put the cell_phone column first in your users table, you
would use the following command:

alter table users add column cell_phone varchar(14) not null first;

If you wanted to place the cell_phone column between the home_phone and
work_phone columns, you would use the following:

alter table users add column cell_phone varchar(14) not null after
home_phone;

el

=\

Don't spend a lot of time worrying about the order of your columns within a
table. One of the tenets of database design holds that column order is arbi-

trary. Any time the order of columns retrieved form the database is impor-
tant, you need to specify the column order in your query.

Chapter 2: The Structured Query Language for Creating and Altering Tables

43

Dropping columns

To drop a column, you need only the following command:
alter table table_name drop column column_name
So to drop the cel1_phone column, use this:

alter table users drop column cell_phone;

Adding indexes

You can add indexes using the index, unique, and primary key commands in the
same way you would use them in the create statement:

alter table my_table add index index_name (column_namel, column_name2, ?)
alter table my_table add unique index_name(column_name)

alter table my_table add primary key(my_column)

For example, if you wanted to add an index on the email column of the users
table the following would do the trick:

alter table users add index index_on_email (email);
Dropping indexes
Making your indexes go away is easy enough with the drop command:
alter table table_name drop index index_name

To drop the index on the email column, use:

alter table users drop index index_on_email;

Changing column definitions

It is possible to change a column’s name or attributes with either the change or
modify command. To change a column’s name you must also redefine the column’s
attributes. The following will work:

alter table my_table change my_col2 my_col3 int not null;

But this will not:

alter table my_table change my_col2 my_col3;

44

Part 1: Working with MySQL

If you wish to change only the column’s attributes, you can use the change com-
mand and make the new column name the same as the old column name. For
example, to change the 1name column from a varchar(25) column to a char(25)
column, you can use the following:
alter table users change ITname Iname char(25);

Or you may prefer the modify command:

alter table users modify Iname char(25);

statement and separate the different portions with commas. It's better prac-

TIP When altering a table, try to get all of your changes into a single alter
b 7
il tice than, for example, deleting an index in one statement and creating a

new one in another statement. For example, the following statement would
run a single alter command on a table named users that modifies the
column type of Tname and adds an index on the ema i1 column:

mysql> alter table users
-> modify Tname char(25),
-> add index index_on_email(email);

Using the show Command

A series of commands in MySQL enables you examine the databases on your sys-
tem and lets you know what is available in your MySQL installation. Keep these
commands in mind, because they come in handy at times.

show databases

When you start your MySQL command line, you are connected to the MySQL server
but are initially given no indication as to what is available to the server.

shell> mysql -u root;
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 73 to server version: 3.23.39

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

mysql>

Chapter 2: The Structured Query Language for Creating and Altering Tables

45

That prompt is nice but not especially helpful. Your initial interest is probably in
seeing what databases are available. You can get a list of databases by issuing the
show databases command:

mysql> show databases;

R TR +
| Database |
fomm - +
| mysql |
| store |
| test |
oo +

3 rows in set (0.14 sec)

The MySQL installation includes the other two databases (mysql and test) auto-
matically. The mysq1 database is covered in great detail in Appendix D.

If you want to work with any of these databases in the command-line client,
issue the use command:

mysql> use store;
Database changed

show tables

After you are connected to a specific database, you can view the tables that make
up the database by running the show tables command:

mysql> show tables;

oo +
| Tables_in_store |
oo +
addresses
formats

|

|
items_for_sale |
order_items |
orders |
places |
products |
users |
+

8 rows in set (0.01 sec)

46

Part 1: Working with MySQL

show columns

You can get specific information about the columns within a table. The syntax of
the command is show columns from table_name. Note that there are two syn-
onyms to show columns: show fields (show fields from table_name) and
describe (describe table_name).

mysql> show columns from users;

e T oo oo oo e +
| Field | Type | Null | Key | Default | Extra |
e T oo oo oo e +
| user_id | int(11) | | PRI | NULL | auto_increment |
| fname | varchar(25) | | | |

| Tname | varchar(40) | | | |

| email | varchar(60) | YES | | NULL | |
| home_phone | varchar(l4) | YES | | NULL | |
| work_phone | varchar(l4) | YES | | NULL | |
| fax | varchar(14) | YES | | NULL | |
R T oo oo oo e +

7 rows in set (0.12 sec)

The preceding query lists most of what you need to know about this table. The
first column, Field, shows the column name; Type (logically enough) shows the
column type; Null indicates whether or not null values are permitted in the col-
umn; Key shows if an index was created for the column, and if so what kind;
Default shows the default value (if one was indicated in the create statement);
and Extra gives some added information (in the preceding table, you can see that
user_id is an auto_increment column).

show index

There will come times when you will need to examine the indexes on your tables.
You can get a lot of information from the show index command. The following
command lists all indexes on the addresses table:

mysql> SHOW INDEX from addresses \G
B R R R S R S R S B S R S S 1 row R R R R R R S R S R B B S S
Table: addresses
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: address_id
ColTation: A
Cardinality: 7
Sub_part: NULL

Chapter 2: The Structured Query Language for Creating and Altering Tables

47

Packed: NULL
Comment:
1 row in set (0.13 sec)

Notice that in the preceding command we used \G to terminate the command.
This lets the MySQL command-line client know that the data are listed in the pre-
ceding format, rather than in the tabular format you've seen so far. This kind of
layout, showing the column name, a colon, and then the value, is convenient when
a query result contains more rows than can comfortably fit in a table.

show table status

If you want to get more detailed information on each table, you can run the show
table status command. This command will show you the number of rows in each
table, the time the table was created, and quite a few other interesting tidbits. You
can get the information on all tables in a database at once by simply running show
table status, or you can get the information on a specific table by using a com-
mand like the following (wildcards % and '’ are legal):

mysql> show table status Tike 'addresses' \G
Kkhkhkkhkhkkhkhkkhkhhkhkkkhrkhhkhkhhkhkkkhrkhrkkx]_ row *hkhkkhkhkhkhhkhkhkkhkkhhkhkhhkkhkkhkhkkhrkhkxk
Name: addresses
Type: MyISAM
Row_format: Dynamic
Rows: 7
Avg_row_length: 58
Data_length: 412
Max_data_length: 4294967295
Index_length: 2048
Data_free: 0
Auto_increment: 8
Create_time: 2001-10-25 15:32:08
Update_time: 2001-10-27 08:51:44
Check_time: 2001-11-27 09:45:46
Create_options:
Comment :
1 row in set (0.01 sec)

show create table

Before running an alter command, you may want to know exactly what statement
was used to create the table in the first place. You can get this information using
the show create table command:

mysql> SHOW CREATE TABLE addresses \G

48

Part 1: Working with MySQL

*hkhkkhkkhkkhkhhhhhkhkkhkkhkhhhrrrhkkhkhkkhkkhrx 1 row FrERERkhkkkkkhkhkkkkhkhkkrkrk

Table: addresses

Create Table: CREATE TABLE “addresses’™ (
“address_id® int(11) NOT NULL auto_increment,
“user_id® int(11) default NULL,
“place” varchar(25) NOT NULL default "'
“addr_1° varchar(255) NOT NULL default "'
“addr_2° varchar(255) default NULL,
“city” varchar(50) NOT NULL default "'
“state” char(2) NOT NULL default "',
“ZIP® varchar(5) NOT NULL default "'
“country® varchar(5) default NULL,
PRIMARY KEY (“address_id")

) TYPE=MyISAM

1 row in set (0.00 sec)

GUI Tools for Manipulating MySQL
Tables and Data

So far in this book we've shown you how to work with MySQL tables and data
using standard SQL statements. However, the process of creating tables and view-
ing table data can a bit of a drag when you're using the command-line client.
Happily, a variety of programs are available that will help you create and alter
tables and view table data.

Using phpMyAdmin

phpMyAdmin is probably the most widely used MySQL-administration tool. It’s
written in PHP and can therefore run on any platform on which PHP can run. (And
given the subject of this book, we feel safe in assuming that you're running a PHP-
capable platform.) Be aware, though, that you have to carefully follow the installa-
tion instructions to prevent security problems.

The first step in working with phpMyAdmin is to grab a copy of the source files.
A version is on the book accompanying this CD, but we recommend getting the lat-
est possible source files. You can get the most recent release from http://www.
phpmyadmin.net/. If you're working off of a Unix or Mac OS X machine, you'll
want to get the copy of the source that has a .tar.gz extension; for example,
phpMyAdmin-2.5.1-rc3-php.tar.gz. For Windows, get a copy of the source with
the .zip extension (for example, phpMyAdmin-2.5.1-rc3-php.zip).

You'll want to copy the folder to your Web server’s root directory. On Apache
installations, this directory is usually called /htdocs. You can then uncompress the
file using the following command:

shell> tar xvzf phpMyAdmin-2.5.1-rc3-php.tar.gz

Chapter 2: The Structured Query Language for Creating and Altering Tables

49

phpMyAdmin will then be available through your Web server via a URL like the fol-
lowing: http://localhost/phpMyAdmin-2.5.1-rc3/
On Windows, you'll use a zip utility like WinZip or pkzip to unzip the files.
Before you can access the application, you'll need to make changes to the
config.inc.php file. In most cases, all you'll need to do is put the appropriate user-
name and password on the following lines:

$cfgl'Servers'J[$i1['user"'] = 'root'; // MySQL user
$cfgl'Servers'J[$i]1['password'] = 'mypass’'; // MySQL
password

If you're finding an error that states you don’t have iconv support compiled in,
simply change the following entry in the config.inc.php file to FALSE.

$cfgl'AlTowAnywhereRecoding'] = TRUE

Once you are done with the configuration you should be able to go to the
/index.php page and start using phpMyAdmin.

Using phpMyAdmin is fairly straightforward, and we won’t explain it here. Just
spend some time clicking around and you’ll get a good idea of how it works.
Figures 2-1 and 2-2 show what you can expect from a couple of phpMyAdmin’s
screens.

@ Grab File Edit Capture Window Help 4§ Mon 2:35 PM
I 1esl.users running on localhost - phphtyAdmin T
~| Home Database test - table users running on Jocalhost

2 | (rest 2) 2] | [Swucture| Browse | sQL | Select | inset | Expon | Operatioms|
test Fleld Type Atributes Null Default Exira Actior |

: ::_"*" 0 userid n{10) UNSIGNED No muto_ncrement Change Drop Primary e

2 taeme Viechi(25) N Change Drop Primary Iy

O mame vechar(29) No Change Drop Primary s

M nar ViR h(255) No Change Drop Prisnary Isy
[ez vorcha(255) Yes MULL Change Drop Primary Iny H

O iy wiec (40 No Change Drop Primary e

O sume charz) Mo Change Drop Primary I

0O =z viechar(5) Yos MULL Change Drop Primary In

O lastchanged timestame(14) Yos MNULL Change Drop Prisnary les

T e secrea: (Cangs) or
Space uage Row Siatislic

indexes : [Documentation) Type Usage Staterments Value L
Keyname Type Cardinality Action Field Data 628 Byles Format gynamic & ||
(mpﬁm 12 Orop 6 userid index 2,048 Byles Rows) 124

Figure 2-1: View of a table in phpMyAdmin

50

Part 1: Working with MySQL

| @& Grab File Edi Capture Window Help <8 Mon 2:38 PM |

test. foobar running on localhost - phphiyAdman

| Home Database test - table foobar running on localhost
_— Type Longt

[Documentation] Values® Annbutes Null Default |
— [roved [inT A (UnsiGheD 2 (ot 2] [
U soe_tet [[Vamcrar_ ¢ ((oo][[
ol RN I I 7T | 0|0 |
| [varcrar e[| 8) (rotrea s [[
[VaRcraR] I 8 (oot 8 I
Tabe comments Tatie type
[Defoll &
(Save)

= W i Lype is “enum” of "SeT. piease enler INe valuts uSing Ihis fommal: WY,
H yOu ever Nead 10 put 8 Dackslash ("\7) o B single quUOte () BMORGET INCLE values
backsisshes i (for example Tyz’ or ‘W)

[DOC umpritateon]

Figure 2-2: Creating a table in phpMyAdmin

MySQL Control Center

This program is an offering from MySQL AB, the company that does most of the
work on the MySQL server daemon and that maintains mysq1.com. The graphical
client, called MySQL Control Center (MySQLCC), has the advantage of working on
a wide variety of systems, including FreeBSD, OpenBSD, Solaris, and Linux. If you
want a graphic administrative client that doesn’t use HTTP, as phpMyAdmin does,
this will be one of your better choices.

To give MySQLCC a spin, download it from www.mysql.com/downloads/ and
follow the installation instructions. Figure 2-3 shows what you can expect
MySQLCC to look like. It includes tools for creating tables, viewing table contents,
and running queries (manually and automatically).

Using MacSQL

The people at Runtime Labs have created a very nice, sophisticated GUI front for
Mac OS X that connects to a variety of SQL Servers, MySQL included. You can get
a copy of this software, called MacSQL, from the rtlabs.com Web site. Runtime
provides a free demo that you can take for a test run.

After you download and install MacSQL, you can start the application by double-
clicking the MacSQL icon. At that point MacSQL will detect that you have MySQL
installed and will offer you a screen like the one shown in Figure 2-4.

Chapter 2: The Structured Query Language for Creating and Altering Tables 51

=

T8 P AR CUSS] STY0R TICLLS TR DRORT

2 aidenall com] SELECT ~FROM ACCT_cusemcy

22 arisonall com] EMPLAIN SELECT “FROM 'ACCT _cussscy

B airimall com] $HOW FIELDS FROM ACET_cumency T UnsonEn ' AUTO_INEREMENT
™ psapy I ZERomLL

4
SE- LB &R «[L mRjwl

[9a Learm [_same I_ﬂ‘ Lofs Totoet bt comntely
1 b B aibe Chaibar N0
7 Unibet $1008 s Ui

!“"‘"" \ sosaonr 1 ‘L':,

Figure 2-3: The MySQL Control Center interface

_New Connection,
Database Type: Connect via:
MySOL %= ¢ Parameters | =43
Host: Port:
localhost
Userid: Password:
root LTI T)
Database:
i Cancel Connect

Figure 2-4: The Connections screen for MacSQL

To make a connection to MySQL on the local machine, make sure that the Port
item is blank and that the username, host (localhost), and password are appropriate.
At this point you'll be presented with a screen, like the one shown in Figure 2-5,
that offers several options.

If you're using OS X, we recommend that you download the free demo and work
through each of the options on this screen. You'll find that most anything you want
to do with MySQL you can accomplish with this software. At that point you may
decide that it’s worth the $99 for a version of MacSQL Lite.

52

Part 1: Working with MySQL

wntitled 2

Figure 2-5: Options for MacSQL

Summary

This chapter discussed what you need to know in order to create and maintain
databases and database tables when working with MySQL. It is possible that you
will never need to commit the details of the create statement to memory, as graph-
ical tools like phpMyAdmin can help you create and alter tables. Still, it is impor-
tant to understand the column types and the purposes of indexes, as a quick and
efficient database will always use the correct data type and will only include
indexes when necessary.

This chapter also introduced you to some of the GUI tools that can be used to
administer a MySQL installation. In the end, most find that using some type of GUI
tool is easier than manually inputting SQL commands for creating and altering
databases and tables. With these highly useful tools, you'll likely come to the same
conclusion.

Chapter 3

The Structured Query
Language for Inserting,
Editing, and Selecting
Data

IN THIS CHAPTER

¢ Using the insert statement

¢ Using the update statement

¢ Using the replace statement

¢ Using the delete statement

¢ Using the basic select statement
*

Joining tables

Now THAT YOU KNOW how to make tables, you need to learn how to put data into
them and get data out of them. You need to familiarize yourself with only a few
simple SQL statements in order to get data into tables, and you need only another
couple to edit data once it’s in your tables. Following that, you need to learn the
select statement, which retrieves your data in about as many ways as you can
imagine, either from a single table, or by joining two or more tables together.

The insert Statement

You will use the insert statement to place rows of data into your tables. The basic
form of the SQL insert statement is as follows:

Insert into tablename (columnl [, column2 [, column3 [, ...1 1 1)
values (valuel [, value2 [, value3 [, ...1 1 1)

53

54

Part 1: Working with MySQL

If a column in your table allows null values, you can leave that column out of
the insert statement.

Text strings must be surrounded by single quote marks ('), or double-quote
marks ('') if you're not running in ANSI mode. For example:

insert into table_name (text_col, int_col) values ('hello world', 1)

This can cause a problem because undoubtedly someone is going to want to
insert a contraction into a table and that would confuse your database because it
would interpret the first single quote it sees (after the start of the string) as the end
of the string, and it then wouldn’t know what to do with the remainder of the
string. Therefore you’'ll need a way of escaping, or working around, the single quote
character, by preceding it with a backslash (\). The same applies to the backslash
character itself:

insert into mytable (mycolumn) values ('This is\'nt going to
fail.');

insert into mytable (mycolumn) values ('this \\ stores a
backslash');

It’'s worth noting that % and _ need to be escaped only in contexts where wild-
card matching is allowed. You can also escape single quotes by using two consecu-
tive single quote marks (' '), and double quotes within a double-quoted string by
using two consecutive double quotes ("").

The following characters are identified in MySQL by their typical escape
sequences:

\n (newline)
\t (tab)

\r (carriage return)

* 6 o6 o

\b (back space)

ol

For the most part, you won't have to worry about escaping all of these char-
acters while doing your PHP programming. As you'll see, functions and set-
tings built into PHP handle this automatically. The addsTashes () function

and the magic quotes settings in the php.ini (covered in the MySQL docu-
mentationat http://www.mysql.com) are particularly helpful.

Chapter 3: Inserting, Editing, and Selecting Data

55

In MySQL you can also use the insert statement to add more than one row of
data at a time. All you need to do is include additional sets of values. For example:

insert into table_name (text_col, int_col)
values

("hello world', 1),

("hello mars', 2)

This approach has a few significant benefits, including that the database has less
parsing to do and that less data has to be sent to the database server over a net-
work. It’s a matter of reducing overhead.

The update Statement

The SQL update statement is slightly different from the others you have seen so far
in that it makes use of a where clause. A where clause enables you to pick out par-
ticular rows from your table — the rows where these conditions are true. Most often,
the conditions have to do with matching the values of fields in the row to the par-
ticular values you're looking for. The general syntax is as follows:

update table_name set col_l=valuel, col_2=value_2 where col=value

Once again, if you're inserting a string you’ll need to surround it with single
quotes and escape special characters properly. Keep in mind that the comparisons
in the where portion of the update statement can use any comparison operator (for
example, ‘col = value’, ‘col > value’, and so on).

Often the where clause will be used to identify a single row by its primary key.
In Table 3-1, id is the primary key. (The where clause is discussed in more detail
later in the chapter.)

TaBLE 3-1 THE FOLKS TABLE

id Fname Iname Salary
1 Don Ho 25,000
2 Don Corleone 800,000
3 Don Juan 32,000

4 Don Johnson 44,500

56

Part 1: Working with MySQL

The following statement would affect only Don Corleone:
update folks set fname='Vito' where id=2;

As you can see, it would be risky to run an update statement based on the fname
column, as you could accidentally update every column in this table.

update folks set fname='Vito' where fname='Don';
You can also use update to give your underpaid employees a raise:
update folks set salary=50000 where salary<50,000;

As of MySQL 4.0, you can also update a table based on data in other tables. This
is an extremely helpful feature, since it enables you to make changes using only
SQL statements that previously would have required a program or script (or some
very dodgy workarounds).

To demonstrate, we add another table (Table 3-2) to the example set, recording
the income brought in by the people in folks:

TasLe 3-2 THE INCOME TABLE

id Income

1 500,000

2 1,500,000
3 250

4 1,250,000

We can use a multi-table update to give the top performers a raise:

update folks, income
set folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

As you might guess from the syntax, you can update multiple tables with a sin-
gle update statement. You might have good reasons to do that, but be careful — the
results might not be what you expect. The reason is that the order in which

Chapter 3: Inserting, Editing, and Selecting Data

57

you update columns in the query makes a difference. To illustrate, we add a salary
column to the income table, not something you'd want to do if this were a real
database, by the way:

alter table income add salary numeric(10,2);

Then we update the records in income to fill in the salary with the values from
the folks table:

update income, folks set

income.salary = folks.salary
where income.id = folks.id

Now the income table looks like Table 3-3:

TasLe 3-3 THE INCOME TABLE

id Income Salary
1 500,000 50,000
2 1,500,000 880,000
3 250 50,000
4 1,250,000 55,000

Next, we redo the previous query, giving a raise to people who have brought in
an income of at least $1,000,000. This time, we update the salary field in both
tables at the same time:

update folks, income set
folks.salary = folks.salary * 1.1
, income.salary = income.salary * 1.1
where folks.id = income.id and income.income >= 1000000

If we run a select on the two tables now, the results (Table 3-4) look reasonable:

select f.id, f.fname, f.lname, i.income, f.salary as folks_salary,
i.salary as income_salary from folks f, income i where f.id = i.id;

58

Part 1: Working with MySQL

TasLe 3-4 RESULTS OF THE UPDATE

id fname Iname Income folks_salary income_salary
1 Don Ho 500,000 50,000 50,000

2 Vito Corleone 1,500,000 968,000 968,000

3 Don Juan 250 50,000 50,000

4 Don Johnson 1,250,000 60,500 60,500

However, if we change the query to use the value from the salary column in the
folks table to update both tables, as in the following code, the results are a bit odd
(Table 3-5).

update folks, income set
folks.salary = folks.salary * 1.1
, income.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

TasLe 3-5 RESULTS OF THE UPDATE

id fname Iname Income folks_salary income_salary
1 Don Ho 500,000 50,000 50,000

2 Vito Corleone 1,500,000 968,000 1,064,800

3 Don Juan 250 50,000 50,000

4 Don Johnson 1,250,000 60,500 66,550

What’s happening is that in the first part of the set clause, folks.salary =
folks.salary * 1.1, the salary field is being set to its current value times 1.1;
but in the second part of the set clause, income.salary = folks.salary * 1.1,
the new value of folks.salary is being used. Thus, income.salary ends up being
set to the original value of folks.salary times 1.21 (1.1 twice).

Plus, for even more fun, if we switch the order in which the tables to be updated
are listed, as in the following code, we see “reasonable” results again (Table 3-6).

Chapter 3: Inserting, Editing, and Selecting Data

59

update income, folks set
income.salary = folks.salary * 1.1
, folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

TasLE 3-6 RESULTS OF THE UPDATE

id fname Iname income folks_salary income_salary
1 Don Ho 500,000 50,000 50,000
2 Vito Corleone 1,500,000 968,000 968,000
3 Don Juan 250 50,000 50,000
4 Don Johnson 1,250,000 60,500 60,500

The tables are updated in the order in which they are listed, and the query runs
as if it were actually two updates in order:

update income, folks set
income.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000
update income, folks set
folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

When you look at it as two queries, the results make sense. We recommend that
you stick to updating a single table at a time for the sake of clarity if nothing else,
unless you have a good reason to do otherwise.

Note that this syntax is not standard ANSI SQL syntax. This matters primarily
for the portablility of your application; it’s a good reason to isolate the code that
actually performs updates.

The delete Statement

The delete statement removes a row or multiple rows from a table. The syntax is
as follows:

delete from table_where where-clause

60

Part 1: Working with MySQL

To remove Don Ho from Table 3-1, you'd run the following statement:
delete from folks where id=1;

You can delete records from one or more tables at a time, based on the data in
those tables as well as others (this capability is as of MySQL 4.0):

delete from tablel [, tableZ [, ...J]J] using tablel [, table? [,
...J]] [, additional_table_1 [, additional_table2 [,...]]] where
where-clause

7 |

This is just one of a few supported formats for a multi-table delete state-

ment. We're using it because it is most similar to the single-table delete,

which means we're a smidge less likely to get the syntax wrong.

The tables listed in the from clause are the ones from which records are deleted.
Those same tables appear again in the using clause, along with any other tables
you wish to query to determine what records you want to delete.

To illustrate, we can remove the underachievers from the folks table. Tables 3-7
and 3-8 provide the data used in the example again.

TasLe 3-7 THE FOLKS TABLE

id Fname Lname Salary
1 Don Ho 25,000
2 Don Corleone 800,000
3 Don Juan 32,000
4 Don Johnson 44,500

TasLe 3-8 THE INCOME TABLE

id Income

1 500,000
2 1,500,000

Chapter 3: Inserting, Editing, and Selecting Data

61

id Income
3 250
4 1,250,000

Now we can use the delete statement to remove records from the folks table
for people whose income is too low, as demonstrated in the following code. Table
3-9 displays the results.

delete from folks using folks, income
where folks.id = income.id and income.income < 100000

TasLe 3-9 THE FOLKS TABLE

id Fname Iname Salary
1 Don Ho 25,000
2 Don Corleone 800,000
4 Don Johnson 44,500

The replace Statement

You won’t find MySQL'’s replace statement in other database systems, and it is not
part of the SQL standard. However, it is convenient in places. The replace state-
ment works with a row for which you know what the primary key should be. When
you run the replace statement, MySQL searches for a row with the primary key
indicated in the statement. If a row with the indicated primary key exists, that row
is updated. If not, a new row is inserted. The basic syntax is as follows:

Replace into table_name (col_1, col_2, ?) values (val_1l, val_2, ?)

For an example of a situation in which replace would be helpful, imagine you
have a table with two columns, email and full_name, with email as the primary
key. If you want to write a script that gives a user the opportunity to insert and edit
this information, you would have some sort of form with which the user could enter

62

Part 1: Working with MySQL

the data. Then, when the user submits the form, the script would have to go through
some decision logic. Without replace, the logic would be something like this:

examine form data

delete record from database with the submitted primary key value
(this will run with no results if no such record exists)

run insert statement

But because MySQL has the replace statement, you can lose all of this logic and
just run replace. For example:

replace into users (email, full_name) values ('jon@doe.com', 'Jon
Doe')

Note that you don’t need to use a where clause to identify the row that you are
replacing; MySQL handles this, based on the value of the primary key. (If you use
the replace statement on a table with no defined primary key, MySQL inserts a
new record into the table.)

However, you can use a where clause to identify the source of the new data, and
that can come in very handy. Suppose you want to change the values of a field in
one table to reflect the result of an aggregate query against another table. You can’t
do this with an update statement because group by clauses are not allowed there.
But replace accepts a select statement as its source (just like insert). If the table
you are updating has a unique key (see why they’re so handy?), you're in gravy.

To illustrate, we add a third table to the set of example tables. Table 3-10 records
donations brought in by each of the fellows:

TasLe 3-10 THE DONATIONS TABLE

Id amount date

1 5000 3/1/2003
1 5000 3/2/2003
1 5000 3/3/2003
2 25000 3/1/2003
2 3000 3/2/2003
2 4000 3/2/2003
2 10000 3/3/2003

3 1000 3/1/2003

Chapter 3: Inserting, Editing, and Selecting Data

63

Id amount date

3 3.15 3/2/2003
3 25 3/3/2003
4 10000 3/1/2003
4 20000 3/2/2003

We want to be able to update the income field of the income table to the sum of
the donations acquired by each person. As before, we can do this by deleting the
current records in the income table and then creating new ones. Or, we can just use
replace, as in the following code:

replace income (id, income)
select id, sum(amount) from donations group by id

Table 3-11 shows the results.

TasLe 3-11 THE INCOME TABLE

Id income salary
1 15000 NULL
2 42000 NULL
3 1028.15 NULL
4 30000 NULL

Notice that we’ve lost the data from our salary column. The trouble is that we
are not allowed to include the table we are replacing into the select statement. To
change some fields and keep others, we have to create a temporary table storing the
current values in income and join it to donations in the replace statement. How
much better that is than a delete and an insert is a matter of taste. Remember,
replace follows the same syntax as insert. There is no where in replace.

64

Part 1: Working with MySQL

The Basic select Statement

When it comes time to take the information from your database and lay it out on
your Web pages, you'll need to limit the information returned from your tables and
join tables together to get the proper information. So you’ll start with your data-
base, the superset of information, and return a smaller set. In the select statement
you'll choose columns from one or more tables to assemble a result set. This result
will have columns and rows and thus can be effectively thought of as a table (or a
two-dimensional array, if your mind works that way). This table doesn’t actually
exist in the database, but it helps to think about it this way.

The basic select statement requires you to indicate the table or tables you are
selecting from and the column names you require. If you wish to select all the
columns from a given table, you can substitute an asterisk (*) for the field names.
For example:

select column_1, column_2, column_3 from table_name
or
select * from table_name

Keep in mind that with a select statement you are not actually altering the
tables involved in the query. You are simply retrieving information. From PHP, you
will send the query to MySQL from the mysql_query() function.

There are all sorts of ways you can choose to lay out the information, but at
times you're going to want a simple HTML table with the column names put in a
header row. The simple PHP code in Listing 3-1 will lay out any SQL query in an
ultra-simple HTML table. It includes a simple form that will enable you to enter a
query. If you don’t understand this code just yet, don’t worry about it; all the PHP
functions will be covered in Chapter 6. Alter the mysql_connect() and
mysql_select_db() functions if you wish to change the database used. I wouldn’t
advise putting this script on a server that is publicly available, as it would open up
a huge security hole.

Listing 3-1: A PHP Script That Converts a SQL Query to an HTML Table

<?php
mysqgl_connect("localhost", "username", "password") or
die("Could not connect to database.");

mysql_select_db("test") or
die("Cannot select database");

Chapter 3: Inserting, Editing, and Selecting Data

65

if(lempty($_GET["query"]1)){

$query = stripslashes($_GET["query"1);
} else {

$query = "SELECT * FROM users";

$result = mysql_query($query) or
die(mysql_error());

$number_cols = mysql_num_fields($result);

echo "Query: $query",
'<table border="1">",
'<tr align="center">";

for ($1=0; $i < $number_cols; ++$i) {

echo '<th>" . mysql_field_name($result, $i) . "</th>\n";
}
echo "</tr>\n";

while($row = mysql_fetch_row($result)){
echo "<tr>\n";
foreach($row as $field){
echo '<td>' . (is_null($field) ? "NULL' : $field) . "</td>\n";
}
echo "</tr>\n";

echo '</table>';
>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="GET">
<input type="text" name="query" size="50" value="<?php echo
$query; ?>">

<input type="submit">
</form>

For the remainder of this chapter you will see how to build on the complexity of
the select statement. To show you things in action, we created a table in MySQL
against which we can run these queries. The create statement in Listing 3-2 makes
a table named users that holds basic personal information.

66 Part 1: Working with MySQL

Listing 3-2: A create Statement for the users Table

CREATE TABLE users (
userid int(10) unsigned NOT NULL auto_increment,
fname varchar(25) NOT NULL,
Iname varchar(25) NOT NULL,
addr varchar(255) NOT NULL,
addr2 varchar(255),
city varchar(40) NOT NULL,
state char(2) NOT NULL,
zip varchar(5),
lTastchanged timestamp(14),
PRIMARY KEY (userid)

)

To get things started, we loaded up the database with a few rows of information.
The insert statements that load this data are shown in Listing 3-3.

Listing 3-3: insert Statements for the users Table

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (1,"Jason','Greenspan','555 5th
St','apt 204", 'San Francisco','CA',"'94118",20020626134625);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (2, 'Brad','Bulger','666 6th St', 'apt
17",'San Francisco','CA',"'94116"',20020626134704);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (3,'John','Doe",'279 66th St' ,NULL, 'New
York','NY',"'11100"',20020627120644);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (4, 'Jane','Doe',"'987 67th

St',NULL, "Windsor"',"'MA","'14102',20020627120644) ;

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (5,'Jean','Banks','4 Elm
St',"","Eugene',"'0R","'98712"',20020627120644);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (6, 'Donny',"Alphonse','25 14th

St',NULL, "New York"',"'NY','11104"',20020627120644);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, Tlastchanged) VALUES (7, 'Meghan','Garcis','44 Maple
Dr',NULL,"Nashville',"TN",'37114"',20020627120644);

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, Tlastchanged) VALUES (8, 'Kenny','Clark', 'General

Delivery' ,NULL, 'Washeegan','VT"','10048',20020627120644) ;

INSERT INTO users (userid, fname, Tname, addr, addr2, city, state,
zip, lastchanged) VALUES (9, 'Danny"','Briggs','8 Palm Way', 'ste
222','Miami", "FL',NULL,20020627120644);

Chapter 3: Inserting, Editing, and Selecting Data

67

INSERT INTO users (userid, fname, Iname, addr, addr2, city, state,
zip, lastchanged) VALUES (10, 'Luke','Gnome',"'8 Palm Way',NULL, 'San
Francisco','CA','94118"',20020627120644);

INSERT INTO users (userid, fname, Iname, addr, addr2, city, state,
zip, lastchanged) VALUES (11,'Alan','Paine','27 Casa Way',NULL, 'Los
Angeles','CA',"'94204"',20020627120644);

INSERT INTO users (userid, fname, Iname, addr, addr2, city, state,
zip, lastchanged) VALUES (12, 'Jay','Grimes','718 Field
St',NULL,'"Pierre',"'ND","44221"',20020627120644);

When run through the PHP code above, the query select * from users will
return the results shown in Figure 3-1.

0 68 00 0 O ol e 0 P 050 . 18] =

J Eile Edit View Favorites Tools Help |
JAddreSS I@ http:#4192.168.1.1 /book/ch3_functions. php ?query=select+* +iam+users j @ Go |J Links *

query: select * from users =

[userid| fname | lmame | addr [addr2 | city [state| zip | lastchanged

[f [fason [Greenspan [535 5th 5t [apt 204 [San Francisso [CA 4118 [200006141420%0

[z [Brad [Bulger [6666th St [apt17 [BanFrancisco [CA [pall6 [20000614142030

B llha [Doe ro66thst NULL Newvork |NY [11100 (0000614143030

l+ [rane |Doe bs7enst |NULL|Windsor |Ma L4102 [20000814143019

[[ean [Banks [4Emst [Eugene [oR [pr7iz [z0000614143057

i [Donny [atphonse [25 14t INULL [New York WY [11104 2000614143030

7 |Meghan[Garcia [44MapleDr [NULL[Weshvite [TN [37114 [z0000614143132
B [Kenny [Clae [General Deviiver[NULL [Washeegan |vT |[10045 [20000614143200
b [Danny |Briges [BPamWay [ste 222 [Misnmi FL [NULL 0000614143119
0 [Luke [onome [BPamWay [NULL [SenFrancisco[Ca 54118 [200006141420%0
it latn [Paine [27CasaWay [NULL[Los Angeles [ca [p4204 [z0000614144723
[z [y [Grimes [718FieldSt [MULL [Pierre D [s4221 [z0000615105941

| Submit Queny | =l
#sen| | @GP @U S [6w] H BT HIP00 820 au

Figure 3-1: Results of query using select * from users

The where clause

The where clause limits the rows that are returned from your query. To get a single
row from a table you would a run the query against the primary key. For instance,
to get all the information on Brad you would use this query:

select * from users where userid = 2;

Figure 3-2 shows the results of this query.

68

Part 1: Working with MySQL

:/192.168.1.1/book/ch3_functions.php? query=select+*+from+users+where +userid+=...

J Eile Edit ¥Yiew Favorites Tools Help 4
JAddreSS I@ A 92.188.1.‘I.-"book.-"c:hB_func:tions.php?query=selec:t+"+from+users+where+userid+°/°3D+2j @ Go |J Links
T o< R A B = IR R s R R

Back Fanward Stop Refresh Home Search Favortes History il Frint Edit
=
query: select * from users where userid =2
[userid [fhame [Iname | addr |addr2 [ity state | zip | lasichanged
2 Erad [Bulger [666 6th 3t [apt 17 [San Franciseo [Ca (94116 [20000614142930
| Subimit Query |
E
Hstart| €€ DL WAL || mco. |[E.. BBl BVIL BEDP 1027 AM

Figure 3-2: Results of query using select * from users where userid=2;

If you're doing a comparison to a column that stores a string (char, varchar,
and so on), you will need to surround the string used for comparison in the where
clause with single quotes.

select * from users where city = 'San Francisco';

MySQL has several comparison operators that can be used in the where clause.
Table 3-12 lists these operators.

W‘ Don't be confused by the fact that the “equal to” operator is = in MySQL and
\P & ==in PHP.Be careful.

\;\\1

You can combine several comparisons with and or or:

select * from users
where userid = 6 or
city = 'San Francisco'

select * from users

Chapter 3: Inserting, Editing, and Selecting Data

69

where state = 'CA' and
city = 'San Francisco'

TaBLE 3-12 MYSQL COMPARISON OPERATORS

Operator Definition

= Equal to

<orl= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

like Compares a string (discussed in detail later in this chapter)
<=> NULL-safe comparison

It’s important to note that fields with null values cannot be compared with any
of the operators used in Table 3-12. For instance, in the table shown in Figure 3-1,
you might think that the following statement would return every row in the table:

select * from users where zip <> "11111' or state = '11111";

But in fact, row 9 will not be returned by the query. Null values will test neither
true nor false to any of these operators. Instead, to deal with null values, you will
need to make use of the is null or is not null predicates.

To get the previous query to work as we had intended you’d need to augment
your original query, as follows:

select * from users

where zip <> '11111" or
zip = '"11111" or
zip is null

Or if you want to find all the rows where zip contains any value (except null) you
can use the following:

select * from users where zip is not null;

70

Part 1: Working with MySQL

USING distinct

At times, your query will contain duplicate data. For instance, if your goal is to see
all the cities in California, your first instinct might be to run a query like select
city, state from users where state='CA'. But look at the result returned in
Figure 3-3.

A http:/1192.168.1.1/book/ch3_functions.php?query=select+city,+state+from+users+where+... [E
JEiIe Edit Yiew Favorites Tools Help 1]

JAddrESS I@ ch3_functions. php?querny=select+city2C+state+from+usersrwhere+state 2 30 2 27CAR2T j @ Go |J Links

.9 o@D 4 G | Q@ @SB 9 .

Back Fanward Stop Refresh Home Search Favortes History tail Prirt Edit

query: select city, state from users where state="CA'
city |[state

San Francisco ’K

Los Angeles [CA

| Subimit Queny |

=l
Astar| | EE DB AD || wl[eh. [BetoBOI HLPLD 855 AM

Figure 3-3: Results of query using select city, state from users where state="CA’

Notice that the first three rows are identical. You could use PHP to sort through
the identical results and return only unique city names in California, but that would
be a fair amount of scripting. You can get what you want directly from the data-
base by using select distinct. When you use distinct, the MySQL engine will
remove rows with identical results. So here the better query is select distinct
city, state from users where state='CA', which returns the data in Figure 3-4,
which is exactly what you want.

USING between

You can also choose values within a range by using the between predicate. The
between predicate works for numeric values as well as dates. In the following
query, Tastchanged is a timestamp column. If you want to find the people who
signed up on June 26, 2002, you could use this query:

select * from users where lastchanged between 20020626000000 and
20020626235959;

Chapter 3: Inserting, Editing, and Selecting Data 71

<A http://192.168.1.1/book/ch3_functions.php?query=select+distinct+city, +state+from+users... HEE
JEiIe Edit View Favorites Tools Help g

JAddrESS I@ ctions. php?queny=select+distinct+cityZ2C+state+from+Uusersrwhere+stat °/°3D°/°2?E.A°/g2?j & Go |J Links

S < I CT A - S R B s A B e
Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

query: select distinct city, state from users where state="CA'
[city [state
Los Angeles [CA
San Francizsco ’K

| Submit Query |

=

Mset| [EEDE WA % || we] |[BeleFTVRI BLDLD 02 Av

Figure 3-4: Results of query using select distinct city, state from users where state="CA'

This is a shorthand way of saying:

select * from users where lastchanged >= 20020626999999 and
lastchanged <= 20020626335959;

Remember that the default timestamp column type stores dates in the form
YYYYMMDDHHMMSS, so to get all entries for a single day you need to start your range
at midnight (00:00:00) and end it at 11:59:59 p.m. (23:59:59).

You can also use between on text strings. If you wish to list all the last names
that start with the letters A through G, the following query would work. Note that
it will not include names that start with A.

select * from users where Iname between 'a' and 'g';

USING in/not in

The in predicate is helpful if a single column that can be returned has several pos-
sible values. If you want to query the users table to get all the states in New
England, you could write the query like this:

select * from users

where state = 'RI' or
state = 'NH' or
state = "VT' or

72

Part 1: Working with MySQL

state
state

'"MA" or
"ME

Using in, you can specify a set of possible values and simplify this statement.
The following query achieves the same result:

select * from users
where state in ('RI', 'NH', 'VT', 'MA', 'ME');

If you want the same effect in reverse you can use the not in predicate. To get
a listing of all people in the table not living in New England, simply throw in the
word not:

select * from users where
state not in ('RI', 'NH', 'VT', 'MA', 'ME');

USING like

Of course there will be occasions when you are searching for a string, but aren’t
exactly sure what the string looks like. In cases like these you will need to use wild-
card characters. In order to use wildcards, you need the 11ike predicate.

Two wildcard characters are available: the underscore () and the percent sign
(%). The underscore stands for a single character; the percent sign represents any
number of characters, including none.

So, for example, if you were looking for someone with the first name of Daniel
or Danny or Dan, you would use the percent sign:

select * from users where fname like 'Dan%';

Note that because the percent sign will match on zero characters, the preceding
query matches the name Dan.

However, if for some odd reason you need to find all of the people in your data-
base with four-letter first names beginning with the letter J, you'd construct your
query like this (note that three underscores follow the J):

select * from users where fname like 'J '

The three underscores will match any characters and return names like Jean,
John, and Jack. Jay and Johnny will not be returned.

ol

In MySQL the 11 ke comparison is not case-sensitive. This makes it quite dif-
ferent from most SQL implementations.

Chapter 3: Inserting, Editing, and Selecting Data 73

order by

There is one thing you should always keep in mind when working with relational
databases: The storage of rows in any table is completely arbitrary. In general,
you’ll have no idea of the order in which your database has decided to put the rows
you've inserted. When it matters, you can specify the order of rows returned in your
query by tacking order by on the end of it.

The order by command can sort by any column type: alphabetical, chronolog-
ical, or numeric. In addition, you can sort in either ascending or descending order
by placing asc or desc, respectively, after order by. If neither is included, asc is
used by default.

To alphabetize a list of the entries in the table, you probably want to make sure
that the entries were sorted by both the fname and 1name columns:

select * from users order by Tname, fname;

You can sort by as many columns as you wish, and you can mix the asc and
desc as necessary. The following query isn’t particularly useful, but it is possible:

select * from users order by Iname asc, fname desc;
limit
The 1imit predicate will restrict the number of rows returned from your query. It
enables you to specify both the starting row and the number of rows you want
returned. To get the first five rows from the table, run the following query:
select * from users Timit 0,5;

To find the first five rows alphabetically, you can use 1imit with order by:

select * from users order by lIname, fname limit 0,5;

You'll probably notice that the numbering is like arrays — the first row is row O.
To get the second five rows of the table, you’d run the following:

select * from users 1imit 5,5;

The 1imit predicate is particularly useful in situations where you want to
restrict the display on any one page. You'll see the use of 1imit throughout this
book. Even Chapter 8, which describes the first application in this book, uses 1imit.
It’s worth noting that LIMIT n is the same as LIMIT 0, n and that negative values
are illegal after LIMIT.

74

Part 1: Working with MySQL

group by and aggregate functions

Remember back to when we were talking about using select with distinct and
how that removes rows you don’t need? That may have seemed pretty cool, but it’s
nothing compared to what you can get out of the group by predicate and its asso-
ciated aggregate functions.

Consider this task: You wish to know the number of entries from each state in
the database (for example, six from California, seven from New York, two from
Vermont). If you did a select distinct state from users order by state
query, you would get a listing of each state in the database, but there would be no
way to get the numbers. As MySQL goes through the table to process the query it
simply skips over rows that would return identical values.

However, with group by, MySQL creates a temporary table where it keeps all the
information on the rows and columns fitting your criteria. This allows the engine to
perform some very important tasks on the temporary table. Probably the easiest
way to show what group by can do is by showing one of the aggregate functions.
We'll start with count ().

ol

count()

Once again, the goal of your query is to find out the number of people from each

state in your users table. To do that you will use group by with count().
Remember that when the group by clause is used you can imagine MySQL cre-

ating a temporary table where it assembles like rows. The count() function then

(you guessed it) counts the number of rows in each of the groups. Check out the fol-

lowing query and the result returned in Figure 3-5:

MySQL may not actually create a temporary table for each group by; how-
ever, the actual inner workings of a group by are pretty complex, and this

is a good way to think about what MySQL is doing.

select state, count(*) from users group by state;

Here the asterisk (*) indicates that all rows within the group should be counted. The
count (*) function is also handy for getting the total number of rows in a table.

select count(*) from users;
Within a group by, you can also indicate a specific field that is to be counted.

count will look for the number of non-null values. Take, for example, the table in
Figure 3-6.

Chapter 3: Inserting, Editing, and Selecting Data 75

2.168.1.1/booksch3_functions.php? query=select+state,+count{j+from +users+gro... =1 E3
JEiIe Edit View Favorites Tools Help g

JAddrESS I@ ch3_functions. php?queny=select+state32C+oount % 28 229+ from+users+aroup+by-+state+ j & Go |J Links

< I A T = R R B A R

Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

query: select state, count(*) from users group by state
istate [count(*)
ca s
FL [t
ball
o
v [z
PR I
[t i
T i

| Submit Query |

=

HAstart] | @€, D[@ AL ||[en M| [BeleFVEL BEDLD 950 AM

Figure 3-5: Results of a query using select state, count(*) from users group by state

92.168.1.1/book/ch3_functions.php? query=select+*+from+user_ages - Microsoft In... =] E3
JEiIe Edit View Favorites Tools Help | il

JAddreSS I@ hitp: #4132.168.1.1/book /ch3_functions. php?queny=select+*+fom+uszer_ages j & Go |J Links

S BT e B s B~ R BES A B

Back Fanward Stop Refresh Home Search Favortes History I ail Prirt Edit

query: select * from user_ages
[mame | city [state| age
|John |San Francisco 'EPB
[allen [MewVork [N¥ [38

[Eill [Chicage L |4l

|Jean |San Francisco IJ|N_ULL
|Bamey |Chicag0 IT |32

|Ray |N ew Vork ,F |N_UI,L

| Submit Query |

=
Asar] | € & D G > |[[en @ w] 8 31 [BeteTId HELPLD 1125 Au

Figure 3-6: The users_ages table

76

Part 1: Working with MySQL

If you're the type that’s really into statistics, you can use this table to figure out
what percentage from each city feels comfortable indicating its age. First, you need
a count of all the entries from each specific city and state; following that you need a
count of all the non-null values in the age field.

select city, state, count(*), count(age) from user_ages
group by state, city;

From the result in Figure 3-7, you can see that Chicagoans are far more forth-
coming than those from the coasts.

<3 http://192.168.1.1/bookich3_functions.php? query=Select+city, +state,+ count{),+count{ay... [MEE
J File Edit Yiew Favorites Tools Help]
JAddrESS I@ te2C+count%28°% 29% 2C+count%28age® 29+from+user_ages+group-+by+state2C+city j @ Go |J Links
.9 @ [A8 @ P BRSO .
Back Fanward Stop Refresh Home Search Favortes History tail Prirt Edit
=
query: Select city, state, count(*), count{age) from user_ages group by state, city
| city state |cnu.ld(*) |cnu.ld(age)
|SanFrancisco CA |2 |1
[Chicaga L [z 2
[Mewvek WY |2 I
| Subimit Query |
E
start| | @ € @ 5~ [[en # w] &) B |[BeleBVGI @APLD 1133 AM

Figure 3-7: Results of query using count() function

There will be times, particularly when you’re working with functions, when the
column name returned by the query isn’t what you’d like it to be. For example, in
Figure 3-7 you may wish for a table header a bit more descriptive than count (*).

You can follow any function or column name with the word as and then specify
a name you prefer. as simply designates an alias —an identifier that represents
something else. If you need a column name that is more than one word, surround
the text string with single quotes.

While on the topic of aliases, we’ll also mention that a variety of functions and
operators are available in MySQL (see Appendix J). They range from simple math

Chapter 3: Inserting, Editing, and Selecting Data

77

functions to more complex operations. The following is some math we’ve thrown in
to clarify the purpose of the query. Notice the use of as for the alias and the way it
affects the display of the query (shown in Figure 3-8).

select city, state, count(*) as 'Total Rows',
count(age) as 'The Willing',
(count(age)/count(*)*100) as 'Percent Responding'
from user_ages
group by state, city;

3 http:/192.168.1.1/book/ch3_functions.php?query=Selectscity, +state,+ count{) + as+ Total+... M= B3
JEiIe Edit View Favorites Tools Help aE

JAddrESS I@ 29100329+ as+%27Percent+Responding 227 +Hrom+Lser_ages+group+by+state%2Croity j @ BGa |J Links *

S s A e B (R B A R

Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

query: Select city, state, count{*) as 'Total Rows', count(age) as 'The Willing', {count
(age)/count(*)*100) as 'Percent Responding' from user_ages group by state, city
[city [state [Total Rows [The Willing [Percent Responding

[San Francisco [Ca |2 It [50.00
[Chicaga L [z 2 [tod.00
[Mewvesk v [z I [50.00

| Submit Query |

B
Aser] | € 29 G ~|[6 ¥ w €] B 6 | BBl BELPD 1143 AM

Figure 3-8: Results of query using functions and aliases

You can also use aliases on tables. This will be particularly helpful when you’re
dealing with multiple tables. You can read about this in further detail in the section
“The multi-table join.”

sum()

The sum() function returns the sum of a given column and is almost always used
with a group by clause. For instance, if you are running an application for a non-
profit, you might want to know the total contributions from each state. The table
you're working with might look like the one in Figure 3-9.

78 Part 1: Working with MySQL

<2 http:/192.168.1.1/book/ch3_functions.php?query=select+*+from+contributions - Microsof... =] E3
JEiIe Edit Yiew Favorites Tools Help g

JAddreSS I@ http: #A192.168.1.1/book /ch3_functions. php ?query=select+*+rom+contributions j @ Go |J Links

T o< R A B = IR R s R R

Back Fanward Stop Refresh Home Search Favortes History il Frint Edit

query: select * from contributions B
L fea o

- ov [0

B fea s

b = feo

[v [izm

| Subimit Query |

E
Astert] E2. @G 7 [a Hw el B [BoeTUGI EBIRLD 1159 AM

Figure 3-9: Table where using sum() would be helpful

To get the total from each state you’d run the following query:
select state, sum(contribution) from contributions group by state;
min()
The min() function pulls out the lowest value in each grouping. To find the lowest
contribution from any state just make a small change to the previous query:

select state, min(contribution) from contributions group by state;

max()
As you probably guessed, max () will return the highest value in a group:

select state, max(contribution) from contributions group by state;

avg()

avg () returns the average of the group:
select state, sum(contribution) from contributions group by state;

You can throw all these together to create a pretty useful query, as Figure 3-10
and the following query show:

Chapter 3: Inserting, Editing, and Selecting Data

select state, sum(contribution) as 'Total',
avg(contribution) as 'Average',
min(contribution) as 'Minimum',
max(contribution) as 'Maximum'

from contributions

group by state;

<3 http://192.168.1.1/bookich3_functions.php?query=selectsstate,+sumicontributionj+as+T... [MEIE

JEiIe Edit View Favorites Tools Help aE

JAddrESS I@ ?°/°2E+max°/g28contributionX29+as+%2?Maximum°/°2?+fr0m+c:0ntributions+group+by+statej & Go |J Links

.9 .0 B4R e BS .

Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

query: select state, sum(contribution) as "Total', avg(contribution) as "Average', min
(contribution) as 'Minimum', max(contribution) as 'Maximum' from contributions group by
state

mlﬁh\remge |M.uu.mu.m |MaJu.mu.m

[ca [2z5 1125000 50 173

[[1300 6500000 100 [t200

[T [600 [s00.0000 600 60

| Submit Cueny |

E
Asen] | @D 7|[a Hwe|B] | BoleBTVIL SILDLD 1111 A

Figure 3-10: Using multiple aggregate functions together

group by OPTIONS

Most relational databases require that fields listed in the select clause be used in
the group by predicate. But MySQL gives you a second option: You can group a
subset of the columns listed. For instance, if you want to find out the number of

people in one city and get a look at a sample ZIP code from that city, you could run
the following:

select city, zip, count(*) from users group by city;
The query would return a listing of cities, the number of entries for each city,
and one sample ZIP code. These results are quite different from those from the fol-

lowing query:

select city, zip, count(*) from users group by city, zip;

80

Part 1: Working with MySQL

This returns a separate row for each city/ZIP combination and provides a count
for each unique combination.

having

The having predicate restricts the rows displayed by a group by. This predicate is

not the same as the where clause. The where clause actually restricts the rows that

are used in the group by, whereas the having clause only prevents their display.
If you need to find the average amount of donations from each state for all those

who contributed more than $100, you could run the following:

select avg(donations), state from contributions where donations> 100;

However, if you want to display average contributions for all the states in which
the average was over $100, you have to use the having clause. Because the having
clause does not restrict rows that go into the group by, the aggregate functions,
like avg()in this case, use all the rows in their calculations.

select avg(contribution) as avg_contrib, state
from contributions

group by state

having avg(contribution)>100;

Joining Tables

If you read Chapter 1, you know that relational databases work so well because
they segment information. Different tables hold information on different topics,
and fields are inserted into the tables to maintain relationships. After you finish the
normalization process, it’s likely that none of your tables will be usable without the
others. That is why you’ll need to join tables in your SQL select statements.

The two-table join (equi-join)

For the sake of continuity, we're going to reprise a couple of tables first seen in
Chapter 1. Take a look at the familiar tables in Figure 3-11.

If you're looking to do a mailing to all the people in the contacts table, you are
going to need to join the contacts table to the companies table, because the street
address is in the companies table (and that's exactly where it should be). The
company_id column in the contacts table creates the relationship between these
tables. And if you join these tables on occasions in which the company_id field in
the contacts table is equal to the company id field in the contacts table, all the
information will be at your fingertips.

Chapter 3: Inserting, Editing, and Selecting Data

81

companies

company_id | company_name address

1 Big Co Company 1121 43rd St

2 Little Co Company | 4444 44th St
contacts
contact_id | company_id | Name Title Phone Email
1 1 Jay Greenspan | Vice President | 4155551212 | 1121 43rd St
2 1 Brad Bulber President 4155552222 | 4444 44th St
3 2 John Doe Lacky 2125556666 | 4444 44th St

Figure 3-11: Tables in need of a join

Making this join is easy enough in SQL. All the tables to be joined must be listed
in the from portion of the select statement. And the fields on which the join takes
place must be listed in the where portion:

select *
from companies, contacts
where companies.company_id = contacts.company_id;

At those times when a reference to a field name is ambiguous, you need to spec-
ify which table the column comes from by using the syntax table_name.
column_name. You can do this in the where clause in Figure 3-12. If you fail to
indicate the table from which you're pulling the column in the SQL statements,
MySQL will return an error.

This type of join, in which tables are merged based on quality in a common field,
is extremely common. It is known as an equi-join or inner join. The name “inner
join” will make more sense when you learn about the outer join later in this chapter.

Once you begin performing joins, aliases become convenient. By specifying an
alias in the from clause you can save yourself some typing. In the following code,
t1 is an alias for companies and t2 is an alias for contacts.

select *
from companies tl, contacts t2
where tl.company_ID = t2.company_ID;

The multi-table join

An equi-join can be applied to more than one table. Many of your SQL statements
will join three, four, or more tables. All you'll need to do is add additional columns
after select, additional tables in the from clause, and the additional join parameters
in the where clause. Take a look at the tables that need multiple joins in Figure 3-13.

82

Part 1: Working with MySQL

<3 http://192.168.1.1/bookich3_functions.php?query=selectsfname,+Iname,+companies.co... [HEE
J Eile Edit ¥Yiew Favorites Tools Help g
JAddrESS I@ m+companies°/°2E+contacts+where+companies.company_lD+°/°3D+contacts.company_le @ Go |J Links
& .2 .0 [0 4A4lQ M@ 3 B9 #HA.
Back Fanward Stop Refresh Home Search Favortes History il Frint Edit
] =
query: select fname, Iname, companies.company_ID, company_name, company_address
from companies, contacts where companies.company_ID = contacts.company_ID
ﬁlame| Iname ! p _]D! p _n.ame! ipany_address
i'ay |greenspa.n|1 |big COTH AT |555 Sthost
brad |bulger |2 |]ittle Ot AT |6666thst
| Submit Queny |
[
Astet] €29 G [el w [BeleTIFI BLPLD 157 M

Figure 3-12: A basic join

If you want to find the addresses for all the companies with offices in California
and that have expertise in consulting, you have to join all four of these tables. The
following query gets the job done. Here the where clause contains quite a few tests:
The first two lines of the where clause limit the rows that will be returned to those
companies that match your criteria. The remainder of the where clause takes care of
the joins.

select *

from companies, locations, expertise, companies_expertise

where state = '"CA' and
companies_expertise.expertise ID = 3 and
companies.company_ID = companies_expertise.company_ID and
companies.company_ID = Tocations.company_ID and
companies_expertise.expertise_ID = expertise.expertise_ID

The outer join

The challenges presented by null values have shown themselves repeatedly in this
book. In Chapter 2, we presented Tables 2-1 and 2-2, which we're re-presenting
here as Tables 3-13 and 3-14.

Chapter 3: Inserting, Editing, and Selecting Data

83

company_id | name expertise_id | area
r1 IBM 1 Hardware
2 Xerox 2 Software
3 Sun 3 Consulting
company_id | expertise_id
1 1
1 2
1 3
2 1
2 3
3 1
3 2
]
location_id | company_id | address state
1 1 4 My Way, Durham NC
2 2 44 Circle Dr, New York NY
3 1 1 Front St, San Francisco CA
4 2 Park Dr, Palo Alto CA
5 2 48 Times Square, New York | NY
6 3 280 South, Sunnyvale CA

Figure 3-13: Tables in

need of multi

ple joins

TaBLE 3-13 THE CONTACTS TABLE

first_name

Jay
Brad

last_name

Greenspan

Bulger

fantasy_spouse_id

1
NULL

TaBLE 3-14 desired_spouse

fantasy_spouse_id

1

first_name

Nicol

e Kidman

last_name

84

Part 1: Working with MySQL

Now imagine that you need to get a list of the contacts and their desired spouses.
The equi-join shown in the previous section will not work in this case. Take the fol-
lowing query:

select *
from contacts, desired_spouse
where contacts.fantasy_spouse_id = desired_spouse.fantasy_spouse_id;

Only the first row of the contacts table will be returned. The null value in the
second row ensures that nothing can match the criterion in the where clause. In
cases like this, wherein you need to preserve one table and join the second table
when there are matching values, you can make use of the outer join (also known as
the left outer join), which looks like this:

select *

from contacts

left join desired_spouse

on contacts.fantasy_spouse_id = desired_spouse.fantasy_spouse_id;

This statement says, “I want to keep the entire contacts table, and tack on the
spouses table when these two fields are equal.” The word left in the term left outer
join refers to the fact that when you visualize your database tables, you should
visualize the first table, the one that appears in the from clause, on the left side, and
the joined table on the right.

7 |

Depending on the database package you're using, the syntax of the outer

join may vary. Some databases support left, right, and full (both left and

right) outer joins. MySQL only has the left outer join, but in practice that’s
usually all you need. You can either use the syntax in the previous query or
use left outer join on.

Outer joins will come up frequently out of necessity. Additionally, it is often
good practice to use outer joins even when you feel an inner join will do the trick.
It’s just a matter of being safe: You’d rather not have important rows of data come
up missing because you forgot to account for null values. Throughout the book you
will see occasions when we have used outer joins because we just wanted to be
extra careful.

There may come times when you will need to do more than one outer join. Say,
for instance (and for no particularly good reason), you wanted to store information
regarding spouses’ siblings. You'd add another table listing the siblings, and add a
column to the desired_spouse table, which maintains the relationship. So if you

Chapter 3: Inserting, Editing, and Selecting Data

85

were to design a query that maintained everyone in the contacts table and every-
one returned from the spouses table, you'd have to throw in two outer joins:

select *

from contacts

left join desired_spouse on contacts.spouse_id =
desired_spouse.fantasy_spouse_id

left join on siblings desired_spouse.sibling_id =
siblings.sibling_id;

The self join

As bizarre as it may sound, the time will come when you’ll need to join a table to a
copy of itself. You'll usually run into the need to do this when looking for dupli-
cates in a table. If you had a sneaking suspicion that there was a bigamist in Table
3-15, how would you search out the two people with the same spouse?

TasLE 3-15 THE CONTACTS TABLE

contact_id first_name last_name spouse_id
1 Jason Fullman 1

2 Brad Bulger

3 John James 2

4 Elliot Simms 2

You would need to discover if the value in this spouse_id field was repeated (in
this case, the number 2 appears more than once). You could do a group by, but
then there would be no way of getting the names of the people involved. Using
group by along with the count () function, you could find the occasions on which
one person appears more than once, but it would take a second query to find out
who those people were. With a self join you can do it all in one step. But it needs to
be a carefully considered step.

You might think that the following query would do the trick. Notice that we
again use an alias, so that we have two table names we can address:

select tl.first_name, tl.Tast_name, t2.first_name, t2.last_name
from contacts tl, contacts t2
where tl.spouse_id = t2.spouse_id;

86

Part 1: Working with MySQL

But this is going to return more rows than we need. Specifically, each name will
match itself, providing duplicates of each returned entry. Given this query, when the
row for Jason is compared to itself, it will test true and be returned in the result.
You can eliminate redundancy here by ensuring that the contact_id field from the
first table is not equal to the contact_id field in the second table:

select tl.first_name, tl.last_name
from contacts tl, contacts t2
where tl.spouse_id = t2.spouse_id
and tl.contact_id != t2.contact_id;

This is good but not perfect. Take the example of Elliot and John. A row will be
returned when Elliot is in t1 and John is in t2; another will be returned when John
is in t1 and Elliot is in t2. The easiest way to address that problem here is to make
use of the numeric primary key. You know one ID will be greater than the other,
and by using that information you can get rid of all duplicates.

select tl.first_name, tl.last_name
from contacts tl, contacts t2
where tl.spouse_id = t2.spouse_id
and tl.countact_id < t2.contact_id;

Unions

Unions allow queries with the same number of columns to be returned in one result
set. For instance, if you have two tables storing user names, you can have all of the
names in one query returned with a statement like this:

select first_name, Tast_name
from table_1

union

select first_name, Tast_name
from table_2;

Correlated subqueries

Subqueries are a new feature in MySQL version 4.1. Their addition is welcome, par-
ticularly for developers with Oracle or PostgreSQL familiarity, who have been able
to use them all along,.

For those new to the concept, subqueries enable you to define an entire query in
the where clause. For example, if you have a table that stores students and their test
scores, you can easily find all the students with better-than-average test scores:

select first_name, Tast_name, score
from test_scores
where score > (select avg(score) from test_scores);

Chapter 3: Inserting, Editing, and Selecting Data

87

You can achieve the same effect by running two queries, storing the results of the
first query in program variables or a temporary table, and then using those results in
the second query. In most cases you can work around the absence of subqueries by
running additional queries. You lose some elegance, but the effect is identical.

Summary

You can get through the better part of your life without committing some portions
of SQL to memory. If you are using graphical tools you may not need to learn the
specifics of the create or alter commands. The same cannot be said of the insert,
update, delete, and select statements.

Everything covered in this chapter is really important to your life as an applica-
tions developer. The insert, update, and delete statements are what enable you
to have a database in the first place. They're what you need to add records, change
records, and remove records. The select statement enables you to efficiently
retrieve and sort information from your databases, and if you understand the intri-
cacies of the select statement you’ll be able to write applications more efficiently
and elegantly. And if you're able to combine all of those statements with effective
table-joining techniques, you're well on your way to managing data in MySQL
efficiently.

Part

Working with PHP

CHAPTER 4
Getting Started with PHP — Variables

CHAPTER 5
Control Structures

CHAPTER 6
PHP’s Built-in Functions

CHAPTER 7
Writing Organized and Readable Code

Chapter 4

Getting Started with
PHP — Variables

IN THIS CHAPTER

¢ Assigning variables within PHP scripts

¢ Handling data passed from HTML forms

¢ Working with PHP’s built-in variables, including Apache variables
® Testing for and assigning variable types

PHP MAKES WORKING with variables extremely easy. PHP is smart about under-
standing variable types and keeps the syntax to an absolute minimum. Those com-
ing to PHP from a C, Java, or Perl background may find PHP comparatively easy to
deal with, but the ease of syntax can present its own problems.

All variables in PHP start with a dollar sign ($). It doesn’t matter what kind of
variables they are, whether strings, integers, floating-point numbers, or even
arrays. They all look identical in the code. The PHP engine keeps track of the type
of information you are storing.

In general, variables will come from three places: They are either assigned within
a script, passed from an HTML page (often from form input), or are part of your
PHP environment. We'll talk about each of these in the following sections.

Assigning Simple Variables
Within a Script

PHP does not require explicit variable declaration. All you have to do is assign a
value to a variable and it exists. And as we already mentioned, all variable types
look identical. The following code shows how to assign values of string, integer,
and floating-point (double) types to variables:

$a = "this is a string"; //this is a string
$b = 4; //this is an integer
$c = 4.837; //this is a floating-point number

$d = "2"; //this is another string

91

92

Part 11: Working with PHP

Notice that the = is the assignment operator. For comparison, you must use two
consecutive equals signs (= =). For example, i f($x==1).

If you try to use a variable without having assigned a value to it, your code still
runs — treating the unheard-of variable as having a value of NULL —but PHP issues
a notice (an E_NOTICE level error message) warning you that the variable is unde-
fined. Since it’s best practice to make sure your variables have been initialized with
some value, even if it’s just NULL, this is a good reason to make sure your error
reporting levels are set to display or log all PHP errors, at least during development.

7 |

For more information about error reporting, see the Error Handling and
Logging Functions section of the PHP Manual (http://www.php.net/
errorfunc).

Typing is flexible, and PHP is pretty smart about handling changes in types. For
example, given the code you just saw, the following would evaluate as you'd prob-
ably hope:

$e = $b + $d;
echo $e;

PHP would recognize that you want to treat the string in $d as an integer. The
variable $e will be an integer type and will equal 6. In fact, PHP will also evaluate
the following as an integer:

$a = 2;
$b = "2 little piggies";
$c = $a + $b;

Here, $c will equal 4. If an integer or floating-point number is at the beginning
of a string, PHP can evaluate it as such. Similarly, PHP handles automatic conver-
sion sensibly as well, as seen in the following code:

$f = 2; //$f is an integer
$g = 1.444; // $g is a double (floating-point) type
$f = $f + $g; //$f is now a double type

PHP will also do type conversions when comparing two variables. This is a good
thing, because the most common values for a script, entries submitted from an
HTML form, always come in as strings. Here’s an example:

$a = '1.3";
if ($a == 1.3)
{

Chapter 4: Getting Started with PHP — Variables 93

echo "'"$a' is 1.3\n";
1
else
{
echo "'"$a' is not 1.3\n";

The result:
'1.3" is 1.3

If you need to make a strict comparison, where the types as well as the values
must match, you can use a triple equal sign (===) operator (or its inverse, !==). This
most commonly arises when you need to distinguish between 0, NULL, FALSE, and
an empty string, since in a normal comparison these will all be treated as equal. The
following code demonstrates:

$a = 0;
if ($a === 0)

echo "'$a' is 0\n"

echo "'"$a' is not 0\n";
1
if ($a === FALSE)
{
echo "'"$a' is FALSE\n";
1
else
{
echo "'$a' is not FALSE\n";

The result:

0" is 0
'0" is not FALSE

This kind of flexibility is nice, but it can lead to some difficulty. There will be
times when you're not sure what variable types you are working with. We’ll show
you how to deal with these circumstances in the section “Testing Variables” later in
this chapter.

94

Part 11: Working with PHP

Delimiting strings

In the preceding code, all the strings were surrounded by double quotes. You can
also delimit strings in PHP in two other ways. If you surround your strings with
double quotes, variables within the string will be expanded. For instance,

$my_name = "Jay";
$phrase = "Hello, my name is $my_name";
echo $phrase;

will print “Hello, my name is Jay”. But if you want to include any of the follow-
ing characters within your string, they must be escaped with backslashes:

¢ Double quotes (")
€ Backslash (\)
@ Dollar sign ($)

For example, to print an opening form tag using double quotes you would have
to do the following:

echo "<form action=\"mypage.php\" method=\"get\">";

You can also surround strings with single quotes ('). If a string is within single
quotes, variables will not be expanded. So this code —

$my_name = "Jay";
echo 'Hello, my name is $my_name';

—will print “Hello, my name is $my_name”. The only characters that need to be
escaped within single quotes are single quotes and backslashes.

The flip side of this is that variable references will not be expanded inside single
quotes. If we repeat the first example in this section with single quotes:

$my_name = 'Jay';
$phrase = 'Hello, my name is $my_name';
echo $phrase;

PHP prints out “Hello, my name is $my_name”.

Since PHP knows that it does not have to parse a single-quoted string for vari-
able references, it’s marginally faster to use single-quotes to delimit constant val-
ues in your code. In recent releases, however, the performance difference between
the two styles has shrunk to insignificance. So it’s a matter of your personal prefer-
ence, and of which style is most convenient for what you're trying to do.

Chapter 4: Getting Started with PHP — Variables

95

Finally, you can also make use of heredoc syntax to delimit strings. The heredoc
syntax can be thought of as a hybrid of the single- and double-quote styles that
can be convenient in many circumstances. Heredoc text is delimited at the start of
the string with three less-than signs (<<<) and an identifier. An identifier must con-
tain only numbers, letters, and underscores and begin with either a letter or an
underscore; in the book we use the identifiers E0Q and EOT. The text is terminated
with the same identifier followed by a semicolon (;), on the left margin of the code.
This is important to remember — heredoc terminators must not be indented, and the
terminator and semicolon must be the only characters on the line, with no spaces
before or after the semicolon. In the following code, $my_string is a string prop-
erly delimited using heredoc syntax.

$my_string = <<<EOQ
My string is in here.
EOQ;

If you use heredoc syntax, variables are expanded and double quotes do not
need to be escaped. We make frequent use of the heredoc syntax when working
with form elements, as is the case here:

$element = <<KKEO0Q

{textarea name="$name" cols="$cols" rows="$rows"
wrap="$wrap">$value</textarea>

EQ0Q;

In a case like this we don’t need to litter the string with backslashes, and we still
get the convenience of having variables expanded within the string.

Note that when using heredoc syntax your file format should match the operat-
ing system it runs on. PHP is expecting a newline character as defined by the oper-
ating system to be the last character before the beginning of the heredoc terminator,
and for the terminator and a semicolon to be the only characters on their line. It
will produce an error if it is not. Unix-based operating systems (which includes Mac
0S X) use a newline character (\n) to terminate lines, while classic Mac (OS 9 and
earlier) files use a carriage return (\r), and DOS and Windows files use both (\n\r).
Editing your files on one operating system and running them on a different one can
cause difficult-to-diagnose errors. Most text editors enable you to save as a Unix
file type, and if you are running your scripts on a Unix server, choosing that option
saves you a lot of trouble.

If you want to reference an element in an associative array, an object prop-

erty, or make any other kind of variable reference that could be interpreted
ambiguously, you should enclose the variable in curly braces, like so:

$array = array ("fname"=>"jay", "lIname"=>"greenspan");
$fields = <<KKEOQ

96

Part 11: Working with PHP

The value in array of 'fname' is {$arrayl['fname']l}
EOQ;
foreach ($array as $key => $value)
{
$fields .= <<KKEOQ
['"]<input type="text" name="{$key}_ value"
value="$value">
EOQ;
}

Assigning arrays within a script

Arrays are variables that contain multiple values. For example, a simple array might
store the months of the year. To assign this array, you could use the following:

$months = array("January", "February", "March", "May", "June",
"July", "August", "September", "October", "November", "December");

This array has 12 elements, and you can address them by their order in the array,
starting with 0. So the command echo $months[0] would print “January” and
echo $months[11] would print “December”. To print out all the values within an
array, you could get the length of the array and then set up a loop, as follows:

$months = array("January", "February", "March", "May", "June",
"July", "August", "September", "October", "November", "December");
for ($i=0, $mcount=count($months); $i<$mcount; $i++)
{

echo $months[$i] . "
\n" ;

The for loop is explained in Chapter 5.

You can also assign values to arrays with a simple assignment operator. The fol-
lowing would work:

$dogs = array();
$dogs[0] = "shepherd";
$dogs[1] = "poodle";

Chapter 4: Getting Started with PHP — Variables 97

If you don’t specify an index value, the value will be tacked onto the end of the
array. The following line would assign "retriever" to $dogs[2].

$dogs[] = "retriever";

A variety of functions work with arrays. Many of these are covered in
Chapter 6.

Like many programming languages, PHP makes use of associative arrays. If you
are new to the concept, elements in associative arrays have keys that reference indi-
vidual elements. (In fact, all array values have keys. The difference with an associa-
tive array is that the keys are meaningful and can be strings as well as integers,
whereas in a simple list array, they represent only the position of the value in the
array.) Keys are particularly important when you're dealing with databases. When
you fetch rows from your database query you will usually refer to the elements by
their keys.

You can assign an associative array by using keys. Here, first_name,
last_name, and email are the keys:

$person = array (
"first_name" => "Jay",
"Tast_name" => "Greenspan",
"email" => "jgreen_l@yahoo.com"
)s

If you wanted to add to this array, you could assign another value. Notice that
the next line would add an integer to the array, so this array would then contain
four values - three strings and one integer:

$person['age'] = 32;

Typically, if you wanted to access both the keys and the values in an associative
array, you would use the Tist()=each() construct or the foreach() loop. Here are
some examples:

while (list($key, $value) = each($person))
{
echo "key: $key, value = $value
\n";

98

Part 11: Working with PHP

Chapter 5 describes the 1ist()=each() construct in more detail. Basically,
each() pulls the key and value of a single array element; 1ist() takes those val-
ues and assigns them to $key and $value, respectively. This process continues until
each element in the array has been accessed. If you want to go through the array a
second time, you will need to reset the array pointer with reset($person).

If you wanted to get only the value without the key, or if you were using a non-
associative array and wanted to use the 1ist()=each() structure, you would have
to do this:

while (1ist(, $value) = each($person))
{
echo "value = $value
\n";

Or, if you wanted to get at just the keys, you could do this:

while (list($key) = each($person))
{
echo "key = $key
\n";

You can also cycle through arrays using the foreach() loop. The following will
print out the keys and values for each element of the $person array:

foreach($person as $key=>$value)
{
echo "key = $key; value = $value
\n";

And the following will print out just the values of array elements:
foreach($person as $value)

{
echo "value = $value
\n";

With foreach() there’s no need to reset the array pointer after looping through
the array. It is also appreciably faster than the 1ist()=each() syntax.

Think about PHP arrays this way: All arrays are associative. A couple of pages

back you saw that you can assign a basic array without specifying associa-
tive keys. For example, $myarray= array ("pug", "poodle").When
this is done, PHP assigns $myarray consecutive numeric keys starting at 0.

Chapter 4: Getting Started with PHP — Variables

99

They behave just like associative keys. You step through them using
Tist()=each() or foreach().They make use of the same array func-
tions, many of which are explained in Chapter 6.

Assigning two-dimensional arrays in a script

PHP also supports multidimensional arrays. The most commonly used multidimen-
sional array is the two-dimensional array. Two-dimensional arrays look a lot like
tables. They store information that is based on two keys. For instance, if you
wanted to store information on more than one person, a two-dimensional array
would work well. You would assign an array named $people, which would contain
individual arrays addressing each person:

$people = array (
"jay" => array (
"lTast_name" => "greenspan",
"age" => 32
),
"john" => array (
"last_name" => "doe",
"age" => 52

)

Here the $people array contains information on two people, Jay and John. To
access information on any single value, you would need to use both keys. To print
out John’s age, the following two commands would work:

echo $peoplel['john'J['age']; //prints 52

You could access all of the elements in a two-dimensional array by looping
through both of the array’s dimensions:

foreach ($people as $person => $person_array)
{
echo "What I know about $person
\n";
foreach ($person_array as $person_attribute => $value)
{
echo "$person_attribute = $value
\n";

100

Part 11: Working with PHP

Accessing Variables Passed
from the Browser

The whole point of using PHP, or any other middleware package for that matter, is
to deliver customized information based on user preferences and needs. Often, the
information will come via HTML forms. But information can come from other
places, including HTML anchors, cookies, and sessions.

HTML forms variables

One of the most common ways in which variable information is delivered is
through HTML forms.

Appendix B presents detailed information on creating HTML forms. Refer to
that appendix before you read this section if you are unfamiliar with this
topic.

For each of your form elements you have to assign name and value attributes
(name and value are settings defined in HTML code). When the form is submitted,
the name/value pairs are passed to PHP. They can be passed to PHP by either the
GET or POST methods, depending on what you chose in the METHOD attribute of your
<{FORM> tag (the default is GET).

In older versions of PHP (prior to PHP 4.2), once a form was submitted, the form
elements automatically become global variables in PHP. (Global variables and vari-
able scope are discussed in Chapter 7). Consider the following simple HTML form:

<form action="mypage.php" method="POST">
<input type=text name=email>
<input type=text name=first_name>
<input type=submit name=submit value=add>
</form>

Once the user hit the Submit button, variables named $email, $first_name, and
$submit were made available in the called PHP page. Listing 4-1 is a brief example
of how scripts were usually written for PHP versions 4.1 and lower. (Assume the
name of the page is mypage.php.)

Listing 4-1: Common Variable Use in Older Versions of PHP
<?php
if (isset($submit) && $submit=="yes")

{
echo "thank you for submitting your form.";

Chapter 4: Getting Started with PHP — Variables

101

else

?>
<form action="mypage.php" method="POST">

<input type="text" name="email">

<input type="text" name="first_name">

<input type="submit" name="submit" value="yes">
</form>

<?php
}
?>

On his or her first visit to this page the user would be presented with a form.
Once the form was submitted and the page had recalled itself with the new variable
information, only the “thank you” message would appear. There was, however, a
major problem with the global variables that came from forms. Even the code in
Listing 4-1, which is about as simple as scripting gets, demonstrates this problem.

The user-entered variables should come to the PHP script by way of the POST
method — not by way of GET. However, if a user wanted to see the “thank you” mes-
sage without entering anything into the form elements, he or she could simply tack
some information onto the URL typed into the browser. For example:

http://localhost/mypage.php?submit=yes

In older versions of PHP, when the PHP engine encountered the submit variable in
the querystring, it would automatically register the variable as a global and thus the
test at the beginning of this script—if (isset($submit) && $submit=="yes")—
would be true.

Many programmers wrote applications that took advantage of the global vari-
ables and unintentionally made their scripts vulnerable to attacks. We won'’t get into
the details of the exploits here; it’s enough to mention that, even if you have the
opportunity, you should not be using global variables that come from form ele-
ments. Instead you should use a series of arrays that contain variables sent via HTTP.

In PHP 4.2 and higher you can opt to have GET, POST, session, and cookie

variables available as globals by altering the register_globals item in

the php.ini file. Current versions of PHP default to a setting of of f, meaning
that HTTP variables will not be available as globals. In most circumstances
you should keep this setting the way it is. However, if you are running older
scripts that you don't have time to change, you may have to alter this setting.

102

Part 11: Working with PHP

In PHP versions 4.2 or later, you should be getting your form data via the super-
global (so called because they are globally available without ever having to be
declared as global) array variables $_POST and $_GET, depending on the method
used in your form. You can also use the $_REQUEST variable, which is a combina-
tion of GET, POST, and cookie values.

To add a bit more security to the previous listing, you could rewrite Listing 4-1
to look like Listing 4-2:

Listing 4-2: Simple Script That Does Not Use Globals

if (isset($_POST['submit']) && $_POST['submit'J=="yes")
{
echo "thank you for submitting your form.";
}
else
{
7>
<form action="testl.php" method="POST">
dinput type="text" name="email">
<input type="text" name="first_name">
dinput type="submit" name="submit" value="yes">
</form>

<?php
}

You can access any individual element as you would an element in any associa-
tive array ($_POST ['email']). Or you can loop through all the contents of an
array as follows:

foreach ($_POST as $key => $value)
{
echo "variable = $key value = $value
";

Passing arrays

Sometimes passing scalar variables won't be enough, and you’ll need to pass arrays
from your HTML page to your PHP script. This will come up when the user can
choose one or more form elements on a page. Take, for example, multiple select
boxes, which enable users to pass one or more items from a number of items. The
form element is made with the HTML in the following code example. The multiple
attribute indicates that the user can choose more than one element, as shown in
Figure 4-1. To choose more than one element on the PC, hold down the Ctrl key
while selecting additional values. On the Mac, use the Apple key. Gnome users can
select and unselect individual elements with a click.

Chapter 4: Getting Started with PHP — Variables

103

<form action="mypage.php" method="POST">
<select name="j_names[]" size="4" multiple>
<option value="2">John
<option value="3">Jay
<option value="4">Jackie
<option value="5">Jordan
<option value="6">Julia
</select>
<input type="submit" value="submit">
</form>

3 D:'Work-edrive\book\ch4'forfig1.html - Microsoft Internet Explorer
JEiIe Edit View Favorites Tools Help | o

| Address [&] D:\work-sdiive\book'ch-#4arfigl. himl x| @6e |JLinks B
j) W @ Gd S| B gl
Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

Jack l
Jdan ;I

=

Astart| G2 DG @R A || 8w o HBBedvd LB 313aM
Figure 4-1: Multiple select boxes

Notice that in the select name attribute we've added opening and closing brack-
ets ([1). This tells PHP to expect an array. If we didn’t include the brackets, two val-
ues might end up fighting for the same variable name, and that’s no good at all.

Once it has been submitted you can address this array like any other two-
dimensional array:

if (is_array($_POST['j_names']))
{
echo "the select values are:

";

foreach ($_POST['j_names'] as $value) {

104 Part 11: Working with PHP

echo $value . "
\n";

Passing arrays can also be useful when you want to present a series of check-
boxes that the user may or may not check before pressing the Submit button.
Chapter 8 contains a code example for a page that enables the program’s adminis-
trator to use checkboxes to select which entries should be deleted. Figure 4-2 shows
a sample of this type of page. If you were to assign a different name to each check-
box, you would have to check each one individually. With arrays, you can write a
three-line loop to check them all.

4} Edit The Guest Book - Microsoft Internet Explorer
JEiIe Edit Yiew Favorites Tools Help |

JAddreSS I@ hittp: #4192, 1681 .1 /boak./questhook 2k fedit. php Poffzet=0 j @ Go |J Links *
J L2 .9 o | QA @ @ B
Back Fanward Stop Refresh Home Search Favortes History il Frint Edit
. =
Fdit The Guest Book

| Name: |Iay Greenspan

Entry date:

| Email: ljgreen_l@yahoo.com

| Delete? | [T Yes, delete entry #1
|
|

Name: |Iay Greenspan
Entry date:
| Email: ljgreen_l@yahoo.com —
| Delete? | [T Yes, delete entry #2
|

Delete Entries | Resetl

star| | € €9 E W 3 || Ge) BBl §LLDE .41 AM

Figure 4-2: Series of checkboxes

[

Arrays passed from forms can also have associative keys, which can be multidi-
mensional. The name of the form element should take the form name=
"array_namelelement_name]”. Or, for a multidimensional array, name="array_
namelelement_namellsubelement_name]l".

Cookies

Cookies are small pieces of information that are stored by a user’s Web browser.
Some are kept in memory and discarded after a short time, and others are written to
the user’s hard drive for long-term use. Once a Web browser has accepted a cookie

Chapter 4: Getting Started with PHP — Variables

105

from a server, it resends the same cookie to its owner(s) on each HTTP request until
the cookie expires or is deleted. Cookies provide the only way to keep track of users
over the course of several visits. Remember that the Web is a stateless environment.
Your Web server really has no idea who is requesting a page. Cookies help you keep
track of users as they move around your site.

When they exist, cookies become part of the HTTP request sent to the Web
server. But first you'll need to set a cookie. The PHP developers have made this, like
everything else in PHP, exceedingly simple. Use the setcookie() function. This
function takes the following arguments:

setcookie(name [, value [, time_to_expire [, path [, domain [,
security settingl]111);

We will discuss this function in more detail in Chapter 6, but for now, suffice it
to say that the following statement —

setcookie("mycookie",
"my_id",time()+(60*60*24*30),"/"," .mydomain.com", 0)

—would set a cookie with the following parameters:

& Stores a variable named my_cookie
@ The value of mycookie is "my_id".

¢ The cookie will expire 30 days from the time it is set (current time plus
the number of seconds in 30 days).

¢ The cookie will be available to every page in the domain. (You could
restrict it to a specific path within a domain by including a path.)

¢ The cookie will be available to every site with a mydomain.com address.

@ There are no special security settings.

Once the cookie is set, you can retrieve cookie values through the $_COOKIE
superglobal array variable. The value of the cookie set with the previous
setcookie() function is available as $_COOKIE['mycookie"].

You can also set cookies that are accessible as arrays:

setcookie("mycookiel[first]",
"dddd",time()+2592000,"/","192.168.1.1", 0);
setcookie("mycookiel[second]",
"my_second_id",time()+2592000,"/","192.168.1.1", 0);

These two variables would be accessible as associative arrays within the
$_COOKIE array.

106

Part 11: Working with PHP

The preceding code works fine on Internet Explorer 5 on the PC. However, it

might not work on other browsers. In any case, you are probably better off

ol

Sessions

PHP, like ASP and ColdFusion, natively supports sessions, only it does a much bet-
ter job. What's a session? Basically, it’s another means of maintaining state between
pages. Your script declares that a session should start by accessing the $_SESSION
superglobal variable (you can also use the older-style session_start() function).
At that point PHP registers a unique session ID, and usually that ID is sent to the
user via a cookie. PHP then creates a corresponding file on the server that can then
keep track of any number of variables. The file has the same name as the session ID.

Once the session is created, you can register any number of variables. The values
of these variables are kept in the file on the server. As long as the session cookie
lives, these variables will be available to any page within the same domain that
wishes to access them. This setup is much more convenient than sending variables
from page to page through hidden form elements or bloated cookies.

Of course, it is possible that some users will not allow cookies. For this reason,
PHP enables you to track the session ID through the querystring. You can do this
manually by appending the session ID to the querystring, or by changing the
session.use_cookies value in your php.ini file to equal 1.

The constant SID is predefined as “session-name=session-ID". To add it to the
querystring manually, use <?php echo SID; ?>. This automatically prints out a
string like this:

avoiding situations that require arrays within cookies.

PHPSESSID=07d696c4fd787cd6c78b734fb4855520

Adding this value to a link will cause PHPSESSID to be passed via the query-
string. Use something like this:

<a href="mypage.php?<?php echo SID; ?>">click to page

The following script will register a session variable named my_var, and will
assign it a value of "hello world".

<?
$_SESSION['my_var']l = "hello world";
7>

On subsequent pages, you are able to access this by simply referring to
$_SESSION[L 'my_var"'].

Chapter 4: Getting Started with PHP — Variables

107

It can take a little work with if statements to make your session variables prop-
erly accessible. Look at the short script in Listing 4-3 for an example.

Listing 4-3: Code Using Sessions
<?php

//check to see if $_SESSION['your name'] contains anything
if (lempty($_SESSION['your_name']))
{
//this portion will run the first time to
//this page.
echo "I already know your name," , $_SESSION['your_name'];
}
else
{
if (empty($_POST['submit']))
{ echo "<form name=myform method=post action=$PHP_SELF>
<input type=text name=first_name> first name

<input type=text name=last_name> Tast name

<input type=submit name=submit value=submit>
</form>™;

}

else

{
//if the form has been submitted, this portion will
//run and make an assignment to $_SESSION['your_name'].
$_SESSION['your_name'] = "$first_name $last_name";
echo "Thank you, {$_SESSION['your_name'l}";

}
7>

After running this code, hit Refresh on your browser. You will see that the script
remembers who you are.

TIP If your script sends anything to the browser prior to setting a cookie — even
‘@% so much as a blank line at the end of an included file — you will get error
N\
NS

messages. So if you are setting cookies manually, or using cookies to store

your session ID, you should make sure that either that part of your code is at
the very top of your script file or use the output-buffering functions to keep
your script from sending anything to the browser until you're ready.

108

Part 11: Working with PHP

Using Built-In Variables

A variety of variables are set by your server and PHP environment. You can find a
complete list of these variables by running phpinfo(). If you haven’t done it yet,
go to your keyboard, run the following script:

<?php
phpinfo();
?>

This script delivers a page listing these variables.

o

You can use this variety of variables in a variety of ways. We’ll take a look at
some of these variables now, and show you where and when you might use them.
Some variables come from the PHP engine, while others originate from your Web
server.

PHP variables

Many of the most useful values supplied by PHP are available as keys of the
$_SERVER superglobal.

It's a good idea to delete this page when you're done with it. No need to
give crackers any more information than absolutely necessary.

$_SERVER[‘PHP_SELF’]
The relative path of the script being run. This is very helpful when a form is both
presented and processed in the same PHP page.

<?
if(isset($_POST['submit']))
{
//do some form processing here
echo "thanks for the submission";
} else |
7>
<form name="myform" method="POST" action="<?php echo $PHP_SELF; ?>>
<input type="text" name="first_name"> first name

<input type="text" name="last_name"> Tast name

<input type="submit name="submit" value="submit">
</form>

Chapter 4: Getting Started with PHP — Variables

109

<?
}
7>

Keep in mind that PHP_SELF always refers to the name of the script being exe-
cuted in the URL. So in an include file, PHP_SELF will not refer to the file that has
been included; it will refer to the script being run.

It’s worth noting that PHP_SELF behaves strangely when PHP is run on Windows
or as a CGI module. Make sure to look at phpinfo() to see the value of $PHP_SELF
on your system.

$_SERVER[‘HTTP_HOST’]

Returns the domain of the host serving the page.

$_SERVER[‘REMOTE_ADDR’]

Returns the IP address of the host serving the domain.

$_SERVER[‘DOCUMENT_ROOT’]
Returns the path of the document being accessed, relative to the root directory of
the filesystem.

$_SERVER[‘REQUEST_URT’]

Very similar to PHP_SELF, except that querystring information is maintained in this
variable. So if you were visiting http://www.mydomain.com/info/products/
index.php?id=6, $ SERVER['REQUEST_URI'] would equal /info/products/
index.php?id=6.

-"p'(See your phpinfo() page for a full list of PHP variables.
,3 i/

!

N A

Apache variables

Apache keeps track of dozens of variables. We can’t include a complete list of them
here, as the variables you use will vary depending on your current setup. Here are
some of the ones you might use frequently in your scripts.

As you look at this list and phpinfo(), keep in mind that if you are not getting
what you want out of your Web server variables, you will need to make changes to
your server configuration, not PHP. PHP just passes the information along and can-
not alter these variables. There is also a fair amount of overlap between PHP and
Apache variables. These are also available as keys of the $_SERVER array variable.

110

Part 11: Working with PHP

$_SERVER['DOCUMENT_ROOT’]

Returns the full path to the root of your Web server. (For most Apache users this
directory will be something like /path/to/htdocs.) We use this variable throughout
the book to make our applications portable. Take this include statement as an
example:

include("{$_SERVER['DOCUMENT_ROOT"']}/book/functions/charset.php");

By using the $_SERVER['DOCUMENT_ROOT"] variable instead of an absolute path,
we can move the book directory and all its sub-folders to any other Apache server
without worrying that the include statements will break. Keep in mind that if you
are using a Web server other than Apache, $_SERVER['DOCUMENT_ROOT'] may not
be available.

TIP If you set the include_path directive in your php.ini file, you will not need
‘M to worry about specifying any path in your include statement— PHP will
N\
]

look through all the directories you specify and try to find the file you

indicate.

$_SERVER[‘HTTP_REFERER’]

Contains the URL of the page the user viewed prior to the one he or she is currently
viewing. Keep in mind when using $_SERVER['HTTP_REFERER'] that not every
page request has a referrer. If the user types the URL into a browser, or gets to your
page via bookmarks, no referrer will be sent. This variable can be used to present
customized information. If you had a relationship with another site and wished to
serve up a special, customized header for only those referred from that domain, you
might use a script like this:

//check if my user was referred from my_partners_domain.com
if(ereg ("http.*my_partners_domain.com.*"
$_SERVER['HTTP_REFERER']))
{

include'fancy_header.php';
Jelse(

include 'normal_header.php';

Keep in mind that $ SERVER[‘HTTP_REFERER'] is notoriously unreliable.
Different browsers serve up different values in certain situations. It is also easily
spoofed. So you wouldn’t want to use a script like the preceding to serve any secure
information.

Chapter 4: Getting Started with PHP — Variables

111

$_SERVER[‘HTTP_USER_AGENT’]

Anyone who has built a Web page knows how important browser detection is.
Some browsers will choke on fancy JavaScript, and others require very simple text.
The user_agent string is your key to serving the right content to the right people.
A typical user_agent string looks something like this:

Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)

You can then parse this string to get what you are looking for.

You may be interested in PHP’s get_browser() function. Theoretically, this
function will determine the capabilities of your user’s browser so you can find out
if your script can safely serve out, for example, frames or JavaScript. The PHP
manual has instructions for installation and use of get_browser(), but we do not
recommend using it. Why? Using get_browser() you will be told that both
Internet Explorer 5 for the PC and Netscape Navigator 4.01 for the Mac support CSS
(Cascading Style Sheets) and JavaScript. But as anyone with client-side experience
knows, writing DHTML that works on both of these browsers is a major task (and a
major pain). The information you get from get_browser() can lead to a false sense
of security. You're better off accessing $_SERVER['HTTP_USER_AGENT'] and mak-
ing decisions based on the specific browser and platform.

$_SERVER[‘REMOTE_ADDR’]

The IP address of the user that sent the HTTP request. $_SERVER['REMOTE_ADDR"]
is easily spoofed and doesn’t necessarily provide information unique to a user. You
might want to use it for tracking, but it should not be used to enforce security. On
some servers — notably the default Apache installation shipped with Mac 0S X —
this is available as $_SERVER['HTTP_PC_REMOTE_ADDR"'] instead.

$_SERVER[‘REMOTE_HOST’]

The host machine sending the request. This has a value only if your server is
configured to do reverse DNS lookups, something that is commonly turned off for
performance reasons. When 1 dial it up through my ISP (att.net),
$_SERVER['REMOTE_HOST'] looks like this: 119.san-francisco-18-19rs.ca.
dial-access.att.net.

$_SERVER[‘SCRIPT_FILENAME’]
Contains the filesystem’s complete path to the file.

Other Web server variables

As mentioned earlier, phpinfo() is your friend. We developed applications for this
book on Unix systems running Apache Web servers. But, as PHP runs on a variety
of operating systems and Web servers and MySQL runs on Windows as well as
Unix, you should be aware of the different variables associated with whatever Web
server and operating system you're running.

112

Part 11: Working with PHP

You'll see that the files imported into in our applications via include statements
make use of the DOCUMENT_ROOT Apache variable. If you were to attempt to move
the application files to a server other than Apache on Windows, you would get an
error in the include statements. The better choice when using Microsoft’s Personal
Web Server is the $APPL_PHYSICAL_PATH variable.

Testing Variables

At the start of this chapter, we showed that assigning data to a variable determines
the variable type. The appearance of the variable gives no indication as to what the
variable contains. If you see $var sitting in a script you'll have no idea if it con-
tains a string, an integer, a floating-point number, or an array. In fact, many times
in your scripts you won’t be sure if the variable contains a value, or even if it exists
at all. For all these reasons, you need to perform tests. The following sections
describe the types of tests you can perform.

isset()

This function tests whether a variable has any value, including an empty string. It
returns a value of either TRUE or FALSE. If the variable has not been initialized or
has been set to NULL, isset () will return FALSE. In code snippets throughout this
chapter we showed the use of isset() to test whether the script was encountering
a submitted form.

If you wish to destroy a variable, use the unset () function.

empty()

The empty() function overlaps somewhat with the isset() function. It returns
TRUE if a variable is not set, is an array with no elements, or has a value of "" (an
empty string), 0, NULL, or FALSE. It is useful for, among other things, processing
form data. If you want to determine if the user has put something in a text field, for
example, you might try something like this:

if ($_POST["first_name"] == "")

{
echo "Please enter your first name. It is a required field";
exit;

However, PHP complains that first_name is an undefined index value. That’s
because if you leave a text field on a form blank, nothing is submitted by the form
for that field. So no entry with the field’s name exists in $_P0ST. But the empty ()
function enables you to check for things that aren’t there:

Chapter 4: Getting Started with PHP — Variables

113

if (empty($_POST['first_name']))

{
echo "Please enter your first name. It is a required field";
exit;

}

is_null()

Starting in version 4.2, PHP supports the NULL variable type. Most often you will be
using NULL when examining data returned from a database.

is_int()

This function tests whether a variable is an integer. It has two synonyms: is_
integer() and is_long(). You may need this function to troubleshoot a script
when you're not sure whether a variable is an integer or a string containing numerals.

$a = "222";
$b 22;

Given these two variable assignments, is_int($a) would test FALSE and
is_int($b) would test TRUE.

is_double()

This function tests whether a variable is a floating-point (or double) number. It has
two synonyms: is_float() and is_real().

is_string()

This function tests whether a variable is a text string.

is_array()

This function tests whether a variable is an array. It is used frequently in the course
of this book. A good example can be found in Chapter 6, in the discussion of the
implode() function.

is_bool()

This function tests whether a variable is Boolean (contains either TRUE or FALSE).
Note that the following examples are not Boolean:

$a
$b

"TRUE";
"FALSE";

114

Part 11: Working with PHP

In Chapter 6 you will see a variety of functions that return FALSE on failure. In
these, FALSE is a Boolean value.

is_object()

Returns TRUE if the variable is an object. See Chapter 7 for a discussion of objects
and object-oriented programming if you don’t know what an object is.

is_resource()

Returns TRUE if the variable is a resource. An example of a resource variable is the
connection value returned by mysql_connect().

is_scalar()

Returns TRUE if the variable is of any type other than array, object, or resource.

gettype()

This function will tell you the type of variable you have. It will return the expected
values (string, double, integer, array, boolean, or resource), and it can also
return types related to object-oriented programming (object). You can find more
information on PHP object-oriented programming in Chapter 7.

Note that gettype() returns a string. So in the following example, the condi-
tional would test as true and print “Yes”:

$str = "I am a string";
$type = gettype($str);
if ($type == "string")
{

echo "Yes";
}

Changing Variable Types

You can change the type of any variable in three ways.

Type casting

You can change the variable type by placing the name of the variable type you
require in parentheses before the variable name:

$a = 1;
$b (string) $a;

Chapter 4: Getting Started with PHP — Variables

115

echo gettype($a), "
\n";
echo gettype($b), "
\n";

This code would print

integer
string

Using this method you can cast a variable as an array, a double, an integer, or,
as in the preceding code, a string. Casting to type object is less reliable.

Using settype()

This function takes two arguments. The first is a variable name. The second speci-
fies the variable type. The advantage of using this function over casting is that
settype() will return a value of FALSE if the conversion fails, while there is no
way to detect a failed casting. This function can take the same types as listed in

type casting.

$a = 1;
settype($a, "string");

intval(), doubleval(), and stringval()

Finally, if you don’t have enough ways to evaluate variable types, use one of these
functions. They do not actually change the type of the variable, but return a value
of the specified type. So in the following examples, you can be sure $a will be
treated like an integer:

$a = |l43ll;
$b (intval($a) * 2);

Variable Variables

PHP includes variable variables, which, in the wrong hands, could be used to write
the most incomprehensible code imaginable. Variable variables enable you to take
the contents of a variable and use them as variable names. Two consecutive dollar
signs let PHP know to take the value of the variable and use it as a variable name.
The following creates a variable name $foo with a value of “bar”:

$a = 'foo';
$$a = 'bar';

116

Part 11: Working with PHP

In the context of a database application, variable variables might be used to cre-
ate a series of variables against which you compare other variables. In the follow-
ing example, $firstrow is an associative array:

$firstrow = array ("firstname"=>"jay", "lastname"=>"greenspan");
foreach ($firstrow as $field => $value)
{
$field = "first_{$field}";
$$field = $value;
}
echo $first_firstname, " ", $first_lastname;

When your script runs through the foreach loop, the following variables would
be created and printed:

$first_firstname = "jay"
$first_lastname = "greenspan"

Summary

If you read this chapter attentively (or even if you didn’t) you should have a pretty
good idea of how to work with PHP variables.

PHP does a better job than any scripting language of making variables easy to
access and process. If you want to get a feel for how PHP variables are used, take a
look at Chapter 8, which contains the first application in the book. There, many of
the functions and concepts presented here are put to work. By flipping back and
forth between this chapter and those scripts, you will see how variables are used
and how scripts come together.

One very important point: This chapter did not discuss variable scope, which is
an important topic. See Chapter 7 where we discuss functions, for an explanation
of this topic.

Chapter 5

Control Structures

IN THIS CHAPTER

¢ Understanding the syntax of if statements
¢ Determining true and false values with PHP
¢ Learning PHP loops

¢ Choosing loops to use in your scripts

CONTROL STRUCTURES ARE the building blocks of programming languages. PHP has
all the control structures needed to make a language work. If you're familiar with C
or Perl, none of the features we discuss in this chapter should come as much of a
surprise. However, if you're approaching PHP from a background in VBScript or
Visual Basic, the syntax will probably be different from what you're used to. (If you
aren’t familiar with functions, you might want to peek ahead to the beginning of
the next chapter for a quick overview —but come right back!) If you find the syn-
tax to be a little heavy at first, stick with it. You might find that the extra brackets
and parentheses actually help you write readable code.

The if Statement

The if statement is pretty much the cornerstone of all programming languages. In
PHP, an if statement typically takes this basic form:

if (condition or set of conditions)
{
actions to perform if condition is true.

After the word if is a set of parentheses. Within those parentheses is the single
condition or set of conditions to be tested. If the condition is evaluated as being
true, the code within the curly braces will execute. The following will test true and
print “I'm True!” to a Web page.

118

Part 11: Working with PHP

<?php
$foo = 100;
$bar = 10;

if ($foo > $bar)
{
echo "I'm True!";

7>

This is clear enough. But before we mention the complexities of the if state-
ment, you should know how PHP determines whether a condition is true or false.

Determining true or false in PHP

The next section shows the operators commonly used in if statements. These are
fairly easy to understand. In the preceding code example, 100 is greater than 10, so
($foo > $bar) will test true. No problem. But there’s a bit more to these tests in
PHP.

The words TRUE and FALSE also carry the expected meanings.

if (TRUE)
{
echo "Yup!"; //this will be printed
}
if (FALSE)
{
echo "Nothing doing."; //this will not be printed

But you're not limited to simple mathematical operators or the words TRUE and
FALSE when you're testing for a true or false condition. As you can see in Chapter
4, you often test for the existence of a variable using isset() or empty(). These
functions, like many others in PHP, return a value of FALSE if the condition is false,
and a value of TRUE if the condition is true. If used as a simple value, FALSE con-
verts to 0 and TRUE to 1. For example, the following prints out “1”:

$myvar = "I am setting a variable";
echo isset($myvar), "\n";

But though FALSE and 0 are equivalent (just as 0 and an empty string are equiv-
alent) and TRUE and 1 are equivalent, they are not the same. You can see this using

Chapter 5: Control Structures

119

the built-in PHP function var_dump(), which shows you the internal representa-
tion of a value. If we use it with the previous example:

$myvar = "I am setting a variable";
var_dump(isset($myvar));

the output is now “bool(true)”

When you need to test if two values are not just equivalent, but identical, you
use the === operator (or !== to test if the values are not identical). The following
shows you what we mean:

$myvar = "I'm setting a variable again";
if (isset($myvar) == 1)
echo "isset(\$myvar) is equivalent to 1\n";
if (isset($myvar) === 1)
echo "isset(\$myvar) is exactly the same as 1\n";
if (isset($myvar) == TRUE)
echo "isset(\$myvar) is equivalent to TRUE\n";
if (isset($myvar) === TRUE)
echo "isset(\$myvar) is exactly the same as TRUE\n";

The output of this code is:

isset($myvar) is equivalent to 1
isset($myvar) is equivalent to TRUE
isset($myvar) is exactly the same as TRUE

It’s not just 1 that is true — any non-zero, non-empty value tests as true (an array
with no elements is empty, so it tests as false). This gives you some flexibility in
your tests.

When working with Web pages, you'll usually be doing some sort of text manip-
ulation. Often you’ll need to test whether the text string you're working with has a
certain structure. For example, you might want to test whether a string contains
certain characters. You can use one of the regular expression functions for this, but
you can also use the strstr() function. The strstr() function takes two argu-
ments, both of them strings. It searches the first argument for the first occurrence
of the string specified in the second argument. It returns the string in the second
argument plus all of the characters following that string. However, if the string isn’t
found, the function will return a value of FALSE. In the following example
strstr() returns “text string”:

$str = "my little text string";
strstr($str, "text");

120

Part 11: Working with PHP

Since the result of this function is not empty and not O it can be used in a test.
The following code would test TRUE and print out “Yeah!”

$str = "my little text string";
if (strstr($str, "text"))
{

echo "Yeah!";

But in the string is not found in the following example, so the function will
return a value of FALSE and nothing will print:

$str = "my little text string";
$new_str = strstr($str, "nothing");
if ($new_str)
{
echo "nothing to print"; //this will not be printed

However, you need to be careful with these kinds of simple tests. For instance,
using strstr() just to test if one string contains another is something of a waste
of resources —it’s handing you back a whole substring value that you don’t need.
So say you decide to use the strpos() function instead. This built-in function
returns the position of one string within another, or FALSE if the string is not found.
The problem is that the code we’'ve used in the previous two examples can produce
some odd results:

$str = "my little text string";
if (strpos($str, "text"))
{
echo "Found 'text'\n";
}
else
{
echo "Did not find "text'\n";
}
if (strpos($str, "my"))
{
echo "Found 'my'\n";
}
else
{
echo "Did not find 'my'\n";

Chapter 5: Control Structures 121

This produces the following output:

Found 'text'
Did not find 'my'

But we can see that 'my' clearly is inside 'my 1ittle text string'. What
gives?

The problem is that in PHP, string positions start with 0. The string 'my "' is at the
beginning of 'my 1ittle text string', and so its position is 0, which is what
strpos() returns. Just testing for zero or non-zero values isn’t good enough. We
need to check explicitly for a return value of FALSE:
if (strpos($str, "
{

my") == FALSE)

echo "Found 'my'\n";
}
else
{
echo "Did not find 'my'\n";

This produces the correct result:

Found 'my

You have to be careful to match your tests to the values you might be testing.
Usually, that’s just a matter of — surprise! — checking the documentation.

This is a good place to note that the functions you create in the course of your
programming will often need to return a value indicating success or failure. You
can make your functions do this by returning TRUE or FALSE.

Take a look at this example that looks for http:// at the beginning of a string
(a common task and one that illustrates the technique):

//tests whether a variable starts with "http://"
function url_test ($url)
{
if (strtolower(substr($url,0,7)) == "http://")
{
return TRUE; }
else
{
return FALSE; }

122

Part 11: Working with PHP

$myurl = "http://www.theonion.com";
if (url_test ($myurl))
{

echo "Thanks for entering a valid URL.";

Comparison operators

Table 5-1 lists the relatively few comparison operators in PHP.

TasLe 5-1 PHP'S COMPARISON OPERATORS

Symbol Operator

== (2 equals signs) Equal to

=== (3 equals signs) Identical to

1= Not equal

l== Not identical to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Description

Determines if two quantities are
equivalent.

Determines if two values have
equivalent values and are of the same
variable type.

Determines if two values are not
equivalent.

Determines if two values are not
equivalent, or not of the same variable

type.

Determines if the value to the left of
the symbol is greater than the one to
the right.

Determines if the value to the left of the
symbol is less than the one to the right.

Determines if the value to the left of
the symbol is greater than or equal to
the one on the right.

Determines if the value to the left of
the symbol is less than or equal to the
one on the right.

Chapter 5: Control Structures

123

Logical operators

In addition to comparison operators, you will be using logical operators in your
scripts. Table 5-2 lists PHP’s logical operators.

TaBLE 5-2 PHP'S LOGICAL OPERATORS

Symbol Example

and if ($a ==0 and $b==1)
&& if ($a ==0 && $b==1)
or if ($a ==0 or $b ==1)
|l if ($a ==0 || $b ==1)
xor if ($a ==0 xor $b==1)

! if (lempty($a))

Description

Checks both conditions.

Same as the previous symbol, but has a
higher precedence (see Note below).

Determines if one or the other operand
meets the condition.

Same as the previous symbol, but has a
higher precedence (see Note below).

This is known as exclusive or. It determines
if one of the two operands is true but not
both. If both of these conditions are true,
the overall test will be false.

Determines if something is not the case.
In this example the condition will be true if
$a is not empty.

The difference between && and and,and between | | and or,is the order of
precedence. PHP must determine which operators to compare first. It does
this according to the list found at http://php.net/operators. Don't

forget, though, that parentheses override the order of precedence.The con-

tents of inner parentheses get evaluated before those of outer parentheses.

Complex if statements

Using the operators in Table 5-1 and 5-2, you can create if statements that are a
bit more complex than the basic one at the beginning of this chapter.

124

Part 11: Working with PHP

Here are a few quick examples:

if ($var == 1 && $var2 <= 5 && !empty($var3d))
{
//do some stuff

Since this is a book dealing with MySQL databases, we’ll show some examples of
if statements you can use when playing with database queries.
To test if a select query returned any rows, you can use either of the following:

$query = "select * from my_table";
$result = mysqgl_query($query)or
die(mysql_error());
if (mysql_num_rows($result) > 0)
{
//do something here.

//this would also work
$query = "select * from test.foo";
$result=mysql_query($query);
if (!($row = mysql_fetch_assoc($result)))
{
echo "there were no rows to fetch, so the query must have
returned no rows.";
}

The following tests if an update query actually changed anything. A similar con-
struct would work for delete statements.

$query = "update mytable set coll='my text' where id = 1";
mysql_query($query) or
die(mysql_error());
if (mysql_affected_rows() == 0)
{
echo "query did nothing";

As is noted in Chapter 3, be careful to remember that the “equal to” operator is =
in MySQL, but == in PHP. A common typo is to write if ($a = $b) ... in PHP.
This assigns the value of $b to $a, and always tests as true, so it can be easy to miss.

Chapter 5: Control Structures

125

if ... else statements

If you're clear on the previous sections, nothing here will surprise you. The else por-
tion of an if ... else statement enables you to specify code that will be executed
if the condition specified is false. The following code prints "it is not equal":

$a = 2;
if ($a == 1)
{
echo "it's equal";
}
else

{
echo "it is not equal";
}

if ... elseif statements

You will often have to check a variable against more than one set of conditions. For
instance, you might have a single page that will insert, edit, and delete records in a
database. It is fairly typical to indicate which portion of the script you wish to run
by assigning different values to a submit button in an HTML form. When the form
is submitted, the value of the submit button can be checked against several elseif
statements, as follows:

if ($_POST['submit'] == "edit")
{
// code for editing database
}
elseif ($_POST['submit'] == "update")
{
//code for updating records
}
elseif ($_POST['submit']l == "delete")
{
//code for deleting records
}
else
{
echo "I have no idea what I should be doing.";

126 Part 11: Working with PHP

TIPt elseif is technically not the same as else if.If you put that space
‘@% between the words you will not get an error, but you could conceivably get
\

different behavior. In practice, the two variations are equivalent.

switch ... case

The switch structure is an alternative to multiple if ... elses. It won't work for
everything, but in some situations switch will help you remove some ugly syntax.

Choose a variable against which you wish to run a comparison. Continuing the
example given in the discussion of if ... else, you may wish to execute differ-
ent parts of a script based on the value passed by a submit button:

switch ($_POST['submit'])
{
case "insert":
// code to insert to database
break;
case "update":
//code to update database
break;
case "display":
//code to display
break;

default:
echo "Unexpected value {$ POST['submit']} for 'submit'\n";

Here the code tests against the value in $_POST['submit']. If the variable is
equal to "insert", that portion of code is run.

Note the use of break in the preceding code. If break is not included, the code
will continue to run. For example, if $_POST['submit'] was equal to "update",
the following would run the code for both the update and display portions:

switch ($_POST['submit'])

{
case "insert":
// code to insert to database
break;
case "update":
//code to update database
case "display":

Chapter 5: Control Structures

127

//code to display
break;

Loops

No matter what programming language you've used in the past, you know that
loops are an essential part of programming. PHP has a rich set of loops that should
satisfy your every programming need.

while ...

This is probably the most common loop, so we'll discuss it first. You give the while
loop a condition to validate. As long as that condition is true, the code within the
curly braces will be executed.

while (condition)
{
//code to execute here;

As a very basic example, the following code prints all the numbers between 0
and 10:

$a = 0;

while ($a<=10)

{
echo "$a
 \n";
$at+;

For something a bit more practical, you will use a while loop to iterate through
every row returned by a database query. Since mysql_fetch_assoc() will return
false if there’s no row to be fetched, it works quite nicely with a while loop.

$query = "select fname, Tname from people”;
$result = mysql_query($query) or
die(mysqgl_error());
while ($row = mysql_fetch_assoc($result))
{
echo $row["fname"] , " " , $row["Iname"] , "
 \n";

128

Part 11: Working with PHP

USING while WITH list() = each()

Another place while ... often comes into play is with arrays, when you are using
the 1ist() = each() structure. This structure assigns elements in an array to
named variables. It will iterate through the array, and when no more elements are
left to pull from, it will test false and the while loop will stop. When pulling from
an array, 1ist() is expecting an associative array and will take two variables: the
first for the key and the second for the value, as illustrated in the following code:

$knicks = array (center => "Ewing", point => "Childs",
shooting_guard => "Houston",
forward => "Sprewell", strong_forward => "Johnson"
)

echo "<h2>The Knicks 1999 Starting Five Were</h2>";
while (list($key,$value) = each ($knicks))
{

echo "$key: $value
\n";

After you run the preceding code the array pointer will be at the end of the
array. If you wish to loop through it again, you will have to move the pointer

ol

to the beginning of the array with reset. In the preceding example,
reset($knicks) would work.

Note that if you don’t have an associative array and you wish to grab array val-
ues, you will need to account for it in your 1ist (). Do this by including a comma
within the list parentheses, as follows:

$names = array("John", "Jacob", "Jason", "Josh");
while (1ist (, $value) = each ($names))
{

echo "$value
 \n";

If no comma preceded $value in the preceding code, the ordinal placement of
each element would be assigned to $value and the code would print “0, 1, 2, 3"

If you want to get only the keys out of an associative array, your list statement
should contain something like 1ist($key,).

Though we're stressing 11st’s use with the each () statement, it can generally be
thought of as an “array destructor.” —that is, it pulls elements out of an array.
Similarly, each() is an “array iterator,” meaning that it walks through all the ele-
ments in an array. It doesn’t need to be used with 1ist (), though that is by far the
most common usage.

Chapter 5: Control Structures 129

USING MULTIPLE while LOOPS

Continuing with the subject of while loops and MySQL queries, you probably need
a quick piece of code that prints out the results of any query. For this, you can use
a nested set of while loops. The outer loop fetches each individual record from the
database, and the inner one prints out the contents of each individual record:

while($row = mysqgl_fetch_assoc($result))
{
while (1ist($key, $value) = each ($row))
{
echo "$key: $value
\n";

}

do ... while

The do ... while loop is nearly identical to the while loop. The only difference is
that the condition is tested after the code in question has been run once, as follows:

do
{

//code to be used here.
} while (condition);

The preceding structure may be useful to you. It may even be vital to scripts you
need to write. But in the course of writing the large applications for this book, we
didn’t need to use it once.

for

The for loop takes three expressions.

® The first is evaluated once before the second expression is tested.

¢ The second argument is a condition that is evaluated each time through
the loop; if the condition in the second argument tests false, the loop ends
(or never begins if it tests false right away).

¢ The third expression is executed after the body of the loop is run.

As an example, the following code iterates through every value in an array and
prints the value for each element:

$myarray = array ('jay', 'brad', '"john', 'kristin');
for ($1 = 0; $i < count($myarray); $i++)
{

130

Part 11: Working with PHP

echo $myarray[$i]l . "
\n";

The first time through, $1i is assigned the value of 0, so the first element in the
array will be printed. The next time and each subsequent time through, $i will be
incremented by one. The loop will end as soon as $i is equal to the length of the
array (which is 4). Remember that the elements in the array start at 0, so the last
element in the above array is $myarray[3].

You can also leave any of the three expressions in the for loop empty. If you
leave the second expression empty, the if condition will evaluate to true, and you
will need to make sure that your loop will eventually hit a break statement (we dis-
cuss break in the section “break” later in this chapter).

Running the following code would be very bad: It would run indefinitely,

using up your memory and CPU.You'd have to kill the Web server to get this
script to stop. It could bring your entire machine down.

for ($i = 0;; $i++)

{

echo "$I
\n";

foreach

The foreach structure is used exclusively with arrays. You can use it in place of
1ist() = each() on most occasions. This structure will work from the beginning
to the end of an array, assigning each element to a scalar variable (a variable that
has only one value, such as an integer or a Boolean value, as opposed to a multi-
element array or complex object) that you indicate with the word as. The following
prints all the values in the array $names_array:

$names_array = array("jay", "brad", "ernie", "bert");
foreach ($names_array as $first_name)
{

echo $first_name;

If you are working with an associative array, you will likely need to access both
the key and the value of every array element. The following syntax will enable you
to do this:
$jay_info = array ("fname" => "jay",
=>"juggling");

"Tname" => "greenspan", "hobby"

Chapter 5: Control Structures

131

foreach ($jay_info as $key => $value)
{
echo "$key: $value
\n";

Unlike Tist() = each(), foreach() does not require you to reset the array
afterwards. It works with a temporary copy of the array. Since it is also generally
faster than 1ist() = each(), it’s preferable.

continue and break

Within loops you may need to either break out of the loop entirely or skip to the
next item to be addressed in the loop. For these situations, you can use continue
and break, respectively. Both continue and break can accept a numeric argument.
The argument specifies how many levels of loop to break out of. This capability is
rarely used.

continue

Consider a situation in which you're reading from the file system and would like
your script to address each file in a specific directory, but have no need to address
any subdirectories. When PHP reads names from the directory, you don’t know if
the item is a file or directory, so you need to run a test using the is_dir() func-
tion. You want to skip over listings that are directories. The script looks something
like this:

$directory=opendir('/home/jay/"');
echo "Files are:
\n";
while ($file = readdir($directory))
{

if (is_dir($file)){continue;}

echo "$file
\n";
//process files here;
}
closedir($directory);

Note that continue isn’'t necessary here. You can also code this script as in the
following example, and some feel this a better way of going about it:

$directory=opendir('/home/jay/"');
echo "Files are:
\n";
while ($file = readdir($directory))
{

if (lis_dir($file)){

132

Part 11: Working with PHP

echo "$file
\n";

1
closedir($directory);

break

break will release the script from a control structure without stopping the execu-
tion of a script. It is almost always best to avoid using break. if statements can
usually accomplish the same thing and make for cleaner code.

A situation in which you might want to use break would be in response to an
error inside your loop. In the following example, we loop through the rows returned
by a MySQL query, calling one function to do some initial processing and then call-
ing a second function to do something with the first function’s results. If either of
those two functions fail, we want to stop the process right there and not continue
with the rest of the rows.

while ($row = mysql_fetch_assoc($result))
{
$setup_result = setup($row);
if ($setup_result === FALSE)
{
print "Error in calling 'setup()'\n";
break;
}
$process_result = process($setup_result);
if ($process_result === FALSE)
{
print "Error in calling 'process()'\n";
break;

Summary

In this chapter you saw the building blocks of the PHP language. You saw how to
make use of loops and if blocks. If you read Chapter 4, where variables were dis-
cussed, you now know all the basics you need for programming with PHP.

Coding is all about working with variables, loops, and if blocks. The various
combinations of these will take care of everything you will need to accomplish in
your applications. However, one major portion remains to be learned: functions.
Chapter 6 shows how PHP’s built-in functions operate on your scripts.

Chapter 6

PHP’s Built-in Functions

IN THIS CHAPTER

¢ Using PHP’s built-in functions
¢ Function syntax

¢ Working with functions

PHP HAS AN AMAZING NUMBER of built-in functions and extensions (An ‘extension’
is a related collection of functions that are not part of the core PHP code). Many are
available to you only if PHP is compiled with certain options. If, for example, you
need to do some Extensible Markup Language (XML) parsing, PHP has two exten-
sions that can help you. (One uses an event-based approach, the other a document
approach.) If you need Lightweight Directory Access Protocol (LDAP), Internet Mail
Access Protocol (IMAP), or Portable Document Format (PDF) functions, an exten-
sion is there for you. Additionally, PHP has an application program interface (API)
for just about every relational database on the planet. But there’s no need to cover
most of these functions in this book.

Another thing to keep in mind is that the function set is changing almost daily.
PHP is internally structured in a way that makes it extremely easy for programmers
to add additional functions. In fact, if you know your way around C, you can prob-
ably add a new function to PHP in a few hours. So you can expect regular additions
to the core function set.

Your best friend, as always, is the online PHP manual: http://www.php.net/
manual. It’s the only source of which you can be sure that the list of functions will
be more or less up to date. If you want to go directly to the explanation of a func-
tion, all you need to do is point your browser to http://www.php.net/
function_name.

We want to point out one more thing before we get started here. The final two
portions of this book contain a number of applications. In the course of creating
these applications, we made use of a little over 150 of PHP’s built-in functions. So
while thousands of built-in functions exist, you will probably make regular use of
only a relatively small number.

133

134

Part 11: Working with PHP

TIPt A pretty neat resource is the function tableat http: //www.
‘@% zugeschaut-und-mitgebaut.de/php/.
\

Function Basics

Functions all take the same basic form:
return_type function_name (argumentl, argument?, argument3)

First, return_type is the type of output that the function returns when called:
integer, Boolean, array, string, and so forth. These are called return values. Next is
the function’s name; note that the name of the function is not case-sensitive.

Finally, following the function name is a set of parentheses. Inside the parenthe-
ses are any arguments required by the function, separated by commas. While hav-
ing any arguments at all is optional, the parentheses themselves are not. We will
discuss arguments first, followed by return values, because that’s the order in which
the function deals with them.

Arguments

An argument is simply a value (or a reference to a value) that the function is
expecting. A function might expect zero, one, two, three, or more arguments, and
any of the arguments can be of any variable type — it may be a string, an integer,
an array, or something else. To give you a better idea of what arguments are, here’s
an example: a function that does string handling.

The str_replace() function is extremely helpful. Suppose you have the follow-
ing string:

$str = "My name is Jay.";

Say that in the $str variable you need to search for Jay and replace it with
John. The function that does the replacement takes three arguments: the string to
be searched through, the string to be searched for, and the replacement string. It so

happens that in PHP, the arguments come in this order:

str_replace(string to search for, replacement string, string to be
searched through);

Or, to put it in practice:

$str = "My name is Jay.";
$new_str = str_replace("Jay", "Jdohn", $str);

Chapter 6: PHP’s Built-in Functions

135

Keep in mind that certain functions will have optional arguments and that a few
will take no arguments at all. Take the substr() function, for example. This func-
tion takes a large string and extracts a smaller string from it by using index num-
bers that are provided as arguments. The letters in the original (larger) string are
numbered (starting with O at the leftmost end), and the arguments refer to these
numbers. To get everything from the second character in a string on, you would use
the following code:

$str = substr ($str_var,1);

However, the substr() function also has an optional third argument, which you
can use to limit the size of the string that it returns. A positive value counts forward
from the position given in the second argument. A negative value counts back-
wards from the end of the string. So to get everything from the second character to
the next-to-last character in a string, you would use the following code:

$new_str = substr ($str_var,1,-1);

We’ll point out optional arguments as we move through the functions. The
details of working with substr() will be covered later in the chapter.

On a few occasions a function will take no arguments at all. A good example is
time(), which returns the current Unix timestamp. When this is the case, in the
description of the function in the documentation, the keyword void will be used to
explicitly tell you that the function takes no arguments:

int time (void)

Return values

When using a function, you should always be aware of what the function will
return — specifically, what variable type. In the previous case, str_replace()
returns a string. What you do with this string is your business. You could assign it
to a variable or print it out, or do whatever else seems appropriate. The following
code echoes its output string:

//assign to variable

$new_str = str_replace("Jay", "John", $str);
//print directly
echo str_replace("Jday", "John", $str);

Note that functions can return arrays, integers, doubles (floating-point num-
bers), objects, floats (long floating-point values), or (sometimes) Boolean values. In
Chapter 5 you saw a good example of a function that returns a Boolean value (that
is, TRUE or FALSE). If you want to determine whether a variable is an array you can
use the is_array() function, as in the following.

136

Part 11: Working with PHP

if (is_array($var))
{
//process array

Some functions will return a value if there is a value to be returned, and will
return FALSE if there is no value to be returned. A good example of this is the
mysql_fetch_array() function. This function will grab rows from a result set
returned by a query, as long as there are results to grab. When no more rows are to
be had it returns FALSE. As you saw in Chapter 5, this is very helpful for looping
through all rows returned by a query.

$result = mysql_query("select * from my_table") or
die (mysql_error());
while($row = mysql_fetch_array($result))
{
//process row
}

Finally, a function will occasionally return no value at all. This is rare, as most
functions at least return TRUE on success and FALSE on failure. If a function does
not return any value, the keyword 'void' again is used in the documentation to
tell you so:

void function_name(argl, arg?, ...)

Function Documentation

As we say repeatedly throughout this book, the PHP online manual is your friend.
The documentation team is amazing, and we really believe that the quality of the
online manual is one of the reasons for the success of the language. As we cannot
realistically cover every PHP function in this book, you will need to consult the
online manual or one of the excellent PHP encyclopedias that exist (try PHP
Functions: Essential Reference by Zak Greant and others). For that reason, we want
to take a minute to go over the way in which it presents the functions.
A typical manual reference will look something like this:

int mysql_affected_rows ([int Iink_identifier])

This function returns the number of rows affected by an update, insert, or
delete query. Looking at this, you can see that the first portion (int) indicates the
variable type that will be returned. This can be any of the variable types or void
(meaning that the function will return nothing). Then comes a list of arguments in

Chapter 6: PHP’s Built-in Functions

137

parentheses. The type of argument is listed as well as what it represents. Note that
optional arguments are placed in brackets. In the preceding code sample, therefore,
the function requires no arguments but has one optional argument: the connection
identifier grabbed from mysql_connect().

In the preceding example, if you pass an argument, it had better be an integer. If
you were to use an array, for example, you would get an error.

Important PHP Functions

In this section we will attempt to break down PHP functions into logical groupings.
Along the way we will cover the functions used in the applications presented in this
book.

String handling functions

In creating Web-based applications, string handling and manipulation are among
the most critical tasks of the language you work with. Text cleanup and validation
are extremely important, and good Web middleware will make working with text
relatively easy. PHP excels in this department: It contains built-in functions that
cover most anything you’d want to do to text.

In fact, far more string handling functions exist than we could cover here. At the
time this book was written, 88 string handling functions were listed on http://
www.php.net/manual/en/ref.strings.php. In this book we can cover only a
portion of these. We will cover all the string handling functions we used in the
course of creating the applications in Parts III and IV, and we will cover some other
notable functions that we didn’t have the opportunity to use.

STRING FUNCTIONS USED IN THIS BOOK
We thought it would be nice to start with a function that clearly demonstrates why
PHP is so cool.

STRIP_TAGS() This function removes HTML and PHP tags.
string strip_tags (string str [, string allowable_tags])

One of the most important things you will need to do with every Web-based
application you write is make sure that the users of your Web pages haven’t passed
you malicious text. As we discuss in Chapter 8, if you're not careful, you might find
your pages filled with HTML tags (, <div>, and the like) or JavaScript code
that you don’t want. You could also find yourself in real trouble if some cracker
decides to litter your form fields with something like <script> alert("you
stink");</script>.

138

Part 11: Working with PHP

The strip_tags() function will remove all HTML and PHP tags, except for
those explicitly allowed in the second argument. If you want to allow and <i>
tags, you can use this:

strip_tags($str, "<i>")

ADDSLASHES() This function is intended to work with your database insert and
update queries.

string addslashes (string str)
If you take a look at a typical insert query you can see a potential problem:

insert into table_name(char_field, numeric_field)
values ('$str', $num);

What if the value in $str contains a contraction such as “ain’t”? You could get
an error because the apostrophe is going to confuse MySQL. You need to escape all
occurrences of single quotes ('), double quotes ("), and NULLs in the string. For
example:

$strl = "let's see";

$str2 = "you know";

$strl = addslashes($strl);

$result = mysql_query("insert into show_stuff
(stuff_desc, stuff_stuff) values('$strl', "$str2')");

echo mysql_affected_rows();

So, given this potential problem, do you need to put all of your form-input
information through addslashes()? Not necessarily. It depends on the
magic_quotes_gpc setting in your php.ini file. If it is set to on, data that comes
from HTTP GET, HTTP POST, or cookies is automatically escaped, so you don’t need
to worry about putting the information through addslashes().

TIP Make sure to check your magic_quotes settings in your php.ini file. Note
‘M that if set to yes,magic_quotes_runtime will automatically add slashes
\

-/

to data returned from queries and files. See Appendix Cfor more discussion

onmagic_quotes settings.

STRIPSLASHES() This function reverses the operation of addslashes (). It returns
an unescaped string from which all backslashes have been removed.

string stripslashes (string str)

Chapter 6: PHP’s Built-in Functions

139

If you are writing code for distribution, where you won’t be able to know how
your user’s PHP installation is configured, you might want to use stripslashes()
and addslashes() in combination:

$varl = $§ GET['varl'];

$stripped_var = stripslashes($varl);

$slashed_var = addslashes($stripped_var);

$result = mysqgl_query("insert into mytable (mycol) values
('$slashed_var')");

This code runs regardless of the setting of magic_quotes_gpc.

The following sections contain some more PHP string functions that are used in
this book.

HTMLENTITIES() AND HTMLSPECIALCHARS()
string htmlentities (string string [, int quote_style [, string charsetl])
string htmlspecialchars (string string [, int quote_style [, string charset]])

These two functions translate characters into their HTML escape codes. htm1
specialchars() translates only the characters that might be interpreted as markup
on an output page (namely &, <, >, ', and "), whereas htmlentities() translates
every character that has an HTML equivalent.

CRYPT()
string crypt (string str [, string saltl)

Given a string, this function returns a one-way hash of the string, using either
the optionally provided salt or a randomly generated one. Providing your own salt
allows reproducibility in testing and also allows you to specify the hashing algo-
rithm that’s used.

TRIM()
string trim (string str [, string charlist])

This function returns a string with all white space trimmed from the beginning
and end. With the second argument, you can specify an additional list of characters
to be trimmed off.

STR_REPEAT()

string str_repeat (string 7nput, int multiplier)

140

Part 11: Working with PHP

This function returns a string consisting of the input string concatenated to itself
the specified number of times.

STR_REPLACE()
mixed str_replace (mixed search, mixed replace, mixed subject)

Given three arguments as input, this function returns a string consisting of a
modified version of the third argument with every instance of the first argument
replaced by the second argument. This is a lightweight alternative to the regular
expression functions and should be used when the power of regular expressions is
not required.

STRCHR() AND STRSTR()

string strchr (string subject, string search)
string strstr (string subject, string search)
string stristr (string subject, string search)

These functions behave identically, except that strchr() and strstr() are
case-sensitive and stristr() is case-insensitive. They search for the second argu-
ment in the first, and return the part of subject following the first instance of
search.

STRLEN()
int strlen (string str)
Given a string, this function returns a character count.
STRPOS()
int strpos (string haystack, string needle [, int offset])

This function returns the position of the first occurrence of the string needle in
the string haystack, starting at the position in haystack specified by offset, or at 0
(the beginning of the string) if offset is not specified. If needle is not found, the
function returns FALSE.

STRRPOS()

int strrpos (string haystack, char needle)

Chapter 6: PHP’s Built-in Functions

141

This function behaves similarly to strpos(), but it returns the position of the
last occurrence of the search character. Note that with this function the string to be
found can only be a single character.

STRREV()
string strrev (string string)

This function reverses a string.

SUBSTR()

string substr (string string, int start [, int Tengthl)

This function returns a substring of the input string, delineated by the start and
Tength arguments. If 1ength is absent, the substring will go to the end of the string.

STRTOLOWER(), STRTOUPPER(), UCFIRST(), AND UCWORDS()
string strtolower (string str)

string strtoupper (string str)

string ucfirst (string str)

string ucwords (string str)

These functions change the capitalization of alphabetic strings. strtolower()
and strtoupper() change the case of the entire string to lower or upper case,
respectively; ucfirst() capitalizes only the first character of the input string; and
ucwords () capitalizes the first character of each white space-delineated word in
the string —to lower or upper case, respectively.

HELPFUL STRING FUNCTIONS NOT USED IN THIS BOOK

Just because we didn’t use them doesn’t mean you won’t. And again, it’s entirely
possible that something we didn’t cover will suit your needs perfectly. Please look
over the PHP manual for a complete list.

NL2BR() This function adds an HTML break (
) after each newline (\n) in a
string.

string n12br (string string)

142

Part 11: Working with PHP

Note that the newline characters will remain after going through this function.
For example, this code
$str = "jay
john
bob
stan";

echo nlzbr($str);
will print the following (note that this is the HTML source of the resulting page):

Jay

john

bob

stan

MD5() md5() is a one-way algorithm that encrypts information.
string md5 (string str)

This function is often used for passwords. If you were to put a password in a text
file, it is possible that someone who had (legitimate) access to your system could
view the passwords. However, if you pass it through md5 (), the correct password is
unknowable. For example, md5("jay") is baba327d241746ee0829e7e88117d4d5.
If this is what is entered in the text file, those who have rights to view the database
will not know what the clear text password is.

-"p’ A safe password will be a lot more complex than jay. A cracker can (and
‘M will) run an entire dictionary through md5() to see if something allows
\

]

entry to the system.

Regular expression functions

Regular expressions offer a method for complex pattern matching. If you're new to
the concept of regular expressions, consider this: Given the string handling func-
tions you have seen so far, how can you insert a newline and a break (\n
) after
every 45 characters? Or, how can you find out if a string contains at least one
uppercase letter? You may be able to pull it off, but it won’t be pretty.

Chapter 6: PHP’s Built-in Functions

143

The following code will solve the problems posed by the previous two questions.

//insert \n
 after each 45 characters
$new_str = ereg_replace("(.{45})", "\\1\n
", $str);

//check if string contains uppercase letter
if (ereg("[A-Z]", $str))
{

echo "yes it does.";

Statements like these may seem a bit opaque at first, but after working with
them for a while, you will grow to love the convenience they offer.

See Appendix G for a rundown on how regular expressions work.

Note that regular expressions are a good deal slower than string handling func-
tions. So if you have, for example, a simple replace that doesn’t require regular
expressions, use str_replace() and not ereg_replace().

REGULAR EXPRESSION FUNCTIONS USED IN THIS BOOK

The following regular-expression functions are used in the applications in this book.
EREG() ereg() tests whether a string contains a match for a regular expression.
int ereg (string pattern, string string [, array regs])

You can use this function in two ways. First, you can place a regular expression in
the first argument and search for its existence in the second argument. The function
will return TRUE or FALSE, depending on the outcome of the search. For example:
if (ereg("~http://.*", $str))

{
echo "This is a URL";

Alternatively, the optional third argument is an array that is created from the
regular expression. The portions of the regular expression that will become ele-
ments in the array are indicated by parentheses in the regular expression.

ereg("(....)-(..)-(..)", $publish_date, $date_array);

144

Part 11: Working with PHP

This example, which was taken from the content-management application in
Chapter 11, creates an array named $date_array, wherein the first element will be
the complete string matched by the regular expression. The next three elements in
the array will be the portions indicated by the parentheses. So $date_array[1]
will contain four characters, and $date_array[2] and date_array[3] will contain
two characters each.

So, after running this code

$publish_date = "2000-10-02";
ereg("(....)-(..)-(..)", $publish_date, $date_array);

$date_array will contain the following:

(0] => 2000-10-02

[1]1 => 2000
[2] => 10
[3] => 02

Note that ereg() performs a case-sensitive match.
EREGI() This function is a case-insensitive version of ereg().
int eregi (string pattern, string string [, array regs])

EREG_REPLACE() You can use this function for string replacement based on com-
plex string patterns.

string ereg_replace (string pattern, string replacement, string
string)

For example, if you want to delete the querystring from a URL, you can use this:

$url= "http://www.mysqlphpapps.com/index.php?var=hello";
$parsed_url = ereg_replace("\?.%\$", "" $url);
echo $parsed_url;

The preceding code prints http://www.mysqlphpapps.com/index.php. This
regular expression matches a question mark and all characters that occur after it
until the end of the line. The question mark must be escaped with a backslash
because it has a specific meaning to the regular expression (regular expressions are
covered at http://www.php.net/manual/en/ref.pcre.php). Following the ques-
tion mark the regular expression matches any number of characters until the dollar
sign, which is the endline character. It needs to be escaped with a backslash because
otherwise PHP will think it represents a variable.

Chapter 6: PHP’s Built-in Functions

145

Often you will need a bit more functionality than this. What if you want to pre-
serve the string you are searching for in the replacement string? Or what if your
search contains distinct portions offset by sets of parentheses? Here’s a simple
example. We want to replace the current querystring by placing an additional
name=value pair between the two name=value pairs currently in the string. That is,
we want to put newvar=here after var=hel1lo and before var2=yup, as follows:

$url= "http://www.mysqlphpapps.com/index.php?var=hello&var2=yup";
$parsed_url = ereg_replace("(\?.%&)", "\\lnewvar=here&",$url);
echo $parsed_url;

This creates the following string:
http://www.mysqlphpapps.com/index.php?var=hello&newvar=here&var2=yup

Here the single set of parentheses indicates portion 1. Then, by using the nota-
tion \\1, we can include that portion in the newly created string. If more than one
portion is indicated by additional parentheses, you can echo the others back into
the result by noting which portion you need.

$url= "this is a test ";

$parsed_url = ereg_replace("(this.*a).*(test)", "\\1 regular
expression \\2",$url);

echo $parsed_url;

The result of these commands is the phrase this is a regular expression
test.

The regular expression matches everything between this and test. You can use
parentheses to indicate a substring that starts with this and ends with the letter a.
The next .* portion matches any number of characters. Finally, test is another
substring. These substrings are echoed back in the second argument, with \\1
echoing the first substring and \\2 echoing the second substring.

The regular expression match is case-sensitive.

EREGI_REPLACE() This function is the same as ereg_replace(), except that the
match is case-insensitive.

REGULAR EXPRESSION FUNCTION NOT USED
IN THIS BOOK — sql_regcase()
This regular expression function, while not used in the examples in this book, is
still useful to know.

sql_regcase() alters strings so that you can use them in case-insensitive regu-
lar expressions.

string sqgl_regcase (string string)

146

Part 11: Working with PHP

This might be of use if you are doing a regular-expression search in a database
server that doesn’t support case-insensitive regular expressions. It will save you
from having to type in every character in a string as both an uppercase and a low-
ercase letter. For example:

echo sql_regcase("this string");
produces:
[TtICHhILIiI0Ss] [SsILTtILRrILITILINNILGg]

PERL-COMPATIBLE REGULAR EXPRESSIONS (PCRE)

For years, the Perl programmers of the world have had regular expressions unlike
any others. If you have some experience with Perl, it’s likely that you've come to
love the additional power these regular expressions give you. If you don’t come
from a Perl background, you might enjoy learning a bit about the features.

PCREs are, however, a fairly large topic, one that Appendix G explains only
briefly. However, if you're looking to get a good jump on learning about Perl’s reg-
ular expressions and how they can work for you, the information at http://
www.perldoc.com/per15.8.0/pod/perire.html is a good read. You'll also find a
decent description of Perl regular expressions in the PHP manual, at http://
www.php.net/manual/en/ref.pcre.php.

The major reason for using PCRE functions is that they give you a choice
between “greedy” and “non-greedy” matching. For a quick example, take the fol-
lowing string:

$str = "I want to match to here. But end up matching to here"

Using ereg() or ereg_replace() you have no way to match from I to the first
occurrence of here. The following will not work as you might expect:

$str = "I want to match to here. But end up matching to here";
$new_str = ereg_replace("I.*here", "Where", $str);
echo $new_str;

This will print Where and nothing else. The entire string will be replaced. Using
ereg_replace() you cannot indicate that you want to match to the first occur-
rence of here. However, using preg_replace(), you can do the following:

$str = "I want to match to here. But end up matching to here";
$new_str = preg_replace("/I.*?here/", "Where", $str);

echo $new_str;

In this instance, .*? means “match all characters until the first occurrence.”

Chapter 6: PHP’s Built-in Functions

147

PCRE FUNCTIONS USED IN THIS BOOK

The following PCRE functions are used in the applications created in this book.

PREG_MATCH() This function is similar to the ereg() function in that you can
assign the optional third argument an array of matched subpatterns, if any are
found in the regular expression. preg match returns the number of pattern
matches found, or FALSE if no match is found.

int preg_match (string pattern, string subject [, array matches])

PREG_REPLACE() This function makes replacements based on Perl regular
expressions.

mixed preg_replace (mixed pattern, mixed replacement, mixed subject
[, int Timit])

preg_replace() is similar to ereg_replace(), though the pattern here must be
a Perl regular expression. It can also make use of \\d7git to echo the matched sub-
string into the result. The optional fourth argument limits the number of replaces
that preg_replace makes.

Consider the following example:

preg_replace("/(
|

[\s])*$/i","",$body);

Note that \'s denotes all whitespace characters. This example will remove all occur-
rences of breaks (
), non-breaking spaces ($nbsp;), or white space (spaces, tabs,
new lines) at the end of the string in $body. This replacement is not case-sensitive
(the i flag determines that) to ensure that both
 and
 are matched.

The parentheses indicate that you are specifying a pattern made up of several
parts. The | character means or here; you want to match
 or or any
whitespace characters. The asterisk after the closing parenthesis indicates that you
want to match any number of repeated occurrences of this pattern (for example, in

, the pattern occurs three times, and this expression would match
all of them). The final dollar sign character represents the end of the string. By
using it, you are saying that you want to match only occurrences of this pattern
that are at the string’s end, and not globally remove every whitespace character
from $body, which would likely be a bad thing.

PREG_GREP()
array preg_grep (string pattern, array input)
Given a regular expression string and an array, this function returns an array

containing only those elements of the input array that match the regular-expression
pattern.

148

Part 11: Working with PHP

PREG_MATCH_ALL()

int preg_match_all (string pattern, string subject, array matches [,
int flags])

This function searches a string for matches to a regular-expression pattern. It
places the matches it finds in the matches array.

Variable functions

PHP has a number of functions that deal directly with variables and constants.
Some of these functions deal with the types of variables: These are covered in the
next section.

is_array(), is_numeric(), and is_string()

bool is_array (mixed var)

bool is_numeric (mixed var)

bool is_string (mixed var)

These three Boolean functions test whether the given variable is of a particular

type.

isset()
bool isset (mixed var [, mixed var [, ...11)

This useful function returns TRUE if every argument is an existing variable con-
taining a non-null value, and FALSE otherwise.

unset()
void unset (mixed var [, mixed var [, ...11)
This function unsets the specified variable(s).
empty()
boolean empty (mixed var)
If a variable is undefined, an empty array, or equivalent to 0 (0.00, FALSE, an

empty string, and so on); empty () returns TRUE. This code summarizes the behav-
ior of the function:

Chapter 6: PHP’s Built-in Functions

149

$a = 0 ; print empty($a) ? "TRUE" : "FALSE"; //TRUE
$b = "0" ; print empty($b) ? "TRUE" : "FALSE"; //TRUE
$c = "" ; print empty($c) ? "TRUE" : "FALSE"; //TRUE
$d = 1 ; print empty($d) ? "TRUE" : "FALSE"; //FALSE
print empty($e) ? "TRUE" : "FALSE"; //TRUE

$f= TRUE ; print empty($f) ? "TRUE" : "FALSE"; //FALSE
$g= FALSE; print empty($g) ? "TRUE" : "FALSE"; //TRUE
$h=array();print empty($h) ? "TRUE" : "FALSE"; //TRUE
floor()

float floor (float value)

Given a floating-point variable, f1oor() rounds down any fractional amount
and returns the highest integer value less than or equal to the value of the variable.

constant()
mixed constant (string constantname)

This function simply returns the value of a defined constant.
define()

bool define (string name, mixed value [, bool case_insensitive])

This function defines a constant with a specified name and value. If the third
argument is set to TRUE the constant will be defined as case-insensitive.

get_defined_constants()
array get_defined_constants (void)

This function returns an array containing the names and values of all the cur-
rently defined constants.

Type-conversion functions

This is a category of our own making. In the manual, these functions will fall under
other headings. However, we feel that the specialized nature of these functions
demands a unique category.

Chapter 4 discusses PHP variables in detail, including PHP’s flexible variable
typing. If you recall, if you need to evaluate a string as if it were an integer, you can
make use of the intval() function. (See Chapter 4 for similar variable-conversion
functions.)

150

Part 11: Working with PHP

But at times the variable conversion will be a bit more extreme, turning strings
into arrays and arrays into strings. Why, you ask, might you want to do this?
Consider a string like the following:

24,16,9,54,21,88,17

So you have this string of integers, maybe retrieved from a text file. How would
you go about sorting it in ascending order? If you have to deal with it as a string
the code is going to get very nasty. However, if you can make use of PHP’s myriad
of array functions, life gets quite a bit easier. You can simply use the sort() func-
tion. Take a look:

$str = "24,16,9,54,21,88,17";

//turn $str into an array

$array = explode(",", $str);

//sort the array in ascending order
sort($array, SORT_NUMERIC);

//turn the array back into a string and print
$new_str = implode(",", $array);

echo $new_str;

This will print the following;:
9,16,17,21,24,54,88

More on the sort () function a bit later in the chapter.

TYPE CONVERSION FUNCTIONS USED IN THIS BOOK

The following type conversion functions are used in the examples in this book.
EXPLODE() This function transforms a string into an array.
array explode (string separator, string string [, int Timit])

The first argument is the character or characters that separate the different ele-
ments. In the preceding example the string is separated by a comma. The second
argument is the string you wish to break into an array.

The third argument limits the number of elements in the resulting array. If you
use the following code

$str = "24,16,9,54,21,88,17";
//turn $str into an array
$my_array = explode(",", $str, 3);

Chapter 6: PHP’s Built-in Functions

151

$my_array will have three elements: $my_array[0] => 24 $my_array[l] =>
16 $my_array[2] => 9,54,21,88,17. You can see that the last element contains
what’s left of the original string. If you want to sort only the first three elements in
a string and discard the rest you might do this:

$str = "24,16,9,54,21,88,17";
//turn $str into an array
$array = explode(",", $str, 4);
unset($arrayl[3]1);

sort($array, SORT_NUMERIC);
echo implode(",", $array);

If the string separator does not exist, the entire string will be placed in array ele-
ment zero. If the string does not exist, an empty string will be placed in the first
element.

IMPLODE() As you might expect, implode() is the opposite of explode(): It
turns an array into a string.

string implode (string glue, array pieces)

The first argument is the string that will separate the string elements. The second
is the array to be separated.

A good example of where you might use implode() is a page that runs a SQL
delete command. Suppose you have presented a series of checkboxes to indicate
the rows you wish to delete from the database. You are probably going to want to
pass the elements you wish to delete within an array. In the script that does the
deletes, you can then run something like this:

//say $delete_items from an HTML page and
//contains (1,3,7)

if(is_array($delete_items))

{

$str = implode("," , $delete_items);
$query = "delete from table where item_id in ($str)";
mysql_query($query);

}

SPLIT() The split() function does the same thing as explode(), but it enables
you to specify a regular expression as the separation string.

array split (string pattern, string string [, int Timit])

152

Part 11: Working with PHP

The sp1it() function can come into play if you want to separate a string based
on more than one element. Say you have a string you need as an array, the elements
of which can be separated by either a newline (\n) or a tab (\t). The following will
do the trick:

//note there is a tab between 524 and 879
//and a tab between 879 and 321

$items = "524 879 321

444

221";

$array = split("[\n\tl", "$items");

ol

PREG_SPLIT()

split() is more flexible than explode (), butit’s also slower.

array preg_split (string pattern, string subject [, int Timit [, int flagsl]l)

This function works like sp1it(), only it uses a Perl regular expression as the
pattern.

Note that if the flag is PREG_SPLIT_NO_EMPTY, empty items will not be placed in
the array.

ol

To divide a sentence into its component words (splitting by white space), you
can do the following:

Again,if explode () can do the same task, make sure to use it instead of
preg_split() becausepreg _split() isslower.

$sentence = "Soup is good food."
$words = preg_split("\s", $sentence);

The content of $words will be as follows:

(0] => Soup
[1] => is

Chapter 6: PHP’s Built-in Functions

153

[2] => good
[3] => food.

gettype() and settype() can be used to directly change the type of variables.
GETTYPE()
string gettype (mixed var)

This function returns the type of a variable as a string: Boolean, string, array,
integer, and so forth.

SETTYPE()
bool settype (mixed var, string type)

Given a variable as argument, this function sets the variable to the specified
type: Boolean, integer, float, string, array, object, or null.

INTVAL() AND FLOATVAL()
int intval (mixed var [, int base])
float floatval (mixed var)

These two functions take any scalar variable and return an integer or a floating-
point variable, respectively.

COMPACT() compact() and extract() are used to convert array elements into
variables and vice versa, respectively.

array compact (mixed varname [, mixed ...]1)
Given a list of variable names (passed either as individual arguments or as an
array), compact() outputs an array whose keys are the variable names and whose

values are the respective values of those variables. Only variables whose values are
set will be included in the output array.

EXTRACT()
int extract (array assoc_array [, int extract_type_constant [, string prefix1])
To pull key/value pairs from an array and make them into standalone variables,

use extract (). The element key will become the name of the variable, and the ele-
ment value will become the value of the variable. Therefore, this code

154

Part 11: Working with PHP

$array = array("name" => "Jday",
"brand" => "Cohiba");

extract($array, "name");

echo $name;

will output this:
Jay

The extract_type_constant argument controls how namespace collisions are
handled. The constant takes any of eight predefined values (see the PHP manual
page on this at http://php.net/extract) such as EXTR _OVERWRITE and
EXTR_SKIP. These dictate what the parser should do when it encounters collisions.

NUMBER_FORMAT()

string number_format (float number [, int decimals [, string dec_point , string
thousands_sepl1)

Given a floating-point number, this function returns a string formatted for
human consumption, containing the number with thousands separators and a dec-
imal separator. By default these are a comma and a dot, respectively, but other sym-
bols can be specified.

JOIN()
string join (string glue, array pieces)

Given an array and a string, join() returns a string comprised of the elements
of the array concatenated in order, with the g7 ue string between each two elements.

7 |

join() isidentical to the imp1ode () function.

RANGE()
array range (mixed from, mixed to [, int increment])
This function creates an array and automatically populates it with elements

ranging from from to to. If a step increment is specified in the third argument, that
will be the increment between elements; otherwise the increment will be one.

Chapter 6: PHP’s Built-in Functions 155

TYPE CONVERSION FUNCTIONS NOT USED IN THIS BOOK

In addition to the functions in the previous section, you can make use of sp1iti(),
which uses a case-insensitive pattern match. Other than the case-insensitivity with
respect to alphabetic characters, sp1iti() works just like sp1it(). Consider these:

$audienceResponsel = "o0ooo0AAAooooh";
$audienceResponse2 = "oooooaaaooooh";
list ($partl, $part2) = split('[AAA]', $audienceResponsel);
list ($part3, $partd) = spliti('[aaal’', $audienceResponse?);

As a result of that, $partl and $part3 contain ooooo, while $part2 and $parts
contain ooooh.

Array functions

We are big fans of the array functions available in PHP. Just about anything you’d
like to do to an array you can do with a built-in function. The developers of PHP
have done a good job of making sure you don’t have to loop though arrays very
frequently, if ever.

The PHP manual lists exactly 60 array functions as of this writing. It’s likely that
by the time you read this chapter, there will be several more. So make sure you scan
the manual to see the full range of available array functions.

See Chapter 5 for a discussion of how to create, add to, and walk through an
array.

ARRAY FUNCTIONS USED IN THIS BOOK

Here’s a rundown of the array functions we use in this book.

ARRAY_FLIP() This function, which is useful with associative arrays, exchanges
keys and values. That is, the keys become the values and the values become the keys.

array array_flip (array trans)

We use this function once in the course of the book, in the following code:

$trans
$title

array_flip(get_html_translation_table(HTML_ENTITIES));
strtr($title, $trans);

156

Part 11: Working with PHP

Before the array_f1ip() function, the array holds many elements. Here are a
couple of examples:

[(c)] => ©
[(r)] => ®

Once the array is flipped, these entries will look like this:

[$copy]l => (c)
[®]l => (r)

Then strtr() replaces each value with its key. So in the end this code will make
sure that any character that needs to be represented by an HTML entity will be.

Note that if an array has two keys with identical values before being flipped,
only one can survive in the flipped array. You can’t have two array elements with
same key. If conflict arises, the element in the position with the highest index value
will be maintained.

ARRAY_MERGE() As you can probably guess, this function merges, or concate-
nates, two or more arrays.

array array_merge (array arrayl, array array? [, array ...1)

If two or more of the arrays contain the same associative keys, the elements with
the highest index values will be preserved.

ARRAY_SPLICE() This function takes the array indicated in the first argument and
removes all elements following the offset specified in the second argument. It can
then insert additional elements.

array array_splice (array input, int offset [, int Tength [, array
replacement]])

If the offset is a positive number, the elements will be counted from the left; if
the offset is a negative number, all items to the left of the indicated number will be
deleted. The optional third argument can indicate how many elements after the off-
set you wish to delete. For example, this code

$knicks_array = array ("Childs", "Sprewell", "Ewing",
"Johnson", "Houston");
array_splice($knicks_array, 2,1);

will remove elements starting at offset 2 and remove only one element. So Ewing
will be deleted from this array. array_splice() also gives you the ability to replace
the deleted portion with another array. So, to account for trades, you can do this:

Chapter 6: PHP’s Built-in Functions

157

$knicks_array = array("Childs", "Sprewell", "Ewing",
"Johnson","Houston");
$new_knicks = array("Longley","Rice");

array_splice($knicks_array, 2,1,%new_knicks);

Following this code, $knicks_array will contain six elements: Childs,
Sprewell, Longley, Rice, Johnson, Houston.

Note that the value returned by this function is an array of the deleted items. In
the code that follows, $traded _knicks will be an array with one element, Ewing:

$knicks_array = array("Childs", "Sprewell", "Ewing",
"Johnson","Houston") ;
$traded _knicks = array_splice($knicks_array, 2,1);

COUNT() This function returns the number of elements in an array, and is fre-
quently used with loops.

int count (mixed var)
For example:

$array = array(1,2,3,4,5);
$len = count($array);
for ($i=0; $i < $len; $i++)
{
echo $array[$i] . "
\n";

Note that sizeof() is a synonym for count().
ARRAY_FILTER()
array array_filter (array input, callback function)

This function returns a new array consisting of only those elements of the input
array that pass through a filtering function.
Here is a simple code snippet illustrating how the function can be used:

function test_score($var) {
global $score;
return ($var > $score);
1
$winners = array_filter($players, "test score");

158

Part 11: Working with PHP

To illustrate the behavior of that function, imagine that $players initially con-
tained this list:

45, 35, 21, 8, 17, 12, 10

Further imagine that the global variable $score held 10. At the end of the code
snippet just illustrated, $winners would contain this:

45, 35, 21, 17, 12
ARRAY_KEY_EXISTS()
bool array_key_exists (mixed key, array search)

This function takes a key name and an array as arguments, and returns a
Boolean value indicating whether the key exists in the array.

ARRAY_KEYS()
array array_keys (array input [, mixed valuel)

With only one argument, this function returns all the keys of an array. If it is
given a value as a second argument, it returns all keys with that value.

ARRAY_MAP()

array array_map (mixed function, array arrayl [, array array2...]1)
This function takes an array and a function as arguments, and passes each ele-

ment of the array to the function. It returns an array consisting of the return values

generated by the called function for each element, in the original order. So, given

function halve($var) {
return $var / 2 ;
}
$half = array_map("halve", array(l6, 8772, 566, 100));

now $half contains:

Array

(
[0] => 8
[1] => 4386
[2] => 283

[3] => 50

Chapter 6: PHP’s Built-in Functions

159

Note that the called function must not modify the array itself.

ARRAY_DIFF() If given two arrays, this function will return all the elements that
are in the first array but not in the second array.

array array_diff (array arrayl, array array? [, array ...])

For example:

$knicks = array("sprewell", "houston", "ewing", "childs");
$all_stars = array("mourning", "houston", "carter", "davis",
"miller");

$non_knick_allstars = array_diff($all_stars, $knicks);

Note that in the returned array, the elements maintain the keys they had in the
array from which they were taken. So, after this code is run, $non_knick_allstars
will contain the following:

[0] => mourning, [2] => carter, [3] => davis, [4] => miller

Additional arrays can be added to the function. For example:

$knicks = array("sprewell", "houston", "ewing", "childs");
$all_stars = array("mourning", "houston", "carter", "davis",
"miller");

$non_knick_allstars = array_diff($all_stars, $knicks,
array("carter"));

Given this, carter will also be removed from the returned array.

ARRAY_INTERSECT() This function returns the array elements that two (or more)
arrays have in common.

array array_intersect (array arrayl, array array? [, array ...]1)
IN_ARRAY() This very convenient function will search all the values of an array
and return TRUE if the value in the first argument is found in the array in the sec-
ond argument.

bool in_array (mixed needle, array haystack)

ARRAY_KEY_EXISTS()

bool array_key_exists (mixed key, array search)

160

Part 11: Working with PHP

This function returns TRUE if the key value key exists in the array search.
The difference between this function and isset($arrayl'key']) is that if
$array['key'] has a value of NULL, isset($array['key']) returns FALSE, while
array_key_exists() returns TRUE.

ARRAY_POP() The array_pop() function returns the last element in an array, and
removes that element from the original array.

mixed array_pop (array array)
For example:

$array = array(1,2,3,4,5);
$int = array_pop($array);

After this runs, $array will contain (1,2,3,4) and $int will contain 5.

ARRAY_PUSH() This function adds elements to the end of the array indicated in
the first argument.

array_push (array array, mixed var [, mixed ...])
The additional arguments will be values you wish to tack onto the array:

$array = array (1,2,3);
array_push($array,4,5,6);

The resulting array will contain 1,2,3,4,5,6.
ARRAY_SHIFT()
mixed array_shift (array array)

This function works identically to array_pop(), except that it takes the first ele-
ment instead of the last.

ARRAY_UNSHIFT()
array_unshift(array array, mixed var [, mixed ...]1)

This function works identically to array_push(), except that it adds new ele-
ments to the beginning instead of the end of the array.

Chapter 6: PHP’s Built-in Functions

161

ARRAY_VALUES()
array array_values(array input)
Given an input array, array_values() returns all the values from the array.

Note that it does not return key names; instead, it outputs numbered values. The
following is an example output:

Array

(
[0] => Jay
[1]1 => 5.4
[2] => blue

ARRAY_WALK()
array array_walk (array array, callback function, [mixed datal)

This function takes an array and a function as arguments and passes each ele-
ment of the array through the function. It returns an array containing all trans-
formed elements, in the original order.

So if you have defined a function altupper, which modifies the case of strings
in an annoying way, then, given

$alternating uppercase = array_walk(array('blue', 'red', 'pink",
'yellow'), "altupper");

$alternating uppercase will contain the following:

[0] => bLuk
[1] => rkd
[2] => pInK

[3] => yElLoW
Note that the called function must not modify the array itself.
EACH()
array each (array array)
This function returns the key/value pair at the current location of the array cur-

sor (the logical pointer that indicates which element of the array is being examined)
and advances the cursor one element.

162

Part 11: Working with PHP

RESET()
mixed reset (array array)

This function resets the cursor of an array to the beginning, and returns the
value of the array’s first element.

ARRAY FUNCTIONS NOT USED IN THIS BOOK

Again, PHP contains many great array functions. Here are some of the highlights
(from our point of view, anyway).

ARRAY_COUNT_VALUES() This nifty function will return an associative array, the
keys of which will be all of the unique values within the array.

array array_count_values (array input)

The values of the resulting array will be an integer representing the number of
times the value appears within the array:

$array = array("yes","no","no","yes","why");
$result = array_count_values($array);

After this $result will contain:
[yes] =>, 2, [no] => 2, [why] =>1
ARRAY_RAND() This function will pick one or more random elements from an
array.
mixed array_rand (array input [, int num_reql)

Note that array_rand() does not pick the value; rather, it picks the key of the
chosen elements. For example:

srand ((double) microtime() * 1000000);
$names = array("jay", "brad", "john", "Jeff");
$rand_keys = array_rand ($names, 2);

In this example, $rand_keys will contain an array with two numbers. To get the
values from the $names array, you will first need to get to the key value extracted

by array_rand(), and so you will need to use something like this:

echo $names[$rand_keys[0]17;

Chapter 6: PHP’s Built-in Functions

163

TP Seed the random number generator only once per script. You might even
$®% want to think about using a shared variable so that you can seed the gener-
N\

NS

ator only once, period, to deal with a problem that’s beginning to appear

more frequently as processors get faster. If processor speed continues to
increase and transaction volume increases, there is a ceiling to reach at
which point the random numbers stop being random because your micro
time () value is the same in two consecutive calls.

SHUFFLE() This function randomizes the elements in an array.
void shuffle (array array)

You will need to seed the random number generator before using it. For
instance:

srand ((double) microtime() * 1000000)
shuffle ($array);

SORT() If no second argument is given, this function will sort an array in ascend-
ing or alphabetical order.

void sort (array array [, int sort_flags])
The flags can be of two kinds:

€ SORT_NUMERIC — Compare items numerically
€ SORT_STRING — Compare items as strings
If the array you wish to sort contains only numbers, PHP will sort it numerically;

if the array contains only strings, it will be sorted alphabetically. If the array con-
tains both strings and numbers, it defaults to sorting by a string.

TIP PHP offers many other ways to sort arrays. Please look at the manual entries
‘M forarsort(),ksort(),rsort(),andusort().
\

v

Object/class functions

PHP has a number of functions concerned with classes (which are templates from
which objects are created) and objects themselves. The examples in this book use a

164

Part 11: Working with PHP

few functions that retrieve information about the defined objects, classes, and
methods. Here they are.

is_al()

Use this function to determine whether a given object is an instance of a given class
or an instance of a class descended from the given class. Specify the object in the
first argument and the class name in the second; the function will return TRUE if the
one is an instance of the other.

bool is_a (object object, string class_name)

is_object()
This function, much like the other is_ functions, returns TRUE if the argument is an
object, and FALSE otherwise.

bool is_object (mixed var)

get_class()
Given an object, this function returns the name of the class of which the object is
an instance.

string get_class (object obj)

get_object_vars()
Given an object, this function returns an associative array containing the object’s
current properties.

array get_object_vars (object obj)

method_exists()
Given an object and a method name, this function returns TRUE if the method
(function) is defined for the object.

bool method_exists (object object, string method_name)

Print functions

Several functions enable you to print information to the screen. Only two pop up in
this book, but you should be aware of all the functions listed in this section.

PRINT FUNCTIONS USED IN THIS BOOK
In this case the word “functions” may be something of a misnomer. For instance,
print() is probably better described as a language construct. (The useful difference

Chapter 6: PHP’s Built-in Functions

165

is that you are not required to use parentheses around the arguments.) In any case,
you will use all of these very much as you will use functions; thus, they are included
here.

PRINT() As you would expect, this prints what you specify.

void print (string str)

ECHO() This also isn’t a function, but a language construct. We use it constantly
throughout this book, so at this point you probably know what it does.

void echo (string strl [, string strN ...]1)
Keep in mind that you can mix variables and literal strings within double quotes:

$var = "this string";
echo "Please print $var";

This will print P1ease print this string.
However, within single quotes the string will be treated literally:

$var = "this string";
echo 'Please print $var';

The preceding code will print Please print $var. The concept of mixing vari-
able names and string literals is discussed in greater detail in Chapter 4.

print versus echo. Which should you use? This is very much a matter of

personal preference: Use whichever you think looks better in your script.

There’s only one major difference between the two, and this may influence
your decision. echo can take multiple arguments. That is, with echo, differ-
ent portions can be separated by commas. This will work:

echo "this is part 1", "this is part 2";

But this will not:

print "this is part 1", "this is part 2";

PRINT FUNCTIONS NOT USED IN THIS BOOK

They didn’t come up here, but these are really important to know about.

166

Part 11: Working with PHP

SPRINTF()
string sprintf (string format [, mixed args])

This function can be used to output a string formatted according to a specified
C-style pattern. The parameters of the pattern are covered in detail in the online
PHP documentation (http://www.php.net/sprintf).
PRINT_R() This function is great for putting to productive use the time you’d oth-
erwise spend pulling your hair out. It prints the entire contents of any variable —
most notably arrays and objects — to the screen.
void print_r (mixed expression)

It is invaluable for debugging. We use it frequently when we’re not getting the

results we expect from arrays or objects.

Donotdoprint_r($GLOBALS).You will create a very large output.

SAUTIONS

VAR_DUMP() This function behaves like print_r, but gives you a bit more
information.

void var_dump (mixed expression)

In addition to printing out the contents of a variable, it includes the data type —
including the data type for each element in an array or object. The same caution
given for print_r() applies to var_dump().

Date/time functions

Dealing with PHP and MySQL as a team, you will have to get to know two sets of
date/time functions — and they are quite different. See Appendix J for detailed cov-
erage of MySQL'’s time and date functions.

DATE/TIME FUNCTIONS USED IN THIS BOOK

The following are some date/time functions used in the applications in this book.

DATE() You can use this function and the indicators outlined next to return the
date and time.

string date (string format [, int timestamp])

Chapter 6: PHP’s Built-in Functions

167

If you include a second argument, that time/date value will be formatted as you
prescribe. Otherwise, the current time and date will be used.

-|-|p~ , The time and date the functions return are based on the time on the server.
‘M You will need to make use of JavaScript to get an idea of the time on the
\

-/

client’s computer.

Often the second argument will be a product of the mktime () function,
which we discuss next.

o

You can format the date using any of the indicators in Table 6-1.

TaBLE 6-1 INDICATORS FOR THE date() FUNCTION

Indicator Meaning

a am or pm

A AM or PM

B Swatch Internet time

d Day of the month, two digits with leading zeros; 01 to 31
D Day of the week, textual, three letters; for example, Fri
F Month, textual, long; for example, January

g Hour, 12-hour format without leading zeros; 1 to 12

G Hour, 24-hour format without leading zeros; 0 to 23

h Hour, 12-hour format; 01 to 12

H Hour, 24-hour format; 00 to 23

i Minutes; 00 to 59

I [capital i] 1 if Daylight Savings Time, O otherwise

J Day of the month without leading zeros; 1 to 31

Continued

168 Part 11: Working with PHP

TABLE 6-1 INDICATORS FOR THE date() FUNCTION (Continued)

Indicator Meaning

1 (lowercase /) Day of the week, textual, long; for example, Friday
L Boolean for whether it is a leap year; 0 or 1

m Month; 01 to 12

M Month, textual, three letters; for example, Jan

n Month without leading zeros; 1 to 12

S Seconds; 00 to 59

S English ordinal suffix, textual, two characters; for example, th, nd
t Number of days in the given month; 28 to 31

T Time-zone setting of this machine; for example, MDT
U Seconds since the epoch (midnight, January 1, 1970)
W Day of the week, numeric; 0 (Sunday) to 6 (Saturday)
Y Year, four digits; for example, 1999

y Year, two digits; for example, 99

z Day of the year; 0 to 365

7 Time-zone offset in seconds; -43200 to 43200

For example, if you want to print the date in the format, June 5, 2003 4:22 pm,
this would do the trick:

echo date("F d, Y g:1 a");
MKTIME() This function is most useful for calculating valid dates.

int mktime (int hour, int minute, int second, int month, int day,
int year [, int 7s_dst])

For example, say you have a form that collects a date — maybe the current month,
day, and year. You want to calculate and set a due date exactly 30 days from the
date submitted.

Chapter 6: PHP’s Built-in Functions

169

$year = 2003;
$month = 5;
$day = 24;

echo date("1 F d, Y", mktime(0,0,0,$%month,$day+30, $year));

This will output 30 days from May 24, 2000, and will print out Friday June
23, 2000.

Keep in mind that this function enables you to add or subtract dates without
worrying that PHP will return a fictitious result. In the previous example, you could
subtract six from the month value of 5, and PHP would return a meaningful date.
You can add or subtract any number of years, months, or days without worrying
that PHP will return a bad result. For instance, the following is a perfectly accept-
able way to get date information about the last day of 1999:

$year = 2000;
$month = 1;
$day = 1;

echo date("1 F d, Y", mktime(0,0,0,$month,$day-1, $year));

This code will let you know that December 31, 1999 was a Friday.

Notice that the preceding code first calculates the timestamp of the date indi-
cated by mktime() and then prints that out using the date function.

If you exclude arguments from the right, those parameters will be retrieved from
the current timestamp. So, to print what the date and time will be in five hours, this
will do the trick:

echo date("1 F d, Y g:1 a", mktime(date('H')+5));

Note the nesting of functions here. Starting at the innermost function,
date('H") returns the current hour, in 24-hour format. Then five is added to that,
and the timestamp is calculated for five hours in the future. The timestamp is then
formatted using the string indicated.

TIME() This function returns the current time measured in the number of seconds
since the Unix Epoch. The Unix Epoch is the beginning of time in Unix terms — the
time with timestamp 0. It’s arbitrarily defined as January 1 1970 00:00:00 GMT.
int time(void);

MICROTIME() This function returns the string msec sec where sec is the current
time measured in the number of seconds since the Unix Epoch (0:00:00 January 1,

1970 GMT), and msec is the microseconds part.

string microtime(void);

170

Part 11: Working with PHP

This function is only available on operating systems that support the gettime
ofday () system call.

The returned string will look something like 0.12082400 969034581. You can
be reasonably sure that this function will never return the same number twice. It is
often used to seed the random number generator.

DATE/TIME FUNCTIONS NOT USED IN THIS BOOK

A few other time/date functions may prove useful to you. They include several for
printing the current date and time. If you need to know about something specific
that isn’t discussed here, take a look at the manual: http://www.php.net/manual/
ref.datetime.html.

File-system functions

PHP has a whole range of functions that enable you to manipulate files and direc-
tories on the host computer. In the course of creating applications for this book, we
encountered only one instance in which files needed to be written to or taken from
the file system: in the Catalog and Shopping Cart applications, when we needed to
provide the user with the ability to store images that have been uploaded. But if
you work with PHP frequently there’s little doubt that you will need to become
familiar with these functions. By way of introduction, we will say that the directory
and file-system functions in PHP are simply terrific. The PHP developers have
really done a great job of making working with files, either on the local system or
elsewhere on the Internet, a piece of cake. Just to give a quick example, it took
about two minutes to write the following script, which will grab a stock quote from
a site we will not specify for legal reasons.

$farray = file("http://domain.com/stockquote?symbols=0RCL", "r");
foreach ($farray as $value)
{
if(ereg("Tast:.*$", $value))
{
$value = strip_tags($value);
break;

This brief script slurps up an entire page and assigns each line to an element in
the $farray. We then loop through the array looking for the string 1ast. On the
site we played with, the word “last” indicates the most recent quote. All we had to
do was strip the HTML tags, and we had all the information we needed. If we had
wanted to, we could have done some more string processing to format the informa-
tion in a way we liked.

Chapter 6: PHP’s Built-in Functions 171

FILE SYSTEM FUNCTIONS USED IN THIS BOOK

If you would like to see these in use, check out Chapters 12 and 14.

FOPEN() This function opens a file pointer to the indicated file or URL in the first
argument. (The pointer is very much like the result identifier returned by
mysql_connect().)

int fopen (string filename, string mode [, int use_include_path])

The mode determines what you can do with the file. Table 6-2 shows the avail-
able modes.

TABLE 6-2 MODES FOR THE fopen() FUNCTION

Mode Meaning

r Open for reading only; place the file pointer at the beginning of the file.
r+ Open for reading and writing; place the file pointer at the beginning of the file.
w Open for writing only; place the file pointer at the beginning of the file and

truncate the file to zero length. If the file does not exist, attempt to create it.

w Open for reading and writing; place the file pointer at the beginning of the file
and truncate the file to zero length. If the file does not exist, attempt to create it.

a Open for writing only; place the file pointer at the end of the file. If the file does
not exist, attempt to create it.

a+ Open for reading and writing; place the file pointer at the end of the file. If the
file does not exist, attempt to create it.

Note that this function returns a resource identifier. If you wish to read from or
write to a file you will need to do something like this:

//open a file and read contents into a variable
$filename="test99.txt";
$fp = fopen($filename, "r+") or
die("could not open $filename");
$contents = fread ($fp, filesize($filename));
//replace all occurrences of Jayson
$new_contents = str_replace("Jayson", "Jay", $contents);
//write out new file contents.

172

Part 11: Working with PHP

rewind($fp);

fwrite($fp, $new_contents);

//ftruncate assures there won't be extra
//characters if the resulting file is shorter
//than the original.
ftruncate($fp,ftel1($fp));

fclose($fp);

FCLOSE() This function closes the pointer to a file.
int fclose (int fp)

It is good form to use it when you are done with a file. If you don’t, PHP will do
it for you, just like mysql_close().

FWRITE()
int fwrite (int fp, string string [, int Tengthl)

fwrite() writes the value of the string argument to the file indicated by the file
pointer. The function returns a value of -1 if an error is encountered; otherwise it
returns the number of bytes it wrote successfully.
FREAD()
string fread (int fp, int Tength)

fread() reads from the file pointer given in the first argument the number of
bytes given in the second argument, or until the end of the file, whichever comes
first.
FEOF() This function tests whether a file pointer has reached the end of a file.
bool feof (int fp)

See the fgets() function for an example of feof ().
FGETS() This function returns a single line from the file indicated by the file
pointer (usually taken from fopen()). If you are working with a large file, it’s easier
on the system to load files into memory one line at a time, rather than in one big

chunk as is done with fread().

string fgets (int fp, int Tength)

Chapter 6: PHP’s Built-in Functions 173

This function will read a line up until a newline character. Optionally, you can
specify the maximum number of bytes to read within a line in the second argument.
The number 2048 is traditionally used in the second argument because on many old
file systems that was the maximum line length. These days, you're safe using some-
thing larger. You shouldn’t use this function with binary files.

$fp = fopen("/path/to/file","r");
while ($fp && !feof($fp))
{
print fgets($fp,2048);
}
fclose($fp);

FILE() This function reads a file line by line, each line becoming an element in an
array.

array file (string filename [, int use_include_path])

UMASK() This function sets the umask value (see your Solaris man page — man
umask —if you don’t know what this is).

int umask (int mask)
umask() sets PHP’s umask to mask & 0777 and returns the old umask.
FILE_EXISTS()
bool file_exists (string filename)
If the local file specified in the argument exists, this function returns TRUE.
file_get_contents()
string file_get_contents (string filename [, int use_include_path])
The contents of the file specified in this function’s argument are returned in a
string. If the optional second argument is set to 1, the function looks for the file in

the include path specified in the configuration.

COPY() This function makes a copy of the file in argument one and copies it to
the location in argument two.

bool copy (string source, string dest)

174

Part 11: Working with PHP

If the copy works, the function returns TRUE. If not, it returns FALSE. This func-
tion is used in Chapter 12.

TEMPNAM() This function creates a unique file name in the directory indicated in
the first argument.

string tempnam (string dir, string prefix)

The string prefix in argument two will be placed before each file name. This can
help you keep track of what files belong to what scripts.

DIRNAME() This function will return the directory name of the supplied string.
string dirname (string path)

For example,
echo dirname("/www/htdocs/testfile.txt");

will return
/www/htdocs
MKDIR()
int mkdir (string pathname, int mode)

This function creates in the local file system a directory with the name pathname
and the permissions given by the octal integer mode. Permissions in this form are
governed by standard Unix rules, nicely explained by Linux vendor Slackware
here: http://www.slackware.com/book/index.php?source=x2163.html.
1S_DIR()
bool is_dir (string pathname)

If the argument is an existing directory, this function returns TRUE.
1S_UPLOADED_FILE()
bool is_uploaded file (string filename)

If the specified file was uploaded via HTTP by the user, this function returns

TRUE. It is useful for determining that the files a script is operating on are not
native system files.

Chapter 6: PHP’s Built-in Functions

175

MOVE_UPLOADED_FILE()
pbool move_uploaded_file (string filename, string destination)

This function incorporates the functionality of is_uploaded_file(). It first
checks whether the argument file name was uploaded via HTTP POST, and, if so,
moves it to the destination location. If it is not an uploaded file, the function
returns FALSE.

BASENAME()
string basename (string path [, string suffix])

Given a file path, this function will cut off all elements of the path except the
base file name. If a suffix is given as an optional argument, that suffix will also be
cut off of the file name. For example:

$path = "/www/htdocs/testfile.txt";
echo basename($path, ".txt");

will output
testfile
REALPATH()
string realpath (string path)

Given a pathname containing symbolic links or ../ shortcuts, realpath() will
return an absolute pathname with none of these components.

FILE SYSTEM FUNCTIONS NOT USED IN THIS BOOK

File system functions are an important topic, and one you should spend some time
learning about. Most of the more popular file system commands are available
through PHP, and many commands are available for opening, reading, writing, and
displaying files. But, as this book deals with a relational database for data storage,
we will not cover them here.

Script Control functions

This is a group of functions and language constructs that can be used to control the
execution of PHP scripts.

176

Part 11: Working with PHP

call_user_func()
mixed call_user_func (callback function [, mixed parameter [, mixed ...]1])

This function takes a user-defined function as its argument and calls the func-
tion, passing it any parameters given.

call_user_func_array()
mixed call_user_func_array (callback function [, array parameters])
This function is fundamentally the same as call_user_func(), with the differ-

ence that, instead of passing a single parameter or list of parameters, it passes an
array to the called function.

die()
void die ([string status])
This function outputs the argument string and then terminates the script. It is
used very commonly to abort a function when an error is encountered.
Note that this function is equivalent to exit ().
eval()
mixed eval (string code)
This function is used to execute code stored in a variable. The function evaluates

and executes the code string contained in the argument, and returns the return
value of the code.

Using eval () with poorly escaped or terminated code will result in parse
errors that can be tricky to debug.

func_get_arg(), func_get_args(), and func_num_args()
mixed func_get_arg (int arg_num)
array func_get_args (void)

int func_num_args (void)

Chapter 6: PHP’s Built-in Functions

177

When called within a function, these three functions give information about the
function’s arguments:

¢ func_get_args() returns an array consisting of the function’s argument
list.

¢ func_get_arg() returns argument number arg_num in the function’s
argument list.

¢ func_num_args() returns the number of arguments passed to the function.

Each of these functions generates a warning if it is not called from within a
user-defined function.

function_exists()
bool function_exists (string functionname)

If the function specified in the argument exists, this function returns TRUE. This
function can be useful for testing the runtime environment, although some func-
tions that exist may not be usable in the current configuration.

include(), include_once(), require(), and require_once()
These are special language constructs used to control the execution of scripts. Each
takes a PHP file name as an argument, and includes and evaluates the file in the
course of execution. require() and include() behave identically, with the differ-
ence that require() will generate a fatal error if the file to be included is missing,
whereas include() merely generates a warning.

include_once() and require_once(), as their names imply, will only include
the specified file if it has not already been included.

The format is simple:

include(remote_file);
include_once(remote_file);
require(remote_file);
require_once(remote_file);

Random number generator functions

Every now and then you will need to pick something at random. It may be an indi-
vidual element, or it may be something that has to do with randomizing an array
with shuffle() or getting a random element from an array with array_rand(). In
any case you will need to make use of PHP’s random number generator functions.

Note that the random number generator needs to be seeded before use. That is, it
has to be given a number that is reasonably unique to begin with. For this, as you
will see, the microtime() function will be of great use.

178

Part 11: Working with PHP

Keep in mind that really two sets of random number generators exist. There are
the standard rand(), which doesn’t take a seed, and srand(), which does and
which you need in order to seed the generator for shuffle() and array_rand().
However, if you just want to get a random number and not use it with any other
functions, use the mt functions described below — they’re faster and more random.

Now we examine some important random number generator functions used in
the applications in this book.

mt_srand()
This function seeds your random number generator.

void mt_srand (int seed)

Use the following line and you can be sure your numbers will be plenty random:
mt_srand ((double) microtime() * 1000000);

Seed the random number generator only once per script.
mt_rand()
This function returns a random number. You can specify a minimum value and/or
a maximum value.
int mt_rand (Lint min [, int max]1)

So to get a random number between 1 and 100, do the following:
mt_srand((double)microtime() * 1000000);

$number = mt_rand(1,100);
echo $number;

rand()
int rand ([int min, int max])

rand() generates a (pseudo)random number between min and max.

7 |

mt_rand() returns better, faster results than rand ().

Chapter 6: PHP’s Built-in Functions

179

Session functions

These are explained in detail in Chapter 14. Sessions are means by which state is
maintained between pages. Remember that HTTP, the language of the Web, does not
allow servers to remember much of anything between requests for pages from a
specific user. Sessions allow the server to keep track of activities by a single user.

MySQL functions

These functions are explained in detail in Appendix J.

A total of 48 MySQL functions are available in the library. Only about a third of
these are used in the applications in this book. You may find uses for some of the
other MySQL functions in your applications, but you probably won’t use all of them.

HTTP header functions

Three vital HTTP header functions exist, both of which you will need to get to know.

header()
If you are going to be communicating with the browser or with other HTTP servers,
this is the function to use.

int header (string string)

Essentially, you can send any header that would be expected under RFC 2616
(ftp://ftp.isi.edu/in-notes/rfc2616.txt), which defines HTTP. The RFC itself
is a handful (and perhaps the sleepiest reading you’ll do all year). Here is a common
header you are likely to send:

header("Location: http://www.php.net");

This is nothing more than a redirect: It sends the browser to a page you specify.
If you have been working with straight HTML and JavaScript or the <META
type=refresh> tag to do your redirects, you should switch to this type of header
whenever possible. It will work for all browsers and the redirection will be totally
transparent to the user.

-"p’/ L IMPORTANT — no, make that VERY IMPORTANT — you cannot send a header
‘M after anything — ANYTHING — has been sent to the browser. If you send a
\

header after even a hard return, you will get an error. If you send a hard

return before your opening <?php tag, you will get an error. If there is a hard
return in an included file that precedes your header () function, you will

180

Part 11: Working with PHP

get an error. This should not be a problem you encounter frequently; your
pages should be designed so that most of the logic is handled prior to the
display. However, if you have a situation you just can’t work around, take a
look at the output buffering functions.

setcookie()
This is basically a specialized header function, because a cookie is set by nothing
more than a specific HTTP header.

int setcookie (string name [, string value [, int expire [, string
path [, string domain [, int securelllll)

The first argument will be the name of the cookie. The second will be the value.
The expire value should be set with the time function. The following is a pretty
typical use of setcookie():
setcookie("id",$id_val,time()+(24*60*60),"/"," .domain.com",0);

This will set a cookie that will expire in 24 hours (24 X 60 X 60). The cookie will

be available to every directory within domain.com. If you want to restrict it to a
specific directory, you can change the / to a directory name.

You can find more on cookies in Chapter 4 in the discussion on variables.

In some versions of Internet Explorer, you must either give both time and
path values or neither.

&

header_sent()
This function can keep you from sending headers after some text has been sent to
the browser.

bool header_sent(void)

Chapter 6: PHP’s Built-in Functions

181

If you are relying heavily on this function, you are probably not coding your
pages properly.

o

Image functions

PHP provides very powerful functions for generating and manipulating images.

IMAGE FUNCTIONS USED IN THIS BOOK

Here is a rundown of the image functions used in this book.
GETIMAGESIZE()
array getimagesize (string filename [, array imageinfo])

Given an image file as argument, this function returns an array containing the
width of the image in pixels, the height of the image in pixels, a numeric flag con-
taining the type of the image, and a text string containing the dimensions that can
be used directly in an HTML IMG tag. Valid numeric flags include 1 for GIF, 2 for
JPEG, and 6 for BMP.

So, given a JPEG of 468 X 60 pixels, getimagesize() would return the following:

Array

(

[0] => 468
[1] => 60
[2] => 2

[3] => height="60" width="468"
)

IMAGECOPYRESIZED()

int imagecopyresized (resource dest_im, resource src_im, int destX,
int destY, int srcX, int srcY, int destW, int destH, int srcW, int
SrcH)

This function is used to copy part of one image (referred to above as a
resource), delineated by rectangular X and Y coordinates and offset, to another
image. The arguments it takes are as follows:

@ The destination image identifier

@ The source image identifier

182 Part 11: Working with PHP

The starting X coordinate on the destination image
The starting Y coordinate on the destination image
The starting X coordinate on the source image

The starting Y coordinate on the source image

The width in pixels of the destination image

The height in pixels of the destination image

The offset width to take from the source image

® 6 6 6 6 6 O o

The offset height to take from the source image
IMAGECREATE()
resource imagecreate (int x_size, int y_size)

This function creates a new image with the given dimensions, and returns its
identifier.

IMAGECREATEFROMSTRING()
resource imagecreatefromstring (string image)

This function creates a new image from the image stream given in the argument
string, and returns its identifier.

IMAGEPNG()
int imagepng (resource image [, string filenamel)

Given an image identifier, imagepng() outputs an image stream, in PNG format,
to either the user’s browser or, if it is given a file name as a second argument, to the
specified file.

IMAGESX(), IMAGESY()
int imagesx (resource image)

int imagesy (resource image)

These two functions return the dimensions of the referenced image: imagesx()
returns the width, and imagesy () returns the height.

Chapter 6: PHP’s Built-in Functions 183

IMAGETYPES()
int imagetypes (void)

This function checks the configuration of the GD library that PHP is using to see
which image types are supported. It returns a bitmask containing a value that cor-
responds to the AND sum of the constants that represent each image type. You can
test for PNG support, therefore, with code like the following:

if (imagetypes() & IMG_PNG)
echo "PNG support is enabled.";
}

EXIF_IMAGETYPE()
int exif_imagetype (string filename)

exif_imagetype() examines an image file and determines the type of image it
is, returning a numeric code, or FALSE if it is not a recognizable image type. PHP
must be compiled with—enable-exif.

Refer to the online PHP manual (http://www.php.net/manual/en/ref.image.
php) for a list of image types and their codes.

EXIF_THUMBNAIL()

string exif_thumbnail (string filename [, int width [, int height [,
int imagetypelll)

If an image contains an embedded thumbnail, this function will retrieve the
thumbnail as a data stream. For example:

<?php

$thumb= exif_thumbnail($imagefile, 40, 50);
echo $thumb;

7>

If the preceding code is stored as a file called thumbnail.php, a subsequent HTML
call to this file as an image will display the thumbnail:

Mail function

If you have Sendmail or another suitable email program installed on your system,
this function will take all the fuss out of sending email from your PHP pages.

184

Part 11: Working with PHP

Sendmail is the program most commonly used with PHP’s ma i 1 function, but
gmail with Sendmail wrappers will work, and Pegasus (http://pegasus.

ol

The mail () function sends an email from your PHP script.

usa.com/) can apparently work on Windows (though we haven't tested it).

bool mail (string to, string subject, string message [, string
additional_parameters])

Your basic email will look like this:
mail("name@domain.com","Subject Text", "The complete message goes here");

And if you want to get a little fancier and include a From and a Cc:, use the
following:

mail("jay@trans-city.com","Test Message", "Here I am",
"From: Jay G\r\nCc: webmonkey@trans-city.com\r\nReply-to:
myname@mydomain.com");

Additional parameters have been added in the fourth argument, and the differ-
ent parameters are separated by line feeds and newlines (\r\n).

TIP If you want to set up a large email system, don't use PHP. Better tools are out
‘@% there.This function is intended for sending an occasional email from within
A o PHP scripts.

If you'd like to send attachments in your PHP email, check out this excellent
article at phpbuilder.com: http://phpbuilder.com/columns/
kartic20000807.php3.

0

A

URL functions

If you've ever looked at a query string, you may have noticed that the text you
entered into your form fields has been changed. For examples, spaces are turned
into plus signs (+) and each ampersand () becomes %26. Many other characters are
encoded. (All non-alphanumeric characters other than the hyphen (-), underscore
(1), and dot (.) are replaced by a percent sign (%) and two characters).

Chapter 6: PHP’s Built-in Functions

185

On occasion you will need to encode or decode text. For that you will use the
functions below.

urlencode()
This function encodes a string so that it’'s URL-ready. Most often you will use this
function if you want to send variable information to another page.

string urlencode(string str)

For example:
$myvar="this string with weird &* stuff";
$encoded = urlencode($myvar);
header("Location: http://www.mydomain.com?var=$encoded");

Notice that this code snippet has only encoded the values of a querystring ele-
ment. If you were to urlencode the entire URL, you would not be happy with the
results. The result of this code
urlencode("http://www.mydomain.com");

is http%3A%2F%2Fwww.mydomain.com.

urldecode()
This function undoes the encoding process. It’s usually unnecessary because the
variable created from your GET or POST data is decoded in your variables.

string urldecode(string str)

rawurlencode()

This function returns a string in which all non-alphanumeric characters except the
hyphen, underscore, and dot have been replaced with a percent (%) sign followed by
two characters.

string rawurlencode(string str)

This is the encoding described in RFC 1738 for protecting literal characters from
being interpreted as special URL delimiters, and for protecting URLs from being
mangled by transmission media with character conversions (like some email sys-

tems). For historical reasons, spaces are encoded as plus (+) signs.

rawurldecode()
This function unencodes according to the same provisions as rawurlencode().

string rawurldecode(string str)

186

Part 11: Working with PHP

base64_encode()

This function encodes a specified string in such a way as to eliminate all possible
control characters, meaning the string can be sent over any transmission medium
without the need to worry that the string could be interpreted as a command.

string base64_encode(string str)

base64_decode()
This function undoes what base64_encode () does. That is, it converts the encoded
string back into its original form.

string base64_decode(string str)

Error functions

PHP gives you a high level of control over how errors are handled and reported to
the user. Here is an overview of some of the important error-handling functions that
are offered.

error_reporting()
This function sets the level of error reporting.

int error_reporting ([int Tevell)
Possible levels of reporting are:

0 —No reporting

1 —Errors

*

*

& ? —Warnings
& /4 —Parse errors
*

8 — Notices

You are encouraged to use the predefined named constants instead of raw num-
bers: E_ERROR, E_WARNING, E_PARSE, E_NOTICE, E_ALL, and so on. See the online PHP
documentation (http://www.php.net/manual/en/function.error-reporting.
php) for more details about levels of error reporting.

If you want a particular expression to cast no errors, you can prefix it with the @
operator.

error_log()

int error_log (string message [, int message type [, string
destination [, string extra_headers11])

Chapter 6: PHP’s Built-in Functions

187

If you want to log a custom error message, this is the function to use. It can send
a message to the server’s logger (as specified in the error_log directive), to an
email address, or to a file.

set_error_handler()
string set_error_handler (callback error_handler)

In scripts in which errors must be handled by a custom function,
set_error_handler() enables you to specify that function. All error messages (as
controlled by error_reporting()) are sent to the specified function.

trigger_error() and user_error()

void trigger_error (string error_msg [, int error_typel)
void user_error (string error_msg [, int error_typel)

These two functions are synonymous. Both send a user-level error message.

Output buffering

Output buffering is the process of writing the results of your script to a temporary
buffer. Instead of being sent out over the Web the results will gather in a buffer,
where you can manipulate them if you wish.

Probably the most common use of output buffering is to ensure that you don’t
get errors caused by sending headers after text has been sent to the browser. To pre-
vent this from happening you can start a buffer, write some of an HTML page to the
buffer, and then, given a specific condition, write a header (maybe a cookie), and
then output the rest of the page. When you flush the buffer, the contents will be
written to the browser without error.

TIP If you are frequently using buffering to prevent headers from causing
‘M errors, rethink your page logic. Decisions first, output second.
N\
NS

People have also been playing with using output buffering to gzip page con-
tents. In browsers that are capable of unzipping, the page can be downloaded a lot
faster this way. However, given browser craziness, we don’t recommend this.

BUFFERING FUNCTIONS USED IN THIS BOOK

Object buffering allows you to cache instances of object in a region of memory,
making them easily accessible across multiple sessions. Quite a few object-buffering
functions exist. We used very few of them.

188

Part 11: Working with PHP

OB_START() This function starts the buffer.
void ob_start(void)
FLUSH() This function clears the buffer.
void flush(void)
OB_END_CLEAN(), OB_END_FLUSH()
void ob_end_clean (void)
void ob_end_flush (void)
These two functions both turn off output buffering, but ob_end_flush() sends
the contents of the buffer to output first, whereas ob_end_clean() deletes the con-

tents of the buffer without sending them.

BUFFERING FUNCTIONS NOT USED IN THIS BOOK

Check the online manual for some more sophisticated buffering functions.

Information functions

These functions will give you information about the environment in which you are
working.

phpinfo()
int phpinfo ([int option])

This is your guide to all that is available in your PHP environment. Use it. Use it.
Use it. And then take it off your system. There’s no point in letting crackers get a
look at the specifics of your system.

The option argument specifies what you want information about, such as
installed modules. Have a look at the manual page (http://php.net/phpinfo) for
a list of legal option values.
phpversion()

string phpversion (void)

This function returns only the version of PHP you are using.

Chapter 6: PHP’s Built-in Functions

189

php_sapi_name()
string php_sapi_name (void)

This function returns a string indicating the type of Server Application
Programming Interface (SAPI) interface that exists in the current configuration. For
example, if the CGI version of PHP is running, the string will be cgi.
extension_loaded|()

bool extension_loaded (string extensionname)

This function returns TRUE if the input PHP extension is loaded, and FALSE if it
is not.

ini_get()
string ini_get (string varname)
This function returns the value of a PHP configuration option.
ini_set()
string ini_set (string varname, string newvalue)

This function assigns a new value to a PHP configuration option. Refer to the
PHP online documentation for information on which options can be controlled by
this function.

Summary

As you’ve seen, PHP has more functions than you will be able to commit to mem-
ory anytime soon. It can seem intimidating, but the quantity and quality of these
functions are what make PHP such a great language. Most anything you need to do
can be done quickly and painlessly.

At first you may need to study and play with the functions in order to get them
to work. But in time it will get a lot easier. You'll be making use of more and more
functions, and keeping your scripts more compact and easier to read.

Chapter 7

Writing Organized and
Readable Code

IN THIS CHAPTER

¢ Keeping your code tidy
4 Understanding the power and convenience of functions
¢ Using object-oriented code

¢ Learning the importance of comments

THIS CHAPTER PRESENTS a run-through of the preferred ways to present and orga-
nize code. Along the way you will see how to construct functions and classes in
PHP. By the end of this chapter you should have a good idea of how write efficient,
readable applications in PHP, and you should be ready to dive into the applications
in Parts III and IV of this book.

Indenting

If you have done coding in any language, this point should be pretty obvious. But
it is an important point and, therefore, deserves some mention. In the type of cod-
ing needed for Web applications, following a few indenting rules can help make
your life a little easier.

o

How far should you indent? Some feel that each level of code should be
indented by three spaces. Others, like us, think a single tab is the way to go.If

you use spaces, it is possible that your code will look terrible in a different
text editor (maybe the one used by your co-worker). We believe tabs are a
better choice anyway, but some people have the opposite opinion with the
same motivation. So really, what’s important is consistency.

191

192

Part 11: Working with PHP

Code blocks

The most obvious use of indenting comes in differentiating blocks of code. For
instance, it is fairly typical to have an if block within a while loop:

$i = 0;
while ($i < 100)
{
$i++;
if ($i < 50)
{
echo "Within the first 49.";
}
else
{
echo "Between 50 and 99.";
}

As you can see in this PHP code, each block is delimited by curly braces ({});
this goes for both while loops and if blocks. When a block is entered with an
opening curly brace, the next line should be indented. Each line following at the
same level of execution should be indented at the same level. Additional nested
blocks should be indented another level.

Looking at the preceding brief snippet of code, it is easy enough to see that it
contains three distinct blocks. This might not seem like such a big deal with a small
bit of code like this, but as scripts get longer, and levels of nesting get deeper, you
will see how important it can become. We're not going to belabor this point because
it should be pretty clear. But, for a quick example, we present the previous code
without indents. Note that it works just fine — PHP doesn’t care if you don’t write
your code neatly. But imagine coming back to this a month after you wrote it and
having to troubleshoot or add code. Life is a lot easier if you can easily find the
block that needs work.

$1=0;

while ($i < 100)

{

$i++;

if ($i < 50)

{

echo "Within the first 49.";
}

else

{

Chapter 7: Writing Organized and Readable Code

193

echo "Between 50 and 99.";
}
}

If you like, you can even run everything together, like this:

$i=0; while ($i < 100) {$i++; if ($i < 50) { echo "Within the
first 49."; } else { echo "Between 50 and 99."; } }

The interpreter truly does not care. Indeed, you’ll sometimes see code generated
by other programs that looks that way. Such organization is obviously a nightmare
to analyze and maintain.

You can also omit some of the braces, like so:

$1 = 0;
while ($i < 100)
{
$i++;
if ($1 < 50)
echo "Within the first 49.";
else
echo "Between 50 and 99.";

This is an easy way make your code a little more compact, and in some ways
easier to read, if — and let’s stress that if— you're writing simple i f-else statements
like this one. Remember, though, indenting alone does not a code block make. This
code:

$1 = 0;
while ($i < 100)
{
$i++;
if ($1 < 50)
echo "Within the first 49.";
else
echo "Between 50 and 99.";
echo " (which is getting up there)";

will not treat those last two echo statements the same, even though it looks like
it might. In fact, the preceding code is equivalent to the following:

$1 = 0;
while ($i < 100)

194

Part 11: Working with PHP

$14++;
if (81 < 50)
{

echo "Within the first 49.";
}
else
{

echo "Between 50 and 99.";
}
echo

(which is getting up there)";

When in doubt, use braces.

TIP Are you getting a parse error you can't identify? Make sure you have an iden-
‘&{ tical number of opening and closing curly braces and parentheses. If you
N\
J

have, for example, five closing curly braces in a page and only three opening

ones, you haven't opened at least two of your code blocks. Most code
editors — which are really just text editors with a few extra features for
programming — enable you to park your cursor on a single brace and either
use a hotkey combination to find its match or highlight the block of code it
marks. If the matching brace or marked region isn't what you expect, you
know how to advance further down the road to bug-free code.

Function calls

Indenting code should not stop at code blocks. Often you need to use nested func-
tion calls or complex variables that take up several lines. You will be much happier
in your coding life if you use indents in these situations. Take a look at the follow-
ing, which is borrowed from the Catalog application:

$file_ext = strtolower(
substr(
$file
, strrpos($file,".")

The purpose of this code is pretty simple: It takes the name of a file and assigns
its extension (the characters following the final dot (.)) to $file_ext. It takes three
separate built-in PHP functions to get this done. PHP executes the innermost level

Chapter 7: Writing Organized and Readable Code

195

first. There, strrpos() finds the numeric position of the final dot. For example, for
the string myfile. jpg it would return 6. Then the substr() function returns only
the characters following the dot. Finally, that string is set in lowercase characters.

This code can be written on one line, but as you can see, it becomes rather diffi-
cult to read:

$file_ext = strtolower(substr($file, strrpos($file,".")));

ol

Or maybe you find this easier to read. A lot of things we talk about in this
chapter are matters of personal preference. The important thing is that you

spend a lot of time considering how to make your code as readable as possi-
ble.On the other hand, if you plan to share your code with others (especially
via public repositories like SourceForge), you should adhere to style conven-
tions. There doesn't appear to be an official (or generally recognized) docu-
ment that describes PHP-coding style conventions. The PEAR folks have a
style guide you might want to peruse, at http://pear.php.net/
manual/en/standards.php.

In the first example of this code, it’s much easier to see what each of the closing
parentheses relates to, and you can more quickly get an idea of what the code
accomplishes and how.

TIP & You might be tempted to write the preceding code using temporary assign-
‘M ments to variables. That would look something like this:
N\
4 $file_ext = strrpos($file, ".");

$ext_letters = substr($file, $file_ext);
$Tower_ext_letters = strtolower($ext_letters);

But this code is slower at execution time (not to mention at coding time),
though a code optimizer could reduce the problem. Variable assignments
do take time, and in a short piece of code where they aren’t necessary, stay
away from temporary-variable assignment.That said, you should avoid sacri-
ficing readability. In some places temporary variables can help make code
much easier to read. And there are circumstances when using a temporary
variable speeds up your code — by avoiding repetition of a function call
whose results aren't going to change, for example:

$len = count($array);

for ($1 = 0; $i < $len; $i++)

{

196

Part 11: Working with PHP

}

In neither case is the speed difference phenomenal. So, as usual, it ends up
being a question of what makes the most sense for you.

SQL statements

In Web-database applications, SQL statements are interspersed throughout PHP
code. Usually PHP variables are included within SQL statements to get specific
results based on variable data. Indenting SQL statements helps keep the code read-
able and maintainable. In the following example we show you a few examples of
SQL statements of various types. You can see many examples of these in the appli-
cations in Parts Il and IV of this book.

//2 table select
$query = "select n.fname, n.lname
, C.co_name, c. co_address, c.co_zip
from names n, companies cC
where n.name_id = $name_id
and n.co_id = $c.co_id

//update query in heredoc style
$query = <<<KEOQ
update products
set product = '$product’
, description = '$cleandsc’
, price = $nullprice
, image_src = $nullimage_src
where product_id = $product_id
E0Q;

//insert query
$query = "insert into products (category_id, product)
values ($category_id, '$product')

We've heard stories of database engines refusing to process queries that,
like the ones preceding, have newlines in them. This issue is not a problem

o

with MySQL and won't be a problem with most database engines. However,

Chapter 7: Writing Organized and Readable Code

197

there are other perfectly acceptable ways to write queries that do not put
newlines in the queries, yet show indenting to the reader. Here are a couple
of examples using the concatenation operators:

$query = "select col_1, col2 ";
$query .= " from table_1, table 2 ";
$query .= " where col_1 = $var";

or

$query = "select col_1, col_2 "

" from table_1, table_2 "
" where col_1 = $var"

Choose whichever you like best.

Includes

Every language has a facility for including external files. PHP has four commands
that enable you to do this. Before we get to those, we briefly discuss why includes
are so critical for writing organized and readable code. And we start with a very
common example.

In most Web sites, header information varies little from page to page. There are
opening tags (<HTML>, <HEAD>, and so on) and perhaps some navigation informa-
tion. The following is a typical HTML-page header:

<HTML>
<HEAD>
<TITLE>My Page Name</TITLE>
</HEAD>
<body bgcolor="#FFFFF" 1ink="#8E0402" v1ink="420297C">

It is an absolute waste to type this text into every file within a Web site.
Moreover, it can be a real pain. Suppose you want to change the bgcolor attribute
of the <body> tag throughout the site. If this information were hard-coded in every
file, you would have no choice but to either go into each file individually and make
the change or write a script to do it for you.

You are far better off keeping all of this information in a single file (maybe
called header.php) and then using a command that spits the contents of that file
into the file being accessed. For this, you can use one of the PHP functions dis-
cussed in the next section. For this example we use include().

198

Part 11: Working with PHP

ical choice. One advantage of this approach is that the files can't be run

T“’T You might want to give your include files a distinct extension —.inc is a typ-
p Z
'\

directly from a browser, since the Web server is (usually) not configured to

recognize .inc as a PHP file. You can also store your include files outside of
your Web server’s document path for even more security (since some
servers respond to unknown extensions by printing out the file — oops,
there’s your source code.)

Suppose you have two files, header.php and index.php. (Notice that we have
made an important change in header.php: The <TITLE> tags now contain a PHP
variable.)

<HTML>
<HEAD>
KTITLE> <?php echo $page_title; ?> </TITLE>
</HEAD>
<body bgcolor="#FFFFF" 1ink="#8E0402" v1ink="#20297C">

o

You may have seen code like the above written like this:
KTITLE> <7?= $page_title ?> </TITLE>

These “short tags” involve less typing, it's true, but whether or not they work
is dependent on how PHP is configured. They're likely to be disabled by
default, now or in future releases, so you should avoid using them.

Now for the index.php file:
<?php

$page_title = "Welcome to My Site";
include('header.php');

echo "Here are the contents of my PHP pages. Anything could be
here.";

7>
Notice that the variable $page_title is visible to the file pulled in by the

include statement. When index.php is served, the resulting HTML page will be as
follows:

Chapter 7: Writing Organized and Readable Code 199

<HTML>
<HEAD>
KTITLE> Welcome to My Site </TITLE>
</HEAD>
<body bgcolor="#FFFFF" Tink="#8E0402" v1ink="4#20297C">

Keep any code, whether HMTL or PHP, that is needed in a variety of pages within
include files. Header and footer information, database-connection code, and pages
that contain functions or classes are all good candidates for includes.

%‘%&

PHP contain a variety of commands that do slightly different things with
included files. We look at these commands in the following sections.

At the start of an included file PHP reverts to HTML mode. If code within the
file needs to be parsed as PHP, you must first indicate that with the <?php

marker.

include() and require()

These commands are very similar and can usually be used interchangeably.
However, you should know what distinguishes the two, because at times using the
wrong one can cause problems.

The primary difference is indicated by the names. The require() command fails
with a fatal error if it can’t find the file it is trying to import; the file is “required”
to continue. The include() command, on the other hand, issues a non-fatal error
(which you can block with the @ operator) only if it can’t find the file, and PHP
continues processing your script.

include_once() and require_once()

In addition to include() and require(), PHP provides include_once() and
require_once(). These are provided to keep you, the developer, from stepping on
your own toes. As you might expect, they keep you from including the same file
twice, which, were it possible, could cause some problems when it comes to calling
user-defined functions.

For example, suppose you have a file that contains a function, but that the func-
tion relies on another function from an outside file. Your file would contain lines
like these:

require 'helpful_file.php';
function short_function()
{

200

Part 11: Working with PHP

[...]
the_function_from_helpful _file();

Suppose you give the name short_function.php to the file containing the preced-
ing lines. Later, if you try to include both short_function.php and helpful_file.php in
a third file, you'll have a problem. The second time that helpful_file.php gets
included, it will try to redeclare functions that have already been declared once.
PHP will not let you do this and will spit out an error. So in cases like this use
include_once() or require_once(). Note that if files are included more than
once you might also have a problem dealing with variables that inadvertently over-
write each other.

User-Defined Functions

Chapter 6 shows many of the functions built into the PHP processing engine. If you
are a humble person and look at Appendix F or visit the online PHP manual, you
should be duly impressed by the quantity and power of PHP’s built-in functions.
But it isn’t enough — and no matter how much work the able developers put into the
language, it never will be enough. That is because every developer on the planet
has unique needs. You need to accomplish specific tasks, and you need to do it in
ways that fit your own styles and predilections.

User-defined functions enable you to create blocks of code that achieve specific
tasks. The great thing about user-defined functions is that the code becomes
reusable. Any piece of code that you find yourself writing over and over should be
committed to a function. This saves you time in the long run.

o

Function basics

You can start by writing a simple function that writes out the start of an HTML
table.

In the applications presented in this book nearly all of the code is within
functions.The files that you see in your browser typically result from a num-

ber of function calls. This approach helps to keep things readable.

function start_table()
{
echo "<table border=1>\n";

Chapter 7: Writing Organized and Readable Code

201

To call this function within your PHP page, you access it just like a built-in PHP
function:

start_table();

That’s easy enough. But what if you want the border to vary in given situations?
You can make the border a variable, and then in the function call specify the value
for border:

function start_table($border)
{
echo "<table border=$border>\n";

start_table(l);

Now suppose that most of the time you want the border to be 1, but that you
want to be able to change the border within the function call. The following does
the trick:

function start_table($border=1)
{
echo "<table border=$border>\n";

Here $border has been given a default value of 1. But you can overwrite that
value by specifying a different value when calling the function. For example, if you
call the function with the following command, the table has a border of 2:

start_table(2);

Once again, 1 is the default value, so if this function is called with the following
code the table border is 1:

start_table();

If you know your HTML, you know that the table tag can have multiple attrib-
utes: cellspacing and cellpadding are two others. You can add those to the
function, along with default values:

function start_table($border=1, $cellspacing=2, $cellpadding=2)
{

echo "<table border=$border cellspacing=$cellspacing
cellpadding=$cellpadding>\n";

}

202

Part 11: Working with PHP

Then, in the call to this function you can alter any of these:
start_table(4,5,5);

The table created with this command has a border of 4, cellspacing of 2, and
cellpadding of 5.

The values that the function accepts are known as arguments. So the

start_table function shown here takes three arguments. The more

pedantic members of the audience might point out that the values sent to
the function are arguments, while the values received by and used within
the function are parameters. Practically speaking, they're the same thing,
and you see the words used interchangeably all the time.

When constructing functions, be aware that if you wish to change one of the
default values in your function call, you must specify all the arguments that pre-
cede it (that is, that occur to the left of it). For instance, the first command in the
following code produces an error. However, the second one works and creates a
table tag with a border of 4, cellspacing of 3, and cellpadding of 2.

//this will cause an error
start_table(,5,5);

//this will work
start_table(4,3);

Also, if you don’t specify a default value for an argument in your function defi-
nition, then you must supply a value for it when you call it. If you had written the
start_table() function like this:
function start_table($border=1, $cellspacing=2, $cellpadding)

Then this call . . .

start_table(4,3);

would fail. You need to supply a value for $cellpadding, like this:
start_table(4,3,2);

Functions can accept more than simple variables; you can pass any of the scalar

types (string, integer, double), any array (numeric, associative, or multidimensional),
resources (like a MySQL connection handle), or objects. You might want to make

Chapter 7: Writing Organized and Readable Code

203

use of a function that turns a PHP array (in other words, a list of stuff) into an
HTML unordered list (a visible list of stuff).

function create_ul($array)
{
echo "\n";
foreach ($array as $value)
{
echo "<I1i>$value</Ti>\n";
}
echo "\n";
}

Returning values

Of course, your functions do more than print HTML. Functions can perform data-
base calls or mathematical computations or do some string handling. They can do
just about anything, and often you want to make the rest of the script aware of the
results of your function. You can do this by using the keyword return. When a
function hits the word return it leaves the function, and it returns whatever value
you specify —a variable, a Boolean value (TRUE or FALSE), or nothing at all, if that’s
what you prefer. (Note: a plain ‘return;’ statement is equivalent to ‘return NULL;’)

function basic_math($val_1, $val_2)
{
$added = $val_1 + $val_2;
return $added;

You can then call this function and print the results:

$added_value = basic_math(5,4);
echo $added_value;

If fact, the following works equally well:
echo basic_math(5,4);

Functions can return any variable type (strings, object, arrays, and the like), or,
in the case of database calls, they can return result identifiers. Additionally, func-
tions can return FALSE. If you read Chapter 5, you might remember that in PHP any
non-zero, non-false value is evaluated in an if statement as TRUE. So you might
want to improve the previous function by making sure the values passed can be
added.

204

Part 11: Working with PHP

function basic_math($val_1, $val_2)
{
if (His_int($val_1) || !is_int($val_2))
{
return FALSE;
}
$added = $val_1 + $val_2;
return $added;

If either of the arguments in the call to this function is not an integer, the func-
tion returns FALSE and stops. A call to this improved function might look like this:

if (($added_value = basic_math(7, 5)) === FALSE)
{
echo "What exactly are you doing?";
}
else
{
echo $added_value;

If the function returns a value (any value), that value is added. If not, a special
message is printed. Notice how this mimics the behavior of many of the PHP built-
in functions. Its purpose is to perform a task, and if it fails to do so, it returns FALSE.

Take a quick look at the following function. It’'s a good example of how func-
tions can really save you time, headaches, and keystrokes. The mysql_query func-
tion is fine; it sends a query from PHP to MySQL and, if it succeeds, returns a result
identifier. If it fails, however, it does not automatically return any error informa-
tion. Unless you do a bit of digging, you won’t know what the problem was with
the query. So for every query in your applications (and there will be plenty), you
tack on an or die phrase:

mysql_query("select * from table_name") or die
("Query failed:" . mysql_error());

But life gets quite a bit easier if you create a function like the following and then
send all of your queries through that function:

function safe_query ($query = "")
{
if (empty($query)) { return FALSE; }
$result = mysql_query($query)
or die("ack! query failed:
."<Ii>errorno=".mysql_errno()

Chapter 7: Writing Organized and Readable Code

205

"<Ti>error=".mysql_error()
"<Ti>query=".%query
)3
return $result;

So your applications might include a file with this function on every page, and
then you can use safe_query() in place of mysql_query().

Using a variable number of arguments

One nice feature of PHP is that you can pass an indefinite number of arguments to
a function and then assign the list of arguments to an array. Consider the following
code:

function print_input_fields()
{
$fields = func_get_args();
foreach ($fields as $field)
{
if (isset($GLOBALS[$field]))
{
$value = $GLOBALS[$field];
}
else
{
$value = '"';
}
print " <tr>\n";
print " <td valign=top
align=right>" . ucfirst($field).":<{/b></td>\n";
print " <td valign=top align=left><input type=text
name=$field size=40 value=\"$value\"></td>\n";
print " </tr>\n\n";

}

start_table();
print_input_fields("name","lTocation","email","url");
end_table();

The $GLOBALS array is discussed later in this chapter in the “Variable
scope” section.

206

Part 11: Working with PHP

This function prints out form fields within a table. First, func_get_args() cre-
ates an associative array, with the name of the argument as the key. Then each form
field is printed out. This strategy is pretty convenient because you can call a func-
tion in a number of situations and vary the output by including as many arguments
as needed.

If you're wondering how this might work if your function contains some
required parameters prior to the set of arguments that might vary, good for you.
That’s an excellent question.

Two other PHP functions work in such situations: func_num_args(), which
returns the number of arguments sent to a function, and func_get_arg(), which
returns a specific argument based on its numeric index, starting at 0. So, for exam-
ple, you might have a function that prints an HTML form with a variable number of
input fields, like the following:

function print_form($action="", $method="POST")
{
if (empty($action)){return FALSE;}
echo "<form action=%$action method=$method>";
$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{
echo "<input type=text name=" . func_get_arg($i). ">";
}
echo "</form>";

print_form("myurl.php", "", "myfieldl", "myfiels2");

Be aware that empty () might behave differently than you expect. It returns true
if the evaluated variable is not defined, or if it contains "", 0, "0", NULL, FALSE, or
an array with no elements.

Variable scope

To work with functions you need to understand how PHP handles variable scope.
Scope is an important topic in any programming language, and PHP is no different.

In PHP, variables assigned outside of functions are known as global variables.
These can be variables that you create, they can come from HTML form elements
through either GET or POST, or they can be any of the variables inherited from the
Apache environment. All globals are accessible from an array known as $GLOBALS.
You can add to and delete from this array.

Chapter 7: Writing Organized and Readable Code

207

TIP We've said it before, and we'll say it again: Use phpinfo() to getinforma-
‘@% tion about variables in your environment or your configuration.
N\
NS

In PHP a global variable is not automatically available within a function. If you
want to use a global within a function you must indicate within the function that
the variable you are accessing is a global.

Here is an example of using a global within a function:

function add_numbers($val_2)
{

global $number;

echo $number + $val_2;

}
$number = 10;
add_numbers(5);

This code prints 15. Here $number is a global because it is assigned outside of a
function. Using the keyword global tells PHP that you want to fetch the specified
number from the $GLOBALS array. The preceding code can also be written like this:

function add_numbers($val_2)
{
echo $GLOBALS["number"] + $val_2;;
}
$number = 10;
add_numbers(5);

In the applications in this book we use the technique shown in the first example
because it seems a little cleaner, and because directly manipulating the $GLOBALS
array is not really encouraged. It’s nice to see where your variable is coming from
at the top of the function.

Within your functions, you might want to make variables available as globals.
That way they are available in the body of your script and in other functions. You
can create a global variable the same way you access a previously defined one, with
the global keyword. Here’s a quick example:

function assign_to_global($val_1, $val_2)
{
global $sum;

208

Part 11: Working with PHP

$sum = $val_1 + $val_2;

assign_to_global(5,6);
echo $sum;

This script prints 11. For something a bit more complicated, we borrow the fol-
lowing function from the applications section of the book:

function set_result_variables ($result)
{
if (!$result) { return; }
$row = mysql_fetch_array($result,MYSQL_ASSOC);
while (Tist($key,$value) = each($row))
{
global $$key;
$$key = $value;

This function expects a result identifier gathered by mysql_query() in an ear-
lier function. Assume that the query run prior to this function call returns a single
row. That row is then assigned to an associative array named $row. Then each col-
umn taken from the query (which is now the key in the associative array) and its
value are available as a global. This availability can be useful if the values retrieved
from the query are needed in many other functions. However, beware of having
columns with the same names as PHP variables — particularly global variables. You
should try to not let that happen, lest conflicts occur.

Global variables are used sparingly within functions throughout the applications
in this book. This is because it is easier to keep track of your variables if you are
passing them through arguments and retrieving them through return values. If you
start using globals extensively you might find that your variables are returning
unexpected values in different places — and finding the functions that are causing
the error can be a major pain.

Here’s another reason to avoid globals when possible: You will be using the
same variable names over and over and over again. We don’t know how many
times in these applications the variable names $query, $result, $row, or $i are
used, but trust us when we say that they are used frequently. All kinds of hassle are
introduced if you have to keep track of each time you use a variable name.

At times you have little choice but to use global variables, but before you do,
make sure that you can’t accomplish what you're trying to do using variables of
local scope.

Chapter 7: Writing Organized and Readable Code

209

Object-Oriented Programming

A few years back there was a large move toward object-oriented programming.
Some people thought that the procedural approach —that is, coding strictly with
functions — just wasn’t enough. Therefore, the folks working on languages like C++
and Java popularized an approach that enables a developer to think about code in
a different way.

The idea behind object-oriented programming is to think of portions of your
application as objects. What is an object? Well, it’s an amorphous thing, a kind of
black box — a superstructure of variables and functions. But if you are new to the
concept, this description may not be so clear.

To make things clearer conceptually, we provide a few examples. In our exam-
ples, our objects are things that can be displayed as part of a Web page. For each of
the different kinds of elements of a page, you might want to know different things.
If you're displaying an image, for example, you might want to know how wide it is.
For an HTML table, you might want to know if it has a color. By treating the ele-
ments as objects, you can effectively ask them how wide they are or what color
they are without having to dig inside them to find out yourself. You can also tell
the elements to do things, like draw themselves on the page.

Now all you need is the correct nomenclature. Descriptions of the object (such as
width and color) are called properties, and descriptions of the actions an object can
take (such as draw) are known as methods. Some methods are a bit of both, and you
can think of them as descriptions of the questions you can ask the object—a
width() method might tell you how wide the object is and whether it has one
property named width or a dozen different properties that it has to add together
first. And as it happens, in the actual code of a class, you use the word function
just as you would in a regular user-defined function, so you might hear both terms
used interchangeably. Here’s an example of what a PHP class looks like:

class TextBox

{
var $_text;

function TextBox($text)
{
$this->_text = $text;
}
function style()
{
return "font-family:'Helvetica Neue',Helvetica,sans-serif;";
}
function text()
{

210

Part 11: Working with PHP

return <<<EQT
style()}">{$this->_text}
EOT;
}

Before you get to using objects, however, we want to explain a couple of the
advantages of this object-oriented approach. Suppose some programmer has cre-
ated an object and tells you about its methods and properties. You don’t really need
to know how any of it works; you just need to know that it does. You can make use
of the methods and properties of the object in your scripts with little effort.

Of course, the same could be said of a well-designed procedural approach. A
well-documented collection of functions can work equally well. Time was when
objects in PHP weren’t much more than collections of function libraries and arrays
that used little arrows instead of square brackets. That has changed dramatically
with PHP 5, and the language is now much closer to other object-oriented languages
like Java. However you look at it, you should be able to write good procedural code
before you move on to objects.

By using objects, not only can you make use of methods and properties in the
heart of your scripts, but also you can extend the functionality of a class in a num-
ber of different ways, with one of the most basic being the use of a concept called
inheritance. Going back to the previous example, for example, an image and a table
both might have a height and a width. We can create a class called a Rectangle
that knows about heights and widths and then have our Image class and Table
class inherit Rectangle, automatically being able to make use of all its properties
and methods. (In object terminology, we call Rectangle the parent class, and
Image and Table are both children.)

There’s a lot more to object-oriented programming (or OOP for short — not to be
confused with OOPS, which is the kind of programming we’re trying to avoid) than
just inheritance, though. We can’t do full justice to the topic here, but we’ll try to
cover some of the basics.

Classes, Continued

In object-oriented programming, you work with classes and objects. A class is a
definition describing properties and methods, while an object is a variable that has
those properties and can use those methods. You could think of the blueprints for
the chair you're sitting in now as a kind of Chair class. That would make your
actual chair an object, or instance, of the Chair class. If your chair came from a
factory, there might be thousands of Chair instances out there in the world, but
still only one Chair class.

You can use a few different kinds of classes. Let’s start out our small example
with one of the most minimal kinds of classes, an interface.

Chapter 7: Writing Organized and Readable Code

211

INTERFACES

interface Color
{
public function color();
}
interface Drawable
{
public function draw($return=false);
}
interface Rectangle
{
public function height();
public function width();

Not much code there. But then that’s the point—an interface isn’t about how
you will do something, so much as what you will be able to do. An interface is like
a promise: Any class that builds on the Color interface, for example, swears that it
will have a method named color with no arguments that you will be able to call.
In this case, we’re not promising anything about what that method will do (or what
it will return to you, for that matter). But if you're dealing with an object that has
Color in its background, you know that you’ll be able to call $object->color()
and get some kind of response.

So what does that get you besides a new buzzword? Well, without claiming to
describe all of the benefits, here are a couple of basic ones.

In PHP, normal classes are inherited, while interfaces are implemented, like so:

class AlertBox extends TextBox implements Color, Rectangle

Here, extends means that the AlertBox class is inheriting the properties and
methods of the TextBox class. You can inherit only from a single class in PHP, but
you can implement as many interfaces as you like. The benefit comes from the fact
that you can tell if a particular object implements the interface in which you're
interested, using the instanceof operator. Say that you've got a section of code
that doesn’t care about anything but rectangles. Circles, triangles, lines of text — let
somebody else deal with those; we just want rectangles. You can make that work
like this:

if ($object instanceof Rectangle)
{
$width = $object->width();
$height = $object->height();

212

Part 11: Working with PHP

To write the same code without the concept of an interface, you'd have to do
something like this:

$methods = get_class_methods($object);
if (in_array('width', $methods) and in_array('height', $methods))
{

$width = $object->width();

$height = $object->height();

Even then, you don’t know if that object’s width() method is going to require
an argument that you can’t supply. Plus, clearly, this is going to be a lot slower to
run. The Rectangle interface tells you very simply that this is a proper Rectangle
that knows how to respond to a decent width() call, regardless of what other kinds
of foolishness it might get up to somewhere else.

Another benefit of using interfaces can come when you have multiple people
working on different parts of the same project. By laying out a set of interfaces as
the first step, each person can write code that will call on the other classes being
built by other people, whether or not those other classes have actually been written
yet, and without worrying about how they're going to work when they are written.

We can take that approach one step further, to specific properties and methods,
by moving on to inheritance and abstract classes.

ABSTRACT CLASSES

An abstract class is sort of a blueprint’s blueprint. It looks just like a regular class,
because that’s what it is, except for one difference: You can’t make an object out of it.
To add another $5 word to our pile, we can say that an abstract class cannot be
instantiated — meaning that you can’t create an instance of one, at least not directly.

Instead, abstract classes are there solely to be inherited. One way you can use
them is as a place to put utility code — code that all of your classes will use, but that
doesn’t really have a purpose outside of the specific context of one of those classes.
Maybe your abstract class has a method that does some complex mathematical cal-
culations or one that picks one string at random from an array of strings.

PHP considers a class to be abstract if you explicitly declare the class that way —
abstract class MyClass { ... }—orifone of the class’s methods is declared to
be abstract—abstract function some_function();. Another, indirect way of
making a class abstract is by declaring that it implements an interface without sup-
plying one or more of the methods that the interface defines. The effect is to shift
the burden of supplying those required methods onto the class’s children.

Here’s another step in our example that shows what we mean: an abstract class
that implements one of the interfaces we declared previously — except not really:

abstract class TextBox implements Drawable
{

Chapter 7: Writing Organized and Readable Code

213

private $_text;

public function __construct($text)
{
$this-> text = $text;
1
private function style()
{
return "font-family:'Helvetica Neue',Helvetica,sans-serif;";
1
final protected function text()
{
return <<<EQT
{font style="{$this->style()}">{$this->_ text}
EOT;
1

This is a class that defines the way text will be displayed by later, non-abstract
classes. A couple of new keywords pop up here that need some explanation.

Public, protected, and private define who has access to a property or a
method. In this class, you can see that the $_text property is private. That means
that only the methods of the TextBox class can read or change the contents of that
property, not even classes that inherit from TextBox. The same applies to the
style() method.

The _ construct() method, on the other hand, is public. That means anyone
can call it. This is a special method that gets called automatically when you create
an object, using the keyword new, like so:

$object = new MyClass;

In prior versions of PHP, the constructor method had to have the same name as
the class. In our first example of what a class looks like, for instance, the
TextBox() is the constructor method. Now we can use the generic name _ con-
struct () instead. This not only makes maintenance easier, but also solves some
issues with inheritance in earlier versions.

In between private and publicis protected. A protected property or method
can be used directly by the class in which it’s declared and any child of that class,
but not by the general public (that is, code outside of the classes). So, in our exam-
ple here, a class that extends TextBox can’t call the style() method, but it can call
text().

What it can’t do is declare its own version of text (), though. That’s because of
the other keyword we use in its declaration, final. Final means what it sounds

214

Part 11: Working with PHP

like it means: the end of the road for this method name. For protected or public
methods that aren’t declared to be final, you can do things like this:

class ParentClass
{
public function sayHello()
{
print $this->Hello();
}
protected function Hello()

{
return "Hello!\n";

}
class ChildClass extends ParentClass
{
protected function Hello()
{
return "Howdy!\n";

}

$p = new ParentClass;

$p->sayHello(); // prints out "Hello!\n"
$c = new ChildClass;

$c->sayHello(); // prints out "Howdy!\n"

However, if we declare the Hello() method of the ParentClass class to be
final, instead of printing out Howdy!, you get:

PHP Fatal error: Cannot override final method parentclass::hello()
in /my/pathname/test.php on line 13

So in our example, TextBox is reserving to itself the definition of text (). This
means that we have some degree of confidence that we can change, say, the style
definitions used to format text and have it be reflected in all the classes that are
descended from TextBox.

The other thing to note about TextBox (which is a busy little class for something
that isn’t even real) is this:

abstract class TextBox implements Drawable

But doesn’t the Drawable interface require a draw() method? No draw()
method in TextBox? Typo?

Nope. Instead, by declaring that it implements Drawab1e without doing anything
about it, TextBox is forcing any class that inherits it to supply its own draw()

Chapter 7: Writing Organized and Readable Code 215

method, doing whatever is appropriate for that particular class, like the Tit1eBox
does in the next section:

INHERITANCE

class TitleBox extends TextBox
{
public function draw($return=false)
{
$output = "<h3>{$this->text()}</h3>";
if ($return)
return $output;
else
print $output;

Okay, so we’ve actually talked about inheritance before this. But now you can
see it in action. TitleBox is a regular old class that you can use to create regular
old objects. And as you can see in Figure 7-1, it doesn’t have to do very much — just
define the draw() method required by the Drawable interface, which TitleBox
gets from its parent class, TextBox. If we put all of the pieces together, and add one
last step —the creation of an object that we can use—we can even make words
appear on a Web page (see Figure 7-1):

$title = new TitleBox("Greetings!");
$title->draw();

Greetings!

Figure 7-1: A TitleBox example

And here’s a slightly fancier example, again building on the code we've seen up
until now, only this time in color!

216 Part 11: Working with PHP

class AlertBox extends TextBox implements Color, Rectangle
{
protected $_color;

public function __construct($text="oops',$color = "yellow")
{

// notice that we could be setting height and width

// in the constructor, but instead

// this class has them hard-coded

// (i.e. all alert boxes are the same size)

$this->_color = $color;
parent::__construct($text);

public function height()
{
return 100;

public function width()
{
return 200;

public function color()
{
return $this->_color;

public function draw($return=false)
{
$output = <LKKEOT
<table height="{$this->height()}" width="{$this->width()}"
border="1">
<tr>
<td bgcolor="{$this->color()}" align="center">{$this->text()}</td>
</tr>
</table>
EOQT;
if ($return)
return $output;
else
print $output;

Chapter 7: Writing Organized and Readable Code

217

}
$alert = new AlertBox("Warning! Object Alert!");
$alert->draw();

Notice the height() and width() methods. These are good examples of meth-
ods that answer questions, rather than perform actions. An AlertBox doesn’t even
have a width or height property; instead, the methods return hard-coded values.
But code that uses an AlertBox object doesn’t have to care at all about any of that.
It knows that it can call $object->height() to find out how tall it is and
$object->width() to find out how wide, and that’s all it needs.

Figure 7-2 shows you what it looks like in action.

Warning! Object Mlert!

Figure 7-2: An AlertBox example

Where this all gets good is in the combination of features, of course. On the CD,
there’s a more complete example using the code we’ve seen in this chapter, in the
[oop directory. One part of what you’ll find in there is a Page class that draws an
entire HTML page built up out of smaller components that are themselves instances
of the kinds of classes we’ve been looking at. You just line them up when you cre-
ate your Page object and tell the Page to draw:

$page = new Page($title,$l1ogo,$alert,$ad,$biglogo);
$page->draw();

The Page class takes care of making sure that everything you hand it can be
drawn:

class Page implements Drawable
{
protected $_things = array();

public function __construct()

218

Part 11: Working with PHP

$args = func_get_args();
foreach ($args as $i => $arg)
{
if ($arg instanceof Drawable)
$this->_things[] = $arg;
else
error_log("Rejecting Page item #{$i} - not drawable:
".var_export($arg,TRUE));
}
}

Then it calls its own draw() method to display them. You can even create a new
subclass of Page, something like SubPage or BoxSet that arranges its objects in a
particular way, and then hand an instance of that subclass to your Page object like
any other Drawable object. You can see the possibilities that might have.

Object cloning

In prior versions of PHP, making a copy of an object was nothing special:

$a
$b

new MyClass();
$a;

Voila, $b was a copy of $a. But returning a reference to a particular object was
more of a chore:

function &returnObject()
{
$a =& new MyClass();
return $a;
}
$b =& $a;

Now, it’s the other way around. All object variables are references. If you create
a new instance of MyClass in $a and assign $a to $b, you still have only one
MyClass object out there. You've just got two different variables referencing it.
Normally, that’s what you want — it makes it a lot easier to pass objects in and out
of methods and function calls, for one thing. But sometimes you need the old
behavior —you want to end up with two different instances of MyClass, one in $a
and the other in $b. For that, you have the _ clone() method.

$a
$b

new MyClass();
$a->__clone();

Chapter 7: Writing Organized and Readable Code

219

Every class can just leave cloning to the built-in _ clone() method, available
with every object at no extra cost. Or you can write your own ___clone() method
to do things like create new separate database connections, erase temporary storage
variables, reset counters, and so on.

Destructors

PHP now lets you declare not only generic constructor methods, using the name
__construct(), but also destructor methods as well, named _ destruct(). A
destructor function gets called when you destroy an object — at the end of a script,
for instance. Or say you create an object inside of a procedural function. When a
function ends, all of its local variables go out of scope, so in a general sense the
memory assigned to them is released and the variables are destroyed. If you've
written a __destruct() function for your object, it would be called at that point.
You can use destructor functions to do any clean-up work that’s necessary: roll
back any open transactions, close database connections or logging files, and so on.

Exceptions

PHP 5 includes an exception scheme similar to that of the Java programming lan-
guage. In other words, it supports try/catch blocks, which were not supported in
earlier versions of the language.

You can, for example, define an exception class for later invocation, as in the
following example:

class DemoException
{
function _ construct($exception)
{
$this->exception = $exception;

function Display()
{
print "DemoException: $this->exception\n";

class DemoExceptionTosser extends DemoException
{
function _ construct($exception)
{
$this->exception = $exception;

220

Part 11: Working with PHP

function Display()
{
print "DemoExceptionTosser: $this->exception\n";

try
{
throw new DemoExceptionTosser('Hello');
}
catch (DemoException $exception)
it
$exception->Display();

This code works by attempting to execute what’s in the try block. When that
code uses the throw keyword to indirectly construct a DemoException object, the
exception is caught by the code in the catch block and subsequently printed out by
the Display() function.

Object-Oriented Code versus
Procedural Code

Here’s the million-dollar question: In your applications, should you use object-
oriented code or procedural code? This question can inspire heated debate. But
really such heated debate is unnecessary because there is a correct answer: It
depends upon the situation. If a given application can be designed to take advan-
tage of object orientation (in other words, if the problem at hand can be modeled as
a series of elements that interact), object orientation may be the way to go. And
since it’s possible to think of the entire world as a bunch of objects interacting with
each other, that’s a pretty strong possibility.

Object-oriented code comes with advantages and disadvantages. Weigh them
and decide for yourself if you should use classes or just functions.

The following are the advantages of object-oriented programming:

@ In the long run (that is, across several projects), you can save time using
the object-oriented approach.
€ You can make easily reusable pieces of code.

€ You can make use of extensive class libraries available for free on the Web.

Chapter 7: Writing Organized and Readable Code

221

The following are the disadvantages of object-oriented programming:

¢ [t’s slower than the procedural approach in the short term.
¢ The syntax can be confusing at first.

¢ Web programming does not make use of many of the advantages of
object-oriented code.

¢ [f you're using very large class libraries, you might experience a perfor-
mance reduction.

Comments

In any programming language, comments are essential — not only to you as you're
writing the code, but to those who come to the code after you. What may be crystal-
clear to you may be absolutely unreadable to others. Or, if you've had to do some-
thing particularly complex, you might find that you don’t even understand what you
were thinking if you come back to the code a couple of months after you wrote it.

In PHP you can indicate comments with two slashes (//), with a hash (#), or by
bracketing commented code with /* and */. This last method is particularly helpful
for multi-line comments.

Comment all of your functions, what they do, what they are expecting, and what
they return. Make sure to note any variables that might be tough to track.

As you look through the functions directory of the CD, you will see that every
function has an initial comment that mimics the style used in the PHP manual. For
example:

int fetch_record (string table_name [, mixed key [, mixed valuell)

Then you provide some description as to what these arguments mean and the
significance of the return value. When writing the body of the function, you should
comment on anything that is not going to be intuitive to someone coming to the
script at a later date. If you have a series of functions that perform some complex
string handling or use lengthy regular expressions, make sure to note exactly what
those functions are intended to accomplish. For example, consider this line of code:

$file_ext = strtolower(substr($file, strrpos($file,".")));

It isn’t especially difficult to figure out, but you can sure help the next person
coming to this line with a simple comment:

//get characters following the final dot
//and make Towercase
$file_ext = strtolower(substr($file, strrpos($file,".")));

222

Part 11: Working with PHP

The other important thing to comment is the overall logic of pages, especially
long pages. Often a script behaves differently under different circumstances.
Variables passed from forms, errors, and other factors affect what portions of the
script run. At the top of the page, you can indicate what factors affect the page’s
logic and then, as you reach different if blocks, explain where the conditions are
coming from and what they mean.

For a brief example, take the confirm_delete.php page from Chapter 8, which
makes advantageous use of comments

/*
/*
hhkkhkhkhkkhkhhkhhhhkhrhhhhkhhhhhrhhrhhrhkhhhhhrhhrhhrhhkhrkhhrhhrkk

*** This script from MySQL/PHP Database Applications ***

e by Jay Greenspan and Brad Bulger i
*kx *k*x
KxK You are free to reuse the material in this KrK
HAAE script in any manner you see fit. There is KEK
KxK no need to ask for permission or provide KrK
KxK credit. FrK
dhkkhhkhkhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhkrhkhrkhhhkhhkhkhkrhkhkrkhkhkrkhhhkhrhkhrrkx
*/

/*

Application: Guestbook2k
Described in: Chapter 8
Name: confirm_delete.php
Purpose: Confirm, then perform, deletion of entries from the guestbook.

This script will be accessed in two circumstances:
- The 'Delete Entries' button on the edit.php page was pressed.
This should be the first time that the script is called. The ids
of the records to be deleted should be passed in via the entry_id[]

array.

- The 'Confirm Delete' button on this page was pressed. This confirms
the deletions and will run the delete queries against the database.

The $offset variable is preserved to allow navigation to other entriesin the
guestbook after or instead of confirming the deletion.

This script must be run by an authenticated user - i.e., only guestbook
administrators.

*/

Chapter 7: Writing Organized and Readable Code

223

// turn on PHP output buffering - only HTTP headers will be sent
// to the browser while this is on. it will prevent an accidental
// blank 1ine or some such from breaking HTTP authentication.

ob_start();

require_once('header.php');
guestbook_authenticate();

// turn off output buffering and send the accumulated output
// to the browser

ob_end_flush();

guestbook_start_page('Confirm Changes');

$submit = (string)array_key_value($_POST, 'submit');

// if $entry_id hasn't been passed in - because the user
// hit the 'Delete' button without checking off any
// entries, say - initialize it to an empty array.

$entry_id = (array)array_key_value($_POST, 'entry_id',array());

if ($submit == 'Delete Entries' && !empty($entry_id))

{
// presumably coming from edit.php. print out id values to be
// deleted and the 'Confirm Delete' submit button

// because the <form> tag contains no action attribute, it
// will submit back to this script

print "<form method=post>\n\n";

foreach ((array)$entry_id as $value)
{
print <<<EOQ
{li>Delete entry f$value?
<input type=hidden name="entry_id[]" value="$value">
E0Q;
}

print <<<EOQ
<ful>

224

Part 11: Working with PHP

{input type=submit name=submit value="Confirm Delete">
<input type=hidden name=offset value="$offset">
</form>

E0Q;

}

else

{
// just in case this script is called directly or in some other
// unanticipated manner
print "<h4>No action to confirm</h4>\n";

// display navigational Tinks and end the page
nav($offset, 'edit.php');
guestbook_end_page();

We end this section on a word of caution: don’t over-comment. Commenting
every single line, or making the obvious even more obvious, is annoying. For
example, the following comments are completely unnecessary and only make a
script difficult to read:

//make string lowercase
$str = strtolower($str);
//increase $i by 1

$i++

Commenting calls for good judgment. You don’t want to comment too much;
you don’t want to comment too little. Our best advice is to take a look at how other
programmers comment their code and to pick a style that you like. We use one
method for the applications in this book; others have different styles.

The PEAR directory of your PHP installation is a great place to look for tips on
good coding style. PEAR stands for PHP Extension and Application Repository. It is
a growing set of scripts that contains a series of best practices for programming
with PHP. The folks working on PEAR are real pros who write terrific code. We rec-
ommend looking through the scripts in that directory to glean some tips on writing
quality code.

Summary

In this chapter, we have presented some ways to write clean and organized code.
When you look at your scripts, you should ask yourself a few questions.

Chapter 7: Writing Organized and Readable Code 225

¢ Are there blocks of code that are common to every page? Maybe those
blocks can be moved into an include.

¢ Are there chunks of code that I'm writing over and over again? Perhaps
writing a function or class might save time.

¢ Is the next person who comes to this script going to be able to figure
out what I've been doing? If not, make sure that you add enough com-
ments to make things clear.

You need to decide if an object-oriented approach is good for you and the appli-
cation you're writing. Our advice: make sure you are comfortable writing clean
procedural code before you jump into object-oriented programming.

Part

Simple Applications

CHAPTER 8
Guestbook 2003, the (Semi-)Bulletproof Guestbook

CHAPTER 9
Survey

Chapter 8

Guestbook 2003, the
(Semi-)Bulletproof
Guestbook

IN THIS CHAPTER

¢ Learning the power of Guestbook 2003
¢ Organizing your code in a reasonable way

¢ Writing good, reusable functions

IN THIS CHAPTER WE DEVELOP the first of our applications — a guestbook. Guestbooks
aren’t complex and they aren’t very exciting. However, this application does give
us the chance to introduce some concepts, such as validation, and put many of the
practices discussed earlier in this book to work.

In the introduction of this book we provided some code that could be used for
the most basic guestbook possible. However, using that code for your guestbook is
not a good idea: It’s got all kinds of holes that will allow malicious people out there
to mess with your pages. The ultra-basic guestbook has another problem: Given the
way the code is just dumped into one page, there’s not a line that’s reusable. One of
the main goals of developing any application is to create chunks of reusable code.

Determining the Scope and Goals
of the Application

The easiest way to get yourself into trouble when coming at an application is not to
know exactly what you are trying to achieve. A vital part of the developer’s job is
to figure out exactly what is needed in the application. Usually doing this will
involve extensive discussion with the people for whom the application is being
developed. During these discussions, it is important to think a step ahead and ask
questions that may not have been asked before. What if the scope increases in a
certain way? What if additional but related information needs to be tracked?

229

230

Part 111: Simple Applications

Considering these and similar scenarios will affect the way you design your data-
base and your scripts, and that is why it is best to know the exact scope and goals
of your application. Depending on whom you're working with, you may want to
get some sketches of pages that need to be developed.

The scope of this application is small and the goals are minimal. The guestbook
stores names, addresses, and the like. (To tell the truth, the purpose of this chapter
is not so much to show you how to write a guestbook as it to show you how to
write good, reusable, organized code for your applications.) In any case, you should
know what Guestbook 2003 looks like before you proceed.

o

In this chapter we're not going to take the notion of creating good functions
as far as it can go.In Chapter 9 we present a more extensive set of functions

that we'll use throughout the rest of the book.

Necessary pages

This guestbook has three basic pages: one for signing, one for viewing, and one for
administering.

Figure 8-1 shows the page that gives the user the opportunity to sign the guest-
book. It’s pretty simple, a form with four text fields and one text area field.
Additionally, there are a submit button and a reset button.

3 Sign My Guest Book!! - Microsoft Internet Explorer

JEiIe Edit \iew Favorites Tools Help | -

| Address |&] hitp://132.168.1.1./book /questbook 2k /sign.php | @6e |J Links *
S o | Q@ G P | B]
Back Faonwarnd Stop Refresh Home Search Favortes History I ail Frirt Eddit

Sign My Guest Book!!

Mame: |

Location: |
Email: |
Url: |

Comments: =]

Sign!l Start Ower |

=
dstr| €4 QW3 || @ @e BBl BLLDH 431 AM
Figure 8-1: Page for signing the guestbook

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

231

Next, there must be a way to see who has signed the guestbook. For the sake of
having readable Web pages, we created a standard style, shown in Figure 8-2, in
which only two entries are printed on each page. At the bottom of the page are
navigational elements that indicate whether previous or additional entries exist.
These should be conditional and should disappear appropriately when you are at
the beginning or end of the guestbook.

Boo 050 erne ore .=
J Eile Edit Yiew Favorites Tools Help |
JAddreSS I@ hitp: /4132.168.1.1. book /guestbook 2k Aview. php offset=2 j & Go |J Links
Yiew My Guest Book!! I
Mame: jayman

Location: none to speak of
Email: jgreen 1(@yahoo.com
URL: hhhhhh
Entry Date: 24 July, 2000 10:31 AW
Commenis: aljdfl,

Name: john block
Location:
Email: jgreen 1(@yahoo.com
URL:
Entry Date: 24 July, 2000 10:31 AW

Commenis:

#xPrevious Entries Wext Entries=>

=l

st | € D HE S || @& S [BBe v SLLBPB 437 AM
Figure 8-2: Page for viewing the guestbook

Finally, we need a page that enables us to delete entries we don’t want. The page
in Figure 8-3 seems to do the trick. Access to this page needs to be limited to autho-
rized users: We don’t want any old schmo going in and cleaning out our guestbook.

What do we need to prevent?

The major problem that we need to tackle in the guestbook application is one that
is common to any application with form input: It is possible for vandals to input
nasty code into your forms that will screw up the pages for everyone else who
comes along. If you used the guestbook application in the introduction you could
be in serious trouble. Consider what would happen if someone inserted the follow-
ing code into a text field:

<script>alert("boo");</script>

232

Part 111: Simple Applications

Boo oS0 o o ore — =
J Eile Edit ¥Yiew Favorites Tools Help |
| Address [@] hrip://192.168.1.1./book/guestbook 2k /edit php | @60 |[Links »
Date: d
| Location: |Sf
| Email: Ijg:reen_l@yahoo.com

| URL: |http:.-‘.-‘ww.trans-city.com

|C|m|.mems: |I love you, tat,

|
| TName: |Jay Greenspan
[Eury
Date:
| Location: |Sf
| Email: Ijg:reen_l@yahoo.com
| URL: |http:.-‘.-‘ww.trans-city.com

|Cnm.mems: |I love you, mat. —
| Delete? | [T Ves, delete entry #2

| Delete Entries I Resetl |

s €D @B |[61 8] HEBTlodOI HLLDB 440 AM
Figure 8-3: Page for administering the guestbook

The next time the page loaded, the viewer would be greeted with a little treat seen
in Figure 8-4.

If some jerk felt like it, he or she could screw up your page with all sorts of tags,
as follows:

Additionally, this application requires some validation. When the user enters
information, the application is going to see that it makes sense. The application will
check for the following:

€ Email addresses should contain an at symbol (@), one or more characters
before the @, and a dot somewhere after the @ Email validation can get
more complex (and will in later chapters).

@ URLs should look like URLs, complete with an http:// prefix and at least
one dot.

€ Some text must be entered in the name field. There’s little point to a
guestbook entry without a name.

@ No email address should appear more than once in the database.

Once the application has checked all of this, the user will need to be made aware
of any errors. Figures 8-5 and 8-6 show how we will indicate these errors.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

233

JEiIe Edit View Favorites Tools Help

| Addres [Ty —— Explorer [E

‘guestbook view. php

=] 6o ||Links >

& boo!

Viev

Name:j
Locatio
Email:j
URL:http:ffaranar joeblow. c om
Comments:like, yo, this sucks

Name:joe blow
Location:kokomo
Email:joe@blow.com
URL:http:ffaranar joeblow. c om
Comments:like, yo, this sucks

Name:joe blow
Location:kokomo
Email:joe@blow.com
URL:http:/farerwr joeblow. com
Comments:like, yo, this sucks

Siser] [D@ S |I[E &

-

[

[BBl BLDB 4.4 AM

Figure 8-4: Results of a problem entry

JEiIe Edit View Favorites Tools Help

_|F|x

| Address |@ hitp://192.168.1.1 /book/guestboak 2k /sian. php

=] @60 ||Links >

Sign My Guest Book!!

= kdiek doesn't look like a valid URL

Please iry again

= jareen_lyahooge.com doesn't look like avalid email address

-

Nartie: |Jay Greenspan

Location: I

Email: |jgreen_1yahooge.com

Url: [l liek

Commenis:

Sign!l Start Ower |

Asar | € & QL m 3 |[[6) &

[

BBl A DHE 150 AM

Figure 8-5: Reporting bad information

234 Part 111: Simple Applications

44 Sign My Guest Book!! - Microsoft Internet Explorer
J Eile Edit VYiew Favorites Tools Help | o

|&-5 - QL QEI|E- SN

| Address [&] hitp.//192.168.1.1 /book /questbook 2k /sign. php x| @to

Sign My Guest Book!!

« jgreen_li@yahoo.com has already signed this guesthook.

Please try again

Name: [Jay Greenspan

Location: ISan Francisco

Email: |igreen_1@yahoo.com

Utl: |
Comments: =] —
=
Sign! | Start Ower | kd
s EQ G W A% || @5 Bl TOIOLHPUAE 931 AM

Figure 8-6: Reporting a duplicate entry

Designing the Database

We covered the normalization process in Chapter 1, and before long we’ll put these
normalization skills to work. For this application the set of information is pretty
simple. So simple, in fact, that a single table will do the job. Actually, that isn’t
quite true. For administrative purposes, you should create a table against which
user names and passwords can be authenticated. Here are the create statements
that will make the tables:

drop table if exists guestbook;
create table guestbhook
(

entry_id integer not null auto_increment
, name varchar(40) null

, location varchar(40) null

, email varchar(40) not null

, url varchar(40) null

, comments text null

, Created timestamp

, remote_addr varchar(20) null
, primary key (entry_id)

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

235

, unique (email)
)3

drop table if exists guestbook_admin;
create table guestbook_admin
(
username varchar(50) not null
, password varchar(255) not null
, primary key (username)
)

When you are adding a user to the guestbook_admin table, it would be best to
encrypt the password. The easiest way to do this is by using a built-in MySQL pass-
word encryption function like shal(), as follows:

insert into guestbook _admin (username, password)
values ('jay', shal('rules'));

After you've run this command, the actual value stored in the password column
is caalb5adf81fddd29ab4b21a147927fb0295eb53. When you need to find out
whether a user knows the password, you can use the shal function again:

select * from guestbook_admin where
username = 'jay' and
password = shal('rules');

From the latest MySQL documentation:“Note: The PASSWORD () function is
used by the authentication system in MySQL Server, you should NOT use it in
your own applications. For that purpose, use MD5 () or SHA1 () instead. Also

7
o

see RFC-2195 for more information about handling passwords and authen-
tication securely in your application.”

Code Overview

In this, the first of your applications, you need to look at the architecture you will
use in constructing your applications. The applications on the CD have been con-
structed so that they are as reusable and portable as possible.

To start with, the CD contains a folder named book, which should be copied to
the document root directory of your Web server. On Apache this folder is usually
named htdocs by default. The book folder contains all the applications documented
in this book.

236

Part 111: Simple Applications

Within the book folder is a series of folders, one folder for each of the applica-
tions presented here, one labeled classes, and one labeled functions. For the purpose
of this application we will concern ourselves with the basic.php file in the functions
folder; this file defines some functions that you will use in a variety of applications.
We'll discuss the functions in basic.php that are used in Guestbook 2003 in the sec-
tion entitled “Code Breakdown.”

The code that is relevant only to Guestbook 2003 is kept in the guestbook2k
folder. Here, startup code that needs to be run at the beginning of each page is run
by the header.php file. The header.php file contains, in turn, two other files: globals.
php and functions.php. This is a structure that we’ll be using through all the exam-
ples in the book. The globals.php file is where you create global variables and
define constants for use in the application. The functions that will need to be
addressed across a number of pages are kept in the functions.php file. We will also
explain these functions in detail in the “Code Breakdown” section.

The pages that are called from the browser are named intuitively: view.php,
sign.php, and edit.php. The other page of the application is confirm_delete.php,
which is called only by edit.php and not by the user directly.

You may find the view.php, sign.php, and edit.php files surprisingly short. They
only contain a couple of dozen lines of code each. This is because just about every-
thing is written in reusable functions.

So once again the important thing is to understand the functions kept in /book/
functions/basic.php and /book/guestbook2k/functions.php, as well as the startup
code run in /book/guestbook2k/header.php.

Code Breakdown

As mentioned in the previous section, the vast majority of the work of this applica-
tion is done in functions, and these functions are kept in files that will be included
in the pages called from the browser.

From functions/basic.php

The following are the main functions from basic.php that we’ll be using in this
application. We’ll cover other functions later on, and they’re all briefly documented
in Appendix F. The functions are grouped by their general purpose, and that’s the
order in which we’ll go through them.

GENERAL UTILITY FUNCTIONS
(OR, “IF ONLY PHP HAD A FUNCTION TO . . .”)

Here are some utility functions that we find helpful:

ARRAY_KEY_VALUE() With the advent of the new “superglobal” PHP variables like
$_POST, you'll be getting most of the values you use in your code from associative
arrays ($_GET, $_POST, and so on). The trouble is that if a particular key hasn’t been

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

237

defined in the array, trying to access it causes an error — well, strictly speaking, a
warning, but it’s a good idea to eliminate those, too. You could type something like

$country = isset($my_arrayl['country']l) ? $my_array['country'l : '';

over and over again, but that isn’t great because if $my_array['country'] is
set to NULL, isset() will return FALSE, and that may not be the behavior you
want — after all, the key is present in the array. A better choice would be
array_key_ exists(), which returns TRUE if the key exists, no matter what its con-
tents. But typing lines like the following repeatedly is no fun at all:

$country = array_key_exists('country', $my_array) ?

$my_array['country'] : ;

The following function will help:
function array_key_value($arr="", $name="'"', $default="")
{
// cast in case $arr is an object
$arr = (array)$arr;
if (lis_array($name))
{
if (array_key_exists($name,$arr))
$default = $arr[$namel;
return $default;
}
$results = array();
foreach ($name as $n)
{
if (array_key_exists($n,$arr))
{
$resultsl] = $arr[$nl;

}
else

{

$results[] $default;

}
return $results;

You can see this function used on almost every page of the application. For
example, the sign.php page contains several lines that look like this:

$email = array_key_value($_POST, 'email');

238

Part 111: Simple Applications

When array_key_value() is called from the preceding example, the first if
block will be ignored. In the second if block, the array_key exists() function
checks if a key by name of email exists in the $_POST array. If it does, the value of
$_POSTL['email'] will be assigned to $email when the function returns a value. If
the email key does not exist, $email will contain an empty string.

1S_ASSOC() Sometimes you need to know not just if a variable is an array, which
the PHP function is_array() can tell you, but if it’s an associative array — in other
words, do all the elements have named keys? The is_assoc() function exists for
this situation.

function is_assoc($a)
{
if (is_array($a) || is_object($a))
{
$nkeys = array_filter(array_keys($a),'is_numeric');
if (empty($nkeys))
{
return TRUE;

}
return FALSE;
}

DEFENSIVE AND TEXT-HANDLING FUNCTIONS

A shocking amount of programming work has to do with the manipulation of
strings. It seems there’s always text to be chopped up, stuck together, searched for,
or formatted. This section deals with some of the text-processing functions avail-
able in PHP.

CHARSET() This function sends out an HTTP header that explicitly sets the
character-set-encoding value for the page to 1S0-8859-1:

function charset($charset="",$mimetype="")
{
if (empty($charset))
{
$charset = '1S0-8859-1";
}
if (empty($mimetype))
{
$mimetype = 'text/html';
}

header("Content-Type: $mimetype; charset=$charset");

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

239

If the character set is left undefined, it can be much more difficult to detect and
prevent hacks into your scripts (by looking for < and > characters, for example). If
you have access to the php.ini file for your site, you can uncomment the
‘default_charset’ value there to the same effect. You can find more information
about this topic at the following sites:

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.apache.org/info/css-security/encoding examples.html

CLEANUP_TEXT() This function goes a long way toward making sure we don’t
insert malicious text into our database.
function cleanup_text ($value='"', $preserve='"', $allowed tags="'")
{

if (empty($preserve))

{

$value = strip_tags($value, $allowed_tags);

}

$value = htmlspecialchars($value);

return $value;

This function accomplishes two things. First, it removes all HTML tags. The
strip_tags() function takes care of that. We can indicate tags we want to keep
with the third argument ($allowed tags). For instance, if we want to allow bold
and italic tags, the second argument to strip_tags() can be a string like this:
<i>. If we want to leave tags as they are, we can indicate this with a non-empty
value in the second argument, $preserve.

Then htmlentities() changes characters like ampersands (&) and double quotes
to their equivalent HTML entities (& and " ;, respectively). After being run
through this little function, your text is ready to be inserted in the database.

REVERSE_CLEANUP_TEXT() So we've run all the text from your users through
cleanup_text () before storing it in our database, for safety’s sake. Now, though,
we need to get that text back out of the database and display it on a Web page. If
we did allow some HTML tags to be included, we’ll need to reverse the effects of
cleanup_text(), or instead of seeing this —

My mom won't let me watch The Exorcist tonight!

—you'll see this:

My mom won't let me watch <i>The Exorcist</i> tonight!

240

Part 111: Simple Applications

function reverse_cleanup_text ($value)
{
static $reverse_entities = NULL;
if ($reverse_entities === NULL)
{
$reverse_entities = array_flip(
get_html_translation_table(HTML_ENTITIES)
)
}
return strtr($value,$reverse_entities);

The HTML translation table HTML_ENTITIES is a list of all the special characters
that have HTML-entity equivalents. Then we use array_f1ip() to turn it around,
so that strtr() can go through the string and replace each HTML entity it finds
with the special single character it represents_ &1t; to <' & to &, and so on.
(We save the modified translation table in a static variable, so subsequent calls to
this function won’t have to recreate it.)

MAKE_PAGE_TITLE() For most pages, we use the same text in the <title> that
appears in an HTML heading <h1>. But some characters are inappropriate for the
<{title> tag. For instance, if we set $page_title to "José's Review of
<i>The Exorcist</i>", within a rendered <h1> tag we’'d see the correct value,
Josa's Review of The Exorcist. But the title of the browser window will show
Josa's Review of <i>The Exorcist</i>. To avoid this, we can use this little
function:

function make_page_title ($title="")
{

return reverse_cleanup_text(cleanup_text($title));
}

FROM /GUESTBOOK2K/HEADER.PHP

Once again, this file will be included in every page in this application. It includes
the functions.php and globals.php files, where we’ll keep all the functions and
global variables specific to this application. In addition, the first few lines of this
application will see to a few details. For instance, it sets the PHP include_path
configuration variable to cover the /book/functions directory. (If you can edit the
php.ini file for your installation, you can set include_path in there and remove
this code.)

// make sure that the current directory and book/functions
// are in the include path

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

241

// make sure that the book/functions directory is in the include path

//realpath turns a relative path to an absolute one, and
//DIRECTORY_SEPARATOR is pre-defined PHP constant that on Unix will
//return a slash(/) and on Windows a backsTash(\)
$funcdir = realpath('.."'.DIRECTORY_SEPARATOR. 'functions');
$include_path = ini_get("include_path');
if (strpos($include_path, $funcdir) === FALSE)
{
// the only time there's a semicolon in the include path is on Windows.
// (far as i know, at Tleast...)
$ps = strchr($include_path, ';") 2 ';' : ":
ini_set('include_path',$include_path.$ps.$funcdir);

require_once('basic.php');

// set the character encoding
charset();

// display all errors and warnings, but not notices
error_reporting(E_ALL ~ (E_NOTICE | E_USER_NOTICE));

require_once('globals.php');
require_once('functions.php');

mysql_dbconnect();

A few words about including files. You'll notice that we use two different func-
tions to do this, require_once() and include_once(). They work exactly the
same way, except that — as the name implies — require_once() won’t take no for
an answer. If it can’t find the file it's trying to include, the script will fail right
there. The include_once() function will just issue a warning and move on.

We also generally prefer the include_once() and require_once() functions
over include() and require(). Again, as the names imply, the difference is that
the _once functions will only include a file if it hasn’t already been included at
some point. This enables us to put calls to a file like header.php in all of our files,
even if some of them might end up including others.

FROM /GUESTBOOK2K/GLOBALS.PHP

In the following code, we have included something interesting: a constant, here
named DEFAULT_LIMIT. A constant is like a variable in that it contains a value (in
this instance 2). However, that value cannot be changed by a simple assignment; in
fact, once a constant has been defined with the define() function, it can’t be

242

Part 111: Simple Applications

changed at all. Constants do not run into the same scope problems that are encoun-
tered with variables, so you can use them within functions without having to pass
them in as arguments or worry about declaring globals. After you run the
define() function, the constant DEFAULT_LIMIT will be available everywhere in
the application.

We’ll use DEFAULT_LIMIT to decide the number of entries that will be viewable
on each page. You are welcome to change the value if you would like to see a larger
number.

// constants
define('DEFAULT_LIMIT', 2);

// global variables
// we'll lTook for offset in the $ REQUEST superglobal because it
// could be coming in from either the URL or a form. $_REQUEST is

// a combination of GET, POST, and cookie-based values.

$offset = array_key_value($_REQUEST, 'offset',0);

TIP If you are putting together a query using a constant, you will have to end
‘M your quoted string in order to make use of the constant value. For example,
\
)

$query = "select * from db_name 1imit DEFAULT_LIMIT"

will confuse MySQL, because PHP has not replaced the name of the constant
with its value. However, this will work:

$query = "select * from db_name Timit "
DEFAULT_LIMIT

PHP has many built-in constants you can use within your scripts, like the
DIRECTORY_SEPARATOR constant seen in the header.php file. A list of
constants is included in the PHP manual at http://www.php.net/
manual/Tlanguage.constants.php.

e

FROM /GUESTBOOK2K/FUNCTIONS.PHP
On top of the standard PHP functions are those that were created for the Guestbook
2003 application. The following sections take a look at the guestbook library.

MYSQL_DBCONNECT() This is a slightly prettier version of the original
dbconnect () function included in the first edition of this book.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

243

function mysqgl_dbconnect()
{
$1ink = @mysqgl_connect('localhost', "nobody"', 'ydobon');
if ($1ink === FALSE)
{
$private_error = 'mysql_dbconnect: could not open connection
to mysql:'
.'<Ti>errno:'.mysql_errno()
.'<Ti>error:'.mysql_error()
error_log($private_error, 0);
die('Error: could not connect to database server. Please
contact the system administrator.');
exit;
}
if (!@mysql_select_db('guestbook2k'))
{
$private_error = 'mysql_dbconnect: could not select
guestbook database:'
.'<Ti>errno:'.mysql_errno()
.'<Ti>error:'.mysql_error()
error_log($private_error, 0);
die('Error: could not connect to guestbook database. Please
contact the system administrator.');
exit;

}
return $1ink;

The @ in front of the calls to mysql_connect() and mysql_select_db() tells
PHP not to print out any errors or warnings that happen inside those functions.
That enables us to write out the detailed errors to the error log while sending a sim-
pler error to the user.

SAFE_MYSQL_QUERY() This function will save you from pulling your hair out
when you're trying to get your queries right.

function safe_mysql_query ($query="")
{
if (empty($query))
{
return FALSE;

244

Part 111: Simple Applications

$result = @mysqgl_query($query);

if ($result === FALSE)

{
// if there was an error executing the query, write out the
// details to the error Tlog

$private_error = "ack! query failed: '
'<Ii>errorno=".mysql_errno()
'<Ti>error=".mysql_error()
'<Ti>query=".$query

error_log($private_error, 0);
// send a generic error message to the user

die('There was an error executing a query. Please contact
the system administrator.');

exit;

return $result;

Throughout the application, we will run our queries through this function. This
way, if the query fails for some reason, we can get a pretty good idea of what hap-
pened. This is another example of safe coding. After troubleshooting your code, we
won’t run into these problems often, but if a change is made somewhere (perhaps
without our knowledge) we’ll get a pretty good idea of what’s going on.

GUESTBOOK_AUTHENTICATE() This function will require the user to enter a
name and password and will then validate those against the guestbook_admin
table in the database. If the username and password don’t match any valid entries,
or if the user (by hitting Cancel, say) doesn’t submit them, an error message will be
displayed.

function guestbook_authenticate($realm = 'Guest Book Administration’
, $errmsg = 'You must enter a valid name and password to access
this function'

)

{

// check if we can use HTTP authentication - as of now, that

// means checking if we are running as an Apache module

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

245

$http_auth 0K = (php_sapi_name() == 'apache');

// $_SERVER['PHP_AUTH USER'] and $_ SERVER['PHP_AUTH_PW'] are values
// supplied by PHP, corresponding to the user name and password

// the user has entered in the pop-up window created by an HTTP

// authentication header. If no authentication header has ever been
// sent, these variables will be empty. If we are not using HTTP

// authentication, the login form will create entries in the

// $_POST superglobal with the same names.

foreach (array('PHP_AUTH_USER", "PHP_AUTH_PW"') as $v)
{
if (lisset($_SESSION[S$vI))
{
if ($http_auth_0K)
{

$_SESSIONLS$v] array_key_value($_SERVER,S$v,"");
}
else

{

$_SESSIONLS$v] array_key_value($_POST,$v,"'");

$found_user = 0;
if (lempty($_SESSION['PHP_AUTH_USER"1))
{
// ignore case, even if MySQL has been set to
// pay attention to it
$query = <<<EOQ
select 1 from guestbook_admin
where password = shal(lower('{$_SESSIONL'PHP_AUTH_PW'J}"))
and Tower(username) = lower('{$_SESSION['PHP_AUTH_USER'I1}")
E0Q;
$result = safe_mysql_query($query);
if ($result)
{
Tist($found_user) = mysql_fetch_row($result);
}
else
{
// if the query didn't work at all (which should have been caught by
// safe_mysqgl_query() in theory), we're not going to be able to

246 Part 111: Simple Applications

// confirm the password, so fail.
$private_error = "problem running authentication query
($query): "
.mysql_error()
error_log($private_error,0);
die('Database error: could not check password. Please
contact the system administrator."');

exit;

// if the query ran but didn't find a match for the user name
// and password, $found user will not be set to anything.
// if this is so, have the user try again.

if ($found_user == 0)
{
$errmsg .= <<KKEOQ
<1i>Could not find entry for username ({$_SESSION['PHP_AUTH_USER']})
please try again.
E0Q;
}
}
if ($found_user == 0)
{
if ($http_auth_0K)
{
// Send a WWW-Authenticate header, to perform HTTP authentication.
Header("WWW-Authenticate: Basic realm=\"$realm\"");
Header("HTTP/1.0 401 Unauthorized");

// The user should only see this after hitting the 'Cancel' button
// in the pop-up form.
print $errmsg;

exit;
1
else

{
// Print out an HTML form to obtain a name and password
// for authentication.

if (lempty($errmsg)) { $errmsg = "<p>$errmsg</p>"; }

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

247

print <<<EOQ
<h2>$realm</h2>
$errmsg
<form method=post>
Username: <input type=text name="PHP_AUTH_USER"
value="{$_SESSION["PHP_AUTH_USER"]}">

Password: <input type=password name="PHP_AUTH_PW"
value="{$_SESSION["PHP_AUTH_PW']1}">

<input type=submit)>
</form>
E0Q;
exit;
}
// should never get here
$private_error = 'authenticate: error: continued after
requesting password';
error_log($private_error);
die('System error: please contact the system
administrator.');
exit;
}
else
{
print <<<E0Q
<p>Editing as {$_SESSION['PHP_AUTH_USER"J}</p>
E0Q;
}

If PHP is installed as an Apache module, guestbook_authenticate() will send
out a 401 HTTP response code. This header forces the browser to open the username
and password box shown in Figure 8-7.

The values entered into these text fields are set by PHP to the wvariables
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW']. If PHP isn’t run-
ning as an Apache module, an ordinary HTML form is displayed, with text fields
using the same names. The text fields will be returned as values in $_P0ST.

When the user submits either form the same page is run, and guestbook_
authenticate() is called again. Now that it has a possible username and password
it can query MySQL to check if the values are stored in the database. If they are not,
the password form is displayed again.

248

Part 111: Simple Applications

‘A http://madfish.com:8080/book/guesthookZk/edit.php - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help
| Address [#] hitp://madfish.com 8080/back questbook 2k /edit. php

Enter Network Password [7]
% Pleaze type your user name and pasaword.
Site: madfish.com
Fealm Guest Book Administration
Uszer Mame I
Pazzword I
™ Save this password in your password list
oK I Cancel

Aster| €& D WA ||[6) = HELFeBvl BLLDB 536 AM

Figure 8-7: Results of a 401 Unauthorized header

PRINT_ENTRY() This prints the results of a query within a table.

function print_entry($row,$preserve="")

{
if (lis_assoc($row))
{
return FALSE;
1

// walk through any arguments passed in after the first two

$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{

$field = func_get_arg($i);

// This will transform a label string to a valid database

// field name - e.g., 'Last Name' becomes 'last_name'
$dbfield str_replace(" ', '_', strtolower($field));

$dbvalue = cleanup_text($row[$dbfield],$preserve);
$name = ucwords($field);
print <<<EO0Q

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

249

<tr>
<td valign="top" align="right">$name:</td>
<td valign="top" align="Tleft">$dbvalue<l/td>
</tr>
E0Q;
1

The easiest way to see how this function works is to take a look at the line of
code that calls a function. The following snippet was taken from the view.php file:

print_entry($row, $preserve, 'name', 'Tocation', 'email", "URL", "entry
date', 'comments');

Notice that the function itself has only two default arguments ($row and
$preserve), while the call to the function has nine arguments. The first argument,
$row, is a row from a database call. It is expecting that a row was taken from a
query by means of mysql_fetch_array() so that the contents of the row are an
associative array, the keys of which are equal to the column names of the database
table. The second argument, $preserve, is needed for the cleanup_text() func-
tion, which we discussed previously in the chapter. The rest of the arguments are
equivalent to associative keys in $row.

The arguments sent to any user-defined function make up an array. The number
of elements in the array can be retrieved with func_num_args(). If we were to use
the call to print_entry() in this example, func_num_args () would return 9.

The value of each argument can then be accessed with func_get_arg(). This
allows for a structure like the one used here, where a loop accesses and then
processes each argument sent to the function. The first time through the for loop,
$field is assigned the third element in the array, name. You can use the value in
$field to access an element in the associative array $row ($row['name']).

After you make sure the argument contains no capital letters or spaces, the value
is sent to the cleanup_text function and printed.

It’s nice to structure a function this way because it allows an arbitrary number of
arguments to be sent to the function. We can include one or many fields to print.

PRINT_INPUT_FIELDS() This function works much like print_entry(). func_
get_args() makes $fields an array, each element of which is an argument sent to
the function. The foreach() structure moves through all elements in the array and
prints a text field for each. The name of the field will be in one table cell, and the
input box will be in an adjoining cell.

function print_input_fields()
{
$fields = func_get_args();

250

Part 111: Simple Applications

foreach ($fields as $field)

{
$value = array_key_value($_POST,$field,"'");
$1abel = ucwords(str_replace('_"'," ",$field));
print <<<EO0Q

<tr>
<td valign="top" align="right">
$Tabel:
</td>
<td valign=top align=left>
{input type="text" name="$field" size="40" value="$value">
</td>
</tr>
E0Q;
}

Notice that we check the $_POST global array for the default value of the text
field. The check is here in the event that the user enters bad information and the
information needs to be re-presented with the values he or she entered. Why would
information need to be printed a second time? That should make perfect sense after
you read about the next function, create_entry().

CREATE_ENTRY() We are not going to simply dump user information into the
database. First it needs to be verified.

function create_entry(

$name="", $location="",%email="",%url="",%comments=""

// remove all HTML tags, and escape any other special characters
$name = cleanup_text($name);

$location = cleanup_text($location);

$email = cleanup_text($email);

$url = cleanup_text($url);

$comments = cleanup_text($comments);

// start out with an empty error message.

// as validation tests fail, add errors to it.
ferrmsg = '';

if (empty($name))

{

$errmsg .= "you have to put in a name, at Teast!\n";

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

251

// do a very simple check on the format of the email address
// supplied by the user. an email address is required.
if (lempty($email) && !preg_match(
AW 1@ \w_ - TH (N [\w_- 1) +$/ ", $email
))

$errmsg .= "$email doesn't look like a valid email
address\n";
1
else
{
// if the format is 0K, check to see if this user has
already
// signed the guestbook. multiple entries are not allowed.
$query = "select * from guestbook where email = '"$email'";
$result = safe_mysql_query($query);
if (l$result)
{
$errmsg .= "couldn't check the guestbook for
$email.\n";
1
elseif (mysqgl_num_rows($result) > 0)
{
$errmsg .= "<1i>The email address '$email' has
already signed this guestbook.\n";
1
else
{
die('<1i>no previous entry found:'
.'<Ti>query=".%$query
' <Ti>rows=".mysql_num_rows($result)

// perform a very simple check on the format of the url supplied
// by the user (if any)

if (lempty($url) && leregi('*http://[A-Za-z0-9\%\?_\:\~\/\.-
J+$",$url))
{
$errmsg .= "<1i>$url doesn't Took Tike a valid URL\n";

252

Part 111: Simple Applications

if (empty($errmsg))
{
$query = <<<KEOQ
insert into guestbook (name,location,email,url,comments,remote_addr)
values ("%s','%s"',"'%s","%s"',"'%s","%s")

E0Q;
$query = sprintf($query
, mysql_real_escape_string($name)
, mysql_real_escape_string($location)
, mysql_real_escape_string($email)
, mysql_real_escape_string($url)
, mysql_real_escape_string($comments)
, mysql_real_escape_string($_SERVER['REMOTE_ADDR"'])
)3
safe_mysql_query($query);
print "<h2>Thanks, $name!!</h2>\n";
}
else
{
print <<<EO0Q
<p>

$errmsg

Please try again

</p>
E0Q;

}
return $errmsg;

This function is going to make sure that the information entered is moderately
useful. If there is a problem with the information, a text string describing the prob-
lem will be assigned to the variable $errmsg. If, after the function is executed,
$errmsg is empty, the values will be inserted into the database. Otherwise the error
message(s) will be printed, and the values the user entered will be assigned to glob-
als so that they can be printed as the default values in the text fields the next time
through.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

253

This function checks for the following in the following order:

¢ That the name field contains something

¢ That the email address is potentially a proper address (contains text, an @,
and a period (.)) Note that this is not very strong validation of email. It
takes a very long and complicated script to thoroughly validate an email,
as you will see in later chapters.

@ [f the email looks OK, that this email address hasn’t been entered in the
database already

¢ That the URL is potentially valid

Check Appendix G for more detail on regular expressions.

SELECT_ENTRIES() This function’s sole purpose is to put together your database call.

function select_entries ($offset=0, $Timit=DEFAULT_LIMIT)
{
// cast to make sure that these are integer values
$1imit = (int)$limit;
$offset = (int)$offset;

$query = <<K<E0Q
select *, date_format(created, '%e %M, %Y %Zh:%1 %p') as entry_date
from guestbook
order by created desc
limit $offset, $1imit
E0Q;
$result = safe_mysql_query($query);

return $result;

You already know that DEFAULT_LIMIT sets the number of records displayed per
page. As the second argument in the 1imit clause, the $offset variable indicates
which records will be returned from the query. If you are having problems under-
standing $offset, take a look at the explanation of the 1imit clause in Chapter 3.
A value for $offset will be passed through the navigational elements. (We’ll
examine this technique in detail when we discuss the next function.)

254 Part 111: Simple Applications

To retrieve the date value in a readable way, this query makes use of MySQL's
date functions. MySQL stores the date and time as a 14-digit number (YYYY :MM:
DD:HH:SS), but it’s nicer to return the date information in a way that’s easier for
humans to read. The MySQL date_format function retrieves the information in the
way we want to use it. This function and many other MySQL functions are dis-
cussed in Appendix J.

NAV() This function’s sole purpose is to create navigational elements.

function nav ($offset=0, $this_script="", $1imit=DEFAULT_LIMIT)
{

$offset = (int)$offset;

$1imit = (int)$1imit;

// don't run things from outside this directory
if (empty($this_script) or
dirname(realpath(__FILE)) I=
dirname(realpath($this_script))
)
{
$this_script = $_SERVER['PHP_SELF'];

// get the total number of entries in the guest book -
// we need this to know if we can go forward from where we are

$result = safe_mysql_query('select count(*) from guestbook');
$total_rows = mysql_result($result,0,0);

print "<p>\n";
if ($offset > 0)
{
// if we're not on the first record,
// we can always go backwards
$poffset = $offset - $1imit < 0 ? 0 : $offset - $1imit;
print <<<E0Q
&1t;&It;Previous
Entries

E0Q;
}
if ($offset+$limit < $total_rows)
{
// offset + 1imit gives us the maximum record number
// that we could have displayed on this page. if it's

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

255

// less than the total number of entries, that means
// there are more entries to see, and we can go forward
$noffset = $offset + $1imit;
print <<<E0Q
Next Entries>>
E0Q;
1
print "</p>\n";

When appropriate, this function will print out links that will enable the user to
view the next set of entries, the previous entries, or both. The scope is determined
by the $offset and $1imit arguments.

The first time through $offset will have no value, and therefore no previous
entries link will exist (because $offset will not be greater than 0). But if more rows
remain to be displayed, a link will be created that creates a value for $offset to be
accessed if that link is followed.

Say it’s the first time we’re executing this function, so $offset has no value,
and the database contains 10 rows. When it reaches the last i f block the script will
see that there are more rows to be displayed ($offset + $1imit equals two, which
is less than 10), and so the following link will be printed:

Next
Entries>>

Interesting code flow

Once you understand how the functions presented thus far work, you should have
no problem figuring out how Guestbook 2003 works. For the most part, very, very
little work is done in the pages called by the browser. These pages are pretty much
an assemblage of function calls.

We will break down one file in detail so you can get the feel of how this struc-
ture works. Most of the rest you should be able to figure out by flipping between
the files and the explanations of the functions. In the following sections we will
walk through the view.php file.

VIEWING ENTRIES

The first thing you need to do in every page is include the header.php file, which
enables access to all the functions we outlined previously. After that, you should
include standard header information by calling the guestbook_start_page()
function, passing in the title of the page. Here is the logical flow of the code:

<?php

require_once('header.php');

256

Part 111: Simple Applications

guestbook_start_page('View My Guest Book!!');

7>

{table border="0">

<?php

// $preserve is passed into the cleanup_text() function (declared in
// /book/functions/basic.php). setting it to an empty value will

// cause any HTML tags in an entry to be stripped out before
// being displayed.

$preserve = ;

// select_entries() (declared in header.php) should return a mysql
// result set identifier

$result = select_entries($offset);

while ($row = mysql_fetch_array($result))
{

print_entry($row,$preserve, 'name', " 'location', 'email", "URL", "entry

date', 'comments');
print "<tr><td colspan=2> </td></tr>\n";

// release memory associated with this mysgl result set
mysql_free_result($result);

7>

</table>

<?php

nav($offset);

end_page();

7>

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

257

This is it. You use the global $offset variable to run the query with the
select_entries() function, and then print the results by calling the print_
entry() function within a while loop. Navigational elements are determined by
the nav() function.

DELETING ENTRIES

The most complex portion of this application involves the ability to delete entries
from the guestbook. This stands to reason because you don’t want your guestbook
being fooled with by anonymous users. So the first thing you need to do before
deleting an entry is authenticate users. When discussing the guestbook_authenti-
cate() function, we showed how an HTTP 401 header will bring up the browser’s
username-and-password dialog box. The values entered need to be checked against
the guestbook_admin database table. The guestbook_authenticate() function
takes care of this for you, which is why it’s called at the top of the edit.php file.

<?php
ob_start();

require_once('header.php');
guestbook_authenticate();

ob_end_flush();
guestbook _start_page('Edit The Guest Book');
7>

We use the PHP output buffering functions, ob_start() and ob_end_flush(),
to make sure that no output gets sent to the browser before the HTTP 401 header.
Otherwise, a blank line or space outside the <?php ... ?> tags in the header.php
would prevent guestbook_authenticate() from running. If you know you won’t
be using PHP as an Apache module, then you know PHP won’t be trying to send
these headers, and you can remove this code. It shouldn’t make any visible differ-
ence if you leave it in, however.

Once a valid username and password have been entered, the remainder of the
edit.php file will be sent. But this time, in addition to all the other information, a
checkbox will be included so the user can decide which entries should be deleted.
The value of the checkbox will be the primary key of the guestbook table.

while ($row = mysql_fetch_array($result))
{
// call the normal function to display a guestbook entry
print_entry($row,$preserve, 'name','entry date','location', 'email’
,"URL", "comments'

258 Part 111: Simple Applications

);

// now add an extra row to allow the user to mark this entry
// for deletion
print <<<EO0Q
<tr>
<td valign="top" align="right">Delete?</td>
<td valign="top" align="left">
<input type=checkbox name="entry_id[]"
value="{$rowl'entry_id"'J}">
Yes, delete entry #{$rowl['entry_id']}
</td>
</tr>
<tr><td colspan=2> </td></tr>
EOQ;
}

This form is then submitted to the confirm_delete.php file. Notice how we’re
passing an array here. The name of the form element is entry_id[], which means
that when this form is passed to PHP entry_id will become an array. The number
of values in the array depends on the number of boxes checked. HTTP will not send
the unchecked boxes at all.

The first time through the confirm_delete.php file, we will print out the
entries. This will make the person deleting these entries make sure he or she isn’t
doing something stupid.

foreach ((array)$entry_id as $value)
{
print <<<EO0Q
<1i>Delete entry #$value?
<input type="hidden" name="entry_id[]" value="$value">
E0Q;
}

If any of these entries are to be deleted, this page will submit to itself, with a dif-
ferent value (confirm delete) sent by means of the submit button. This will make the
following code run:

foreach ($entry_id as $value)
{
print "<1i>Deleting entry #$value\n";
safe_mysql_query("delete from guestbook where entry id =
$value");
}

We loop through the $entry_id array, deleting records for each member.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook

259

Scripts

A few more scripts and functions are available to you, but these don’t warrant
much discussion. Complete copies of all the files are included on the CD. We sug-
gest you look at them and the comments to get a feel for how they fit into the
application.

Summary

The skills you learned here may not get you the big bucks as a programmer, but if
you understand everything that is being done here, you should be in pretty good
shape as you move forward in your PHP programming life.

In particular, you should see the priority that is put on creating reusable code.
Nearly everything in this example is in functions. This makes it much more likely
than it would otherwise be that the code we write will be usable in some future
application. Additionally, in this chapter you got to see some basic validation.
Validation is an important concept and one you will need to take very seriously
when your application accepts user input.

Chapter 9

Survey

IN THIS CHAPTER

¢ Learning functions for creating HTML tags

¢ Understanding data that use a relational structure
¢ Putting MySQL's date functions to work

¢ Working with PHP’s error-handling functions

IF GUESTBOOKS are the most common type of application on the Web, surveys are
probably second in popularity. Many sites have some sort of widget that enables
you to choose you favorite color or sports hero, or whatever, to see what percent-
age of voters take what stance.

This application will be a bit more complex than the guestbook application you
saw in Chapter 8. The programming will get a bit trickier, and the administration of
the application will require more work. Unlike the guestbook, this application will
require some knowledge of database theory. Related tables, complete with the pri-
mary and foreign keys, appear in Part I of this book. This means that your SQL
queries will include joins.

Determining the Scope and Goals
of the Application

The problem with the Web is that it can be mighty impersonal. You surf around,
look at pages, search for information, and have advertisements try to sell you
things. But you don’t see much evidence of other human beings. A survey on a site
gives surfers a clue that other people have been by and that it’s possible to leave a
mark that others will see later.

A survey application can be ultra-simple. If you want only to gather responses
to a single question and return basic statistical information on the responses (how
many votes for choice A, B, and so on), you don’t need a whole lot of code (or a
chapter explaining it). A single table to store answers would do the trick. The ques-
tion can even be hard-coded into the HTML for the Web site. But that would not
make for very interesting learning experience, would it?

261

262

Part 111: Simple Applications

It gets more interesting if there can be any number of questions. Instead of just
one, this application will allow for two, five, ten, or more — whatever you want.
This survey will also record demographic information (such as age and country of
origin) and enable sorting on the basis of this information. We also decided to add
the ability to pick a winner from those who filled out the personal information. This
might encourage people to give real rather than fictitious answers.

There is one more wrinkle to discuss here. It’s really not possible to create a sur-
vey application that records perfect data. Even if you go to extreme lengths, there
will always be an opportunity for the shrewd and persistent to submit multiple
answers as long as you allow anonymous access to your survey. But in all likeli-
hood your survey will not have to pass muster with the Federal Elections
Commission. A small step to weed out those ruining your survey should do the
trick, and you will see one way to accomplish this step later on in the chapter.

Necessary pages

Entering and viewing survey information will require three pages. The first is where
the questions will be presented and where the user will enter name, address, and
geographic and demographic information. The second page will show the basic
survey results. The third will give a detailed breakdown. Figures 9-1, 9-2, and 9-3
show these respective pages.

050 erne ore =
J Eile Edit ¥Yiew Favorites Tools Help |
| Address | hitp:/4132.168.1.1/book surveyAndex. php x| @6e

2]

User Survey

Tharnks for filling out the survey. Be sure to fill out all the questions, and become eligible for our weekly prize
drawings! Please, only one entry per person.

See Current Results
(Juestions About Life

Which is your favorite state?:
Cea Opf Ony Owt O wy

Cuestions About You

Name: I

Email: I —
Age: I_

Country: lﬁ ;I
dAstar] | € & @ [W 3 A4 ||] & BT IVL ZFLPB 1158 A

Figure 9-1: Page for filling out survey

Chapter 9: Survey

263

JEiIe Edit View Favorites Tools Help

_|F|x

| Address [#] hitp://192.168.1.1/back /survey//results. php

j @Go

Survey Results

Which is your favorite state?
t 0%, I E 3
W 209 I |
ny 20% I .

What is your favorite county?

San Francisco 100% ENNT

=l
Astart] | € €9 G W 4 || Ge) o[BleF3d ZETPSB 1203 PM

Figure 9-2: Basic survey results

D Complex Suivey Resaults Miciosott Intemet Exploies

Eile Ldit View Favortes Took Help
Addtid |ﬂ s SN2 VB8 1 1 Mok sunves/oompiem_reinit: Taarbon_u=2 3 6o
Wikiek i ywr Svarite siate (3 {04al vted =
Bynge:
Amzwer didn’t sy wmder 16 17w 22 Mwmds AP bl 65 and wp
i 13% %
- e
v
iy eonntry:
Amreer Cumdn Ol TSAa sa
- ¥ e .
o i
By state:
iabe w - By [
CA ok i3 s
?'fnr 100%. ~ ﬂ
Wsod] SO @BE Gle 4 DB AFTOR 1205Pm
Figure 9-3: Detailed survey results

This application, like all others, requires some administrative tools. For starters,
you will need to be able to add, delete, and edit questions. Additionally, another

page selects a winner at random from the database. Figures 9-4 and 9-5 show the
administrative page and the select winner page, respectively.

264

Part 111: Simple Applications

n Que 0 S0 . O ore — =
J Eile Edit ¥Yiew Favorites Tools Help |
JAddreSS I@ http: #A192.168.1.1 /book/survey/ admin_questions. php j 6> Go
Current Questions -]

#7hat 1z vour favorite county®

Which is your favorite state?

Add A Question

Question: I

Answers:

|
|
|
|
|
|
|
! =

Astart| €€ Q@B || Ge) o BdeTIVL X FUDB 1207 Pu

Figure 9-4: Survey-administration page

L B u, A T ' A 0S50 o o ore - E b4
J Eile Edit ¥Yiew Favorites Tools Help |
J Address I http: /192 168.1 1 /book /survey/ admin_get_winner. phpYweek date=2000-05-23 j 6> Go

Editing as jay
Survey Admin: Weekly Random Drawing

Draw a winner for the week of 2000-05-28

joe hlow joe@blow. com
joe blow complete@different. guy WINNER!H otify Winner
fred programmer fred@fred.com

Past Weeks:
2000-05-22

2000-06-04
2000-07-02

Admin Page

=
Astart| € 2P W A || ge) o BleFOV £EUPH 1210FM

Figure 9-5: Select winner page

Chapter 9: Survey

265

Winners will be notified via email and sent a URL to claim their prize. The page
they get when they open the URL will look like the one in Figure 9-6. Once there,
winners will need to confirm who they are, just so you have an extra level of security.

0 P = D £ Dra 050 erne ore .=
J Eile Edit Yiew Favorites Tools Help |
JAddreSS I@ hitp: /¢madfish. com:8080/book /survey/claim. php j & Go

e

Claim Your Prize In Our Weekly Drawing

Welcome! To claim your prize, please enter the email address where you received your notification message, and
then click on the button that says "I accept!"

Yout Email Address: I
| accept! |

E
str] | € 2D EHE 3 A || w] & A BBl LFTPH 1213 Pu
Figure 9-6: Claim prize page

Preventive measures

In the previous chapter we discussed methods for removing junk information that
people may attempt to send through the form elements. We will continue to use
these functions here. This application will also do some email address validation.

This application will provide you with a simple means of blocking some people
from entering information at your site. It’s nothing terribly sophisticated; a savvy
Internet user would be able to work around it in a minute. Using the form shown in
Figure 9-6 you will be able to enter a domain of origin that will be blocked from
the site. All users who enter data will have their $_SERVER['REMOTE_HOST'] and
$_SERVER['REMOTE_ADDR'] values checked against a table in the database (they
can turn the presentation of these values off, though). If their host is found, the
application will refuse access to the user. Again, this isn’t perfect. If you really have
sensitive information and need an effective way to block users, you should work
with some sort of login scheme. This is just an example of what you could do with
a database and HTTP header information.

266

Part 111: Simple Applications

Email Addresses: To Validate or Not to Validate?

Verifying that an email is in the proper format takes a lot of work. To check a single
address thoroughly takes multiple regular expressions. Given that reqular expressions
are fairly slow, you may be wondering if it is even worth running a script like that,
especially if you are running a site with very heavy traffic. You will need to decide
that for yourself, based on the amount of traffic you get and the strength of your
server hardware. Do you need to make sure emails are perfect, or will a simpler, less
robust form of validation be good enough? Even if you make sure the address is in the
proper format, that doesn't tell you if the address is attached to an actual mailbox. If
you do need to validate your email addresses as much as possible, check around on
the Web. Online code archives contain software that will check an address's validity
and do rudimentary network lookups to validate domain names and the like.

You'll also need to take some steps to make sure that the wrong people won’t be
claiming prizes. You'll need to make sure that the people coming to claim prizes are
who they say they are.

Designing the Database

This survey application allows for any number of multiple-choice questions. Each
question can have any number of answers. To create this relationship you’ll need
two tables, one named questions and one named answers, that have a one-to-many
relationship. (Each question (1) can have any (n) number of answers.)

User information is best represented by multiple tables as well, since each user
will answer multiple questions. A table named users will store name and address
information, while a table named responses will tie together a user and an answer.
(User A chose Answer Z to Question 2, for example.) The weekly contest winners will
be represented as a link to the appropriate user record in a table named winners,
where users’ names are listed along with the week in which they won. Two other
tables, states and age_ranges, are used to help us group responses together in dif-
ferent ways.

Finally, two administrative tables have no relationships to the other tables in the
database. The admin table holds usernames and passwords for administrators, and
blocked_domains records domains that have been blocked.

Because we have multiple tables that are linked together, in this database we can
begin to take advantage of the features of the InnoDB table type. One of those is the
ability to create foreign key constraints. (MySQL has always enabled you to declare
these, but they have no meaning for other table formats.) A foreign-key table con-
straint spells out the relationship between the table being defined and another table

Chapter 9: Survey

267

in the database, such as the relationship in this example between the answers and
questions tables. A nice benefit of the foreign key table is the ON DELETE part of the
constraint definition. If you set this to ON DELETE CASCADE, deleting a record in the
master table will automatically cause all dependent records in the child table to be
deleted as well. Therefore, if you delete a question, all of its answers go away too.
Which means that much less code to write (always a good thing).

Figure 9-7 shows a visual representation of the structure of the database. The
create statements for making these tables are shown in Listing 9-1. Note that these
table definitions were copied from the mysqldump utility. If you're not aware of
mysqldump, or the other mysql utilities, make sure to read Appendix D.

questions users state
question_id — user_id state
question name statename
email
answers country
—1 answer_id state age_ranges
question_id age
answer remote_addr min_age
remote_host max_age
responses create_dt age_range
1 user_id winners
answer_id
weekdate
user_id
claim_code
notify_dt
claim_dt
confirm_dt

. blocked_domains
survey admin

domain
username block_by
password block_dt
release_dt
notes
modify_dt

Figure 9-7: Survey database schema

268 Part 111: Simple Applications

Listing 9-1: Create statements for survey

-- Table structure for table 'admin'

CREATE TABLE admin (
username varchar(50) NOT NULL default '',
password varchar(255) NOT NULL default '',
PRIMARY KEY (username)

) TYPE=InnoDB;

-- Table structure for table 'age_ranges'

CREATE TABLE age_ranges (
min_age int(11) NOT NULL default '0',
max_age int(11) NOT NULL default '0',
age_range varchar(10) default NULL,
PRIMARY KEY (min_age,max_age)

) TYPE=InnoDB;

-- Table structure for table 'answers'

CREATE TABLE answers (

answer_id int(11) NOT NULL auto_increment,

question_id int(11) NOT NULL default '0",

answer text NOT NULL,

PRIMARY KEY (answer_id),

KEY question_id (question_id,answer_id),

FOREIGN KEY (“question_id™) REFERENCES “survey.questions®
(“question_id") ON DELETE CASCADE
) TYPE=InnoDB;

-- Table structure for table 'blocked_domains'

CREATE TABLE blocked_domains (
domain varchar(64) NOT NULL default '',
block_by varchar(50) default NULL,
block_dt datetime NOT NULL default '0000-00-00 00:00:00",

Chapter 9: Survey

269

release_dt datetime default NULL,

notes text,

modify_dt timestamp(14) NOT NULL,

PRIMARY KEY (domain),

KEY block_by (block_by),

FOREIGN KEY (“block_by) REFERENCES “survey.admin® (“username”) ON
DELETE SET NULL
) TYPE=InnoDB;

-- Table structure for table 'questions'

CREATE TABLE questions (
question_id int(11) NOT NULL auto_increment,
question text NOT NULL,
PRIMARY KEY (question_id)

) TYPE=InnoDB;

-- Table structure for table 'responses'’

CREATE TABLE responses (

user_id int(11) NOT NULL default '0',

answer_id int(11) NOT NULL default '0"',

PRIMARY KEY (user_id,answer_id),

KEY answer_id (answer_id),

FOREIGN KEY (“user_id™) REFERENCES “survey.users” (“user_id) ON
DELETE CASCADE,

FOREIGN KEY (answer_id") REFERENCES “survey.answers’
(“answer_id>) ON DELETE CASCADE
) TYPE=InnoDB;

-- Table structure for table 'states'

CREATE TABLE states (
state char(2) NOT NULL default '',
statename varchar(30) NOT NULL default '',
PRIMARY KEY (state)

) TYPE=InnoDB;

Continued

270

Part 111: Simple Applications

Listing 9-1 (Continued)

-- Table structure for table 'users'

CREATE TABLE users (
user_id int(11) NOT NULL auto_increment,
name varchar(50) default NULL,
email varchar(50) default NULL,
country varchar(20) default NULL,
state char(2) default NULL,
age int(11) default NULL,
remote_addr varchar(15) default NULL,
remote_host varchar(80) default NULL,
create_dt timestamp(14) NOT NULL,
PRIMARY KEY (user_id)

) TYPE=InnoDB;

-- Table structure for table 'winners'

CREATE TABLE winners (
weekdate datetime NOT NULL default '0000-00-00 00:00:00",
user_id int(11) NOT NULL default '0'",
claim_code char(8) NOT NULL default "',
notify_dt datetime default NULL,
claim_dt datetime default NULL,
confirm_dt datetime default NULL,
PRIMARY KEY (weekdate),
UNIQUE KEY claim_code (claim_code),
KEY user_id (user_id),
FOREIGN KEY (“user_id") REFERENCES “survey.users™ (“user_id) ON
DELETE CASCADE
) TYPE=InnoDB;

Code Overview

If you have already read the section of the same name in Chapter 8, the structure
we use here should be familiar to you. Items in the /functions folder are included
and ready for reuse. We've also taken the MySQL functions we used for the guest-
book, modified them a bit to make them more generally useful, and renamed them
my_connect () and my_query (). These can be found in the /functions/basic directory.

Chapter 9: Survey

271

It’s obvious that this survey application requires several more pages than the
guestbook: More needs to be done. Though you can include several actions in a sin-
gle page, and sort through the ones you need by passing variables and using if
statements, it can make code difficult to keep track of. Better to have several intu-
itively named files that perform specific tasks. That said, some pages in this appli-
cation make use of variables in order to decide how they should look and behave.

If you've done any Web work at all you know how tedious it can be to deal with
HTML tables and forms. On the one hand, putting literal HTML tags into your pages
will always be a faster procedure than any code-based method of generating them.
On the other hand, propagating changes through all those literal tags can be more
than tedious — it’s also a great source of bugs). For that reason, in this and most of
the other applications in this book, we will try to ease the pain involved in dealing
with tables and forms. In the following sections you will see several functions that
will make life, in the long run at least, a lot easier. The functions in the coming sec-
tions will make a lot more sense if you see what they accomplish first. Here’s some
code that will work just fine if used with the following functions:

print start_table();

print table_row(
table_cell('Cell text')

)

print end_table();

or even just this:
print table('Cell text');

This will create a table with one cell. You could build on the complexity of the
unicellular table by adding additional table_cel1() calls within the table_row()
function call. You can do this because of PHP’s ability to deal with a variable num-
ber of arguments. We designed the table_row() function to loop through all of the
arguments (some of which are calls to the table cel1() function). You may be
wondering how these functions deal with table attributes, like width, align, and
others. How could you alter those for particular tables_or for all your tables at once?

If you don't like the functions we've created for tables, forms, and other

HTML elements, don’t use them. It is perfectly acceptable (and perhaps even

more common) to type out HTML elements rather than create them
through functions. Like many things in programming, it comes down to a
matter of preference. For the question of whether to hard-code HTML or
programmatically generate it, there’s no right answer. It is true, though, that
dynamically generating HTML on a high-traffic site can put a big load on the

272

Part 111: Simple Applications

server. In that situation, you probably will want to put literal HTML in your
pages — at least in your live pages — or look into a caching system of some
kind.

Here we come to another question of style. You can write your functions to
expect certain attributes as arguments, in a particular order, like this:

function table_cell ($value='", $align="Teft', $valign="top', $width="")
That’s straightforward, and calling the function is pretty simple too:

print table_cell('This will be in the upper left corner');
print table_cell('This will end up in the lower right corner',
'right', 'bottom');

But the drawback is that you have to remember what attribute goes where. And
reading code like this six months later, after you've forgotten you wrote it, or when
you didn’t write it all, can be a problem. For an example like the table_cel1()
function above, it’s not so bad — “right” and “bottom” are clear enough. But a line
like

print image_tag('/images/b129.gif"', 10, 20, 5, 1, 0);

is not so clear. As an alternative, you can specify your arguments as named values
in an array:

print image_tag(array('src'=>'/images/bl129.gif"', 'width'=>10,
"height'=>20

'vspace'=>5, 'hspace'=>1, 'border'=>0
));

That makes the function call easier to read, but the tradeoff is that the function
itself is a bit less so:

function image_tag ($attributes=NULL)

Now the work of figuring out what values are being passed to the function takes
place inside the function itself. Still, that keeps it in one place. The function calls
are a little more tedious to write, and the functions a little trickier. The benefit is
code that’s easier to read, easier to maintain, and less ambiguous in the writing;
this means fewer bugs. (Unless you're prone to forget parentheses, like some of us.)

Chapter 9: Survey

273

The functions we’ll use with these examples make something of a lazy compro-
mise between these two approaches. When there’s a single most common use of a
tag, involving one or two attributes, the function assumes that’s what you mean if
you hand it an unnamed simple value, like this:

print table_cell('This is the stuff that goes between the opening
and closing td tags.');

If you want to specify other attributes, then everything has to be in an array:

print table_cell(array('value'=>'This is the content of the cell’
, 'align'=>'right', 'valign'=>'bottom'
))s

A more complex function call might look like this:

print table_row(array/(
"bgcolor' => $bgcolor
, 'cells'=>array(
table_cell(array(
"value'=>"'New entry"'
, '"align'=>'right'
))
, text_field(array(
'name'=>"entered_by'
, 'value'=>""
, 'size=>10
))
, submit_field('Insert Record')

))s

Here the arguments to table_row() specify the row’s background color
(*bgcolor"=> $bgcolor) and an array of values to be set up as table cells. Some of
those are nothing more than the contents of the cell, and so we can just list them,
even when the contents themselves are the results of other function calls to create
form fields. But we want the first cell to be aligned to the right, so we make an
explicit call to the table_cel1() function ourselves to build it.

Keep in mind that the methods for achieving nested function calls will be
explained later in the “Code Breakdown” section. Throughout the process of creating
this application we make more extensive use of MySQL functions than you saw in
Chapter 8.

274 Part 111: Simple Applications

Code Breakdown

As with the guestbook application, the code here is divided for convenience. We've
added some final touches to the structure that we’ll use for the rest of the book. It’s
worth taking a minute or two to go over it. Here’s a picture:

/usr/Tocal/apache/dsn/
* db_dsnlist.php
* dsn.ini

/usr/Tocal/apache/htdocs/book/
* autoload.php
book.ini
book.php
classes.php
functions.php
index.html
phpinfo.php
sitemap.php
source.php
survey/

+ admin/

0 block_domain.php
end_page.php
get_winner.php
header.php
index.php
login.php
questions.php
winners.php
age_results.php
claim.php
complex_results.php
country_results.php
db/

0 admin.sql
age_ranges.sql
answers.sql
blocked_domains.sql
grants.sql
load_questions.sql
questions.sql
responses.sql
setup.bat

D . S S S S S

o O O o o o o

+ o+ o+ o+ o+

o O O O O o O o

Chapter 9: Survey

275

setup.in
states.sql
users.sql
0 winners.sql

+ functions/

0o check_domain.php

o fetch_question.php

o fetch_user.php

0 get_answers.php

0 weekstart.php
functions.php
header.php
index.php
results.php
state_results.php
thanks.php
verify_answers.inc.php

o O O

+ 4+ 4+ + + + o+

From the top, we have a file named /book/book.php. This adds the /book/functions
directory, where we keep the general-purpose functions used across all the examples
to the default PHP include path. It also adds the /book directory itself by modify-
ing the PHP configuration variable include_path. This in turn enables us to write
include statements that refer to /book/thing/stuff.php, even if the book directory is
not in the root document directory of your server.

The example application that we are looking at in this chapter, the Survey appli-
cation, lives in the /book/survey directory. In here are the files for the pages of the
application. The administrative pages are in a subdirectory named admin/, which
helps keep the file names somewhat regular — the header file is named header.php, the
page included at the end of every page is end_page.php, and so on. The header.php
file makes reference (via an include statement) to a second file, functions.php,
which defines the functions specific to this application. If we were using any con-
stants or global variables in this application, those would be defined in a file named
globals.php.

Two other subdirectories exist under survey/, standard to all the following
examples. The functions/ subdirectory is where the actual code defining our local
functions lives. Each function is in its own file in here. That’s to make it easier to
find later, mostly, but it also makes managing changes to the code a little bit simpler.
The functions.php file is just a set of require_once() calls that pull in the individ-
ual function files. (The functions under /book/functions are set up the same way.)

The db subdirectory is where we keep the SQL files that define the survey data-
base. There is a file in here named setup.bat, which runs mysq1 (the command-line
client) as the root user, prompting you for a password, and executes the commands
in the setup.in file. setup.in creates the database, includes the table definitions,
loads some rather silly sample data, and grants read and write access on the data-
base to the nobody account. (If your Web server runs under a different username

276

Part 111: Simple Applications

you should edit this file to reflect the different credentials.) Static lookup tables, like
the states table, load the relevant data into their definition files.

We covered some of the functions defined by the /book/functions/basic.php file
in Chapter 8, so we won't go over those again here. But we did add a few little
bonuses this time around.

HTML functions

As your applications get more complex, you're going to need to continually use
some HTML ingredients — forms, tables, paragraph tags, anchors, and the like. For
this reason we've added a series of functions that make it easier to create those
repetitive HTML elements —and we've done it so as to demonstrate a variety of
ways to handle arguments to a function.

ARGUMENT-HANDLING FUNCTIONS
To introduce the techniques used by the HTML functions that we’ll cover here, we’ll
pick a small one —the image_tag() function —and show you what it’s doing.

This image_tag() function returns an HTML tag.

function image_tag()
{
static $_defaults = array(
'src' => "'
"alt' => "'
"border' => 0
"allowed"' =>
array('Common','alt"',"height', 'width','longdesc'
,'src','usemap',"ismap', 'name',"'align', 'border"', "hspace', 'vspace'
)
)
static $_simple = array('src');
$p = func_get_args();
$p = parse_arguments($p, $_simple, $ _defaults);
if (empty($pl['alt']))
$pl'alt'] = $p['src'];
$attlist = get_attlist($p);
$output = "";

return $output;

The first thing this function does is declare a couple of static variables (the
underscores in their names—$_defaults and $_simple—are just a convention
we've used for these particular variable names, to make them distinct from other
variable names; they have nothing to do with the variables being static or not).

Chapter 9: Survey

277

Static variables aren’t reinitialized every time the function is called. Instead, they
retain their values from one call to the next, including any changes. So if we have
a function like

function count_sales($newsales=0)
{
static $total_sales = 0;
$total_sales += $newsales;
print "Total sales to date: $total_sales\n";

we can use it to keep a running total, like so:

count_sales(10.00);

QUTPUT ---> Total sales to date: 10.00
count_sales(5.00);

QUTPUT ---> Total sales to date: 15.00

Besides serving as a place to store data, statics are also useful when you have
something like a big array that gets used every time you call the function, but that
never changes. (Or doesn’t change much.) Especially when your function is one that
gets called over and over again, it can pay to not have to create those variables
from scratch each time. One thing to be aware of: Statics are handled just like ref-
erences, and that affects how they behave. For instance, you can’t store another
reference in a static variable. For more information, see the PHP manual section at
http://www.php.net/manual/sv/language.variables.scope.php.

In image_tag() the two static arrays we define are storing two kinds of data:

€ $ defaults is an associative array that describes attributes of the HTML
tag and their default values. Sometimes attributes are listed in here
because we really do have default values for them — for example, the
default value for the 'border' attribute of an tag should be zero.
Most of the time, they're here to establish the name of the attribute for
later use. In fact, many of the “attributes” listed in the $_defaults array
in other HTML tag functions aren’t strictly attributes of the tag at all. The
'value' attribute of a <textarea> tag, for instance, turns into the string
between the opening <textarea> and closing </textarea> tags.

€ $_simple sets out how we want to interpret arguments to this function
when they don’t come neatly labeled in an array. As we mentioned earlier,
most of the time we’ll be using an array to pass arguments into these
functions, so that when we look at the function calls we’ll know what we
meant to do:

image_tag(array('src'=>"'/images/chimp.jpg', 'height'=>50,
'width'=>50));

278

Part 111: Simple Applications

But we’d also like to be lazy:
image_tag('/images/spacer.gif');

$_simple is what lets us get away with simplified coding style —it’s a list
of attribute names to be assigned to unlabeled values. Here, setting it to
array('src') specifies that if we get just a plain string as an argument,
it’s meant to be the value of the src attribute of the tag.

Look at the functions being called here.

First up is the parse_arguments() function. We call it with three parameters: an
array containing the arguments that were passed into image_tag() and the two
static arrays. You might notice that even though the arguments are declared as ref-
erences to the passed-in variables we can still initialize them to default values. This
is a very useful feature of the new PHP engine release. Being able to define a
default value means that the caller can ignore arguments that don’t apply.

In the function itself, we use casting operators to make sure that these are arrays,
and set up some variables that we’ll use to hold values as we go through the argu-
ments (note that in PHP 5, you can assign default values to by-reference argu-
ments; this makes calling the functions much easier):

function
parse_arguments($args=array(),&$simple=array(),&$defaults=array())

$args = (array)$args;

$simple = (array)$simple;
$defaults = (array)$defaults;
$key = NULL;

$result = $defaults;
$result['_defaults'] = $defaults;
$resultl'_simple']l = $simple;

We start out the $result variable, which is what the function will eventually
return, as a copy of $defaults. This ensures that everything defined in the
$_defaults array will come back as an attribute for the tag. Then we put those
arrays themselves into $result so that they can be modified or replaced by argu-
ments passed in to the original function. This will let us change the default and
simple values in the code of a page, setting up a default image size or border width,
for example_ without having to rewrite the function itself.

Next we’ll walk through the list of arguments. Associative arrays are merged
into $result, empty arguments are ignored, and other arguments are assigned to
the named parameters from the $_simple array:

$i = 0;
$sc = count($simple);
foreach ($args as $arg)

Chapter 9: Survey 279

if ($arg === NULL || (is_array($arg) && count($arg) == 0))
{
// do nothing
}
elseif (is_object($arg))
{
$result = array_merge($result, get_object_vars($arg));
}
elseif (is_assoc($arg))
{
$result = array_merge($result, $arg);
}
else
{
if ($i < $sc)
{
$key = $simple[$i++];
if (lempty($arg) || !isset($resultl$keyl))
{
$resultl$key] = $arg;

}
else
{
if ($key === NULL)
{
user_error("Argument '$arg' was passed with no
available target - aborting...\n", E_USER_ERROR);
}
if (isset($resultl$keyl))
{
if (lis_array($result[$keyl))
{
$resultl$key] = array($resultl$keyl);
}
$result[$key][] = $arg;
}
else
{
$resultl$key] = $arg;

280

Part 111: Simple Applications

Two things are worth pointing out here. If a simple argument is encountered
after we've run out of parameter names from $_simple, it's added into an array by
means of the last simple name. This is how a function like paragraph() works. It
has just one simple argument name, 'values', so a list of simple arguments passed
in to the function ends up as elements in the $values array:

paragraph('One line','Another line',$variable,'Yet another line');
becomes

"values' => array('One line', 'Another Tline', $variable, 'Yet
another line');

If there are no names passed in, however, we won’t have anywhere to put any
arguments that aren’t associative arrays. In this case we use PHP’s user_error()
function to raise an error. This prints out our error message and stops the script,
just like a normal PHP error. (The user_error() function is one you'll be seeing
more of in later examples.)

Finally, to clean up, we take any changes to our list of default and simple argu-
ments and pass them back to the calling function. Because the two arrays are passed
in by reference, changes made to them here will update the original variables. And
because they're declared as static, those changes will still be there the next time the
function is called.

$defaults = array_merge($defaults, $result['_defaults']);

$simple = $result['_simple'];
return $result;

Changes to $_defaults are merged into the original list, while a new value for
$_simple will replace the old one.
After calling parse_arguments() in the image_src() function, like this,

$p = parse_arguments($p, $_simple, $ defaults);

we have an array, $p, containing all the attribute values and other parameters
from the original call. For example, from this line in the Web page —

image_src('/images/monkey.jpg');
—we would end up with the following values in $p:

$p = array('src'=>'/image/monkey.jpg', 'alt'=>"'"', 'border'=>0);

Chapter 9: Survey

281

For the tag specifically, if the 'alt" attribute is empty, we’ll use the name
of the image file (from the 'src’ attribute) as a default:

if (empty($pl'alt']))
$pl'alt'] = $pl'src'];

The next step is to turn the reference to the image file into an HTML tag. So we
pass the array to the get_attlist() function. This takes key/value pairs from an
associative array and reformats them as a single string of HTML-style attributes.
The previous example would come back as the following:

src="/images/monkey.jpg" alt="/images/monkey.jpg" border="0"

Therefore, we only need add the name of the tag itself and the opening and clos-
ing angle brackets to get this, which image_tag() returns as its result:

<image src="/images/monkey.jpg" alt="/images/monkey.jpg"
border="0">

A special constant, STANDALONE, defined in /functions/basic.php, is useful for
attributes like 'selected’ in an <option> tag. So

array('value'=>"'CA','selected'=>STANDALONE)
becomes
value="CA" selected

Using this function may seem like a lot of work just to get a simple tag.
Well, it is. The payoff is flexibility, the cost is an increase in complexity. In a high-
performance environment you would probably end up discarding parts of this code.
For instance, you could decree that all function calls will be of the following form:

my_function(array('paraml'=>"valuel', 'param2'=>'value2', ...)

This would enable you to eliminate the call to parse_arguments() and simply
merge the passed-in array with $_defaults. Or you could use functions like these
in your production/development environment to produce less clever, and thus
faster, files that will then get pushed out to your servers.

FUNCTIONS FROM /BOOK/FUNCTIONS/HTML/
These functions make it easier to create common HTML tags. Most of the functions
in this file are very similar.

282 Part 111: Simple Applications

ANCHOR_TAG() This function creates an anchor tag.

function anchor_tag()
{
static $_defaults = array(
"href'=>""
, 'text' => "'
, 'value' => "'
, 'allowed' => array('Common', "accesskey', 'charset', "href'
,"hreflang', 'rel",’
)

rev','tabindex', "type', 'name', 'target’

)
static $_simple = array('href','value');

$p = func_get_args();
$p = parse_arguments($p, $_simple, $ defaults);

if (empty($p['text']))
{ $pl'text'] = $p['href'];
:f (empty($pl['value']))
{ $pl'value'] = $pl'text'];

$attlist = get_attlist($p);
$output = "<a $attlist>{$pl['value']}";
return $output;

You can expect only two things every time with an anchor tag: an href attribute
and some text to go between the opening and closing <a> tags. However, it is pos-
sible that a name attribute would be more descriptive, and more useful in client-side
scripting. But more often than not, the call to this function will look something like
this:

anchor_tag('myurl.com/index.html"', 'this is a great link');
PARAGRAPH() This function will either print out opening and closing <p> tags

and everything between them, or just the opening <p> tag, depending on how it’s
called.

Chapter 9: Survey

283

function paragraph ()
{
static $_defaults = array(
'values' => array()
, 'allowed' => array('Common','align")
, 'start' => NULL
)
static $_simple = array('values');
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);

$output = "\n<p $attlist>\n";

if ($pl'start'] !== NULL)

{
return $output;

}

$output .= implode("\n",(array)$pl'values'])
.end_paragraph($p)

return $output;

The first thing to understand about this function is that by default it will print
not only the opening <p> tag along with its attributes, but also the closing </p> tag
and everything that could occur between the two. This could include anchor tags,
image tags, or just about anything else. The following function call would work just
fine, and in fact is used within the survey application:

print paragraph(anchor_tag('block_domain.php','Return to Domain
List"));

One argument exists in this function call, and that’s another function call with
two arguments. In effect, when one function call is nested inside another, PHP exe-
cutes the internal one first. So first the anchor_tag() function is called, creating a
string like '"'. Then the outer function is executed,
so the call to the paragraph function will actually look something like this:

print paragraph('Return to Domain
List");

Note how flexible this becomes. By looping through the number of arguments
you can send any number of additional function calls to the paragraph function.
And you can happily mix text and function calls together, because by the time

284

Part 111: Simple Applications

paragraph() sees it, it’s all text. So the following is a perfectly fine call to the
paragraph function:

print paragraph(
"Blocked by: $block_by
"
, "Date Blocked: $block_dt
"
, "Date Released: $release_dt
"
, "Last Modified: $modify_dt
"

);

START_PARAGRAPH() You might have noticed that the paragraph() function
checked to see if it had been passed an argument named 'start’', and if it had,
returned only the opening <p> tag. Sometimes you need to use the function that
way because what goes inside the paragraph is too complicated to be included in a
list of values. In such a case you can just call paragraph() with a 'start'=>TRUE
attribute, or you can use the start_paragraph() function, as follows:

function start_paragraph ()
{
$p = func_get_args();

$pl] = array('start'=>"yes');
return call_user_func_array('paragraph', $p);

The start_paragraph() function takes the arguments passed into it and adds a
"start' argument. Then comes the interesting part. The PHP function
call_user_func_array () takes a function name and an array of arguments and
uses them to make a call to the named function. The elements in the array of argu-
ments are passed in exactly as they would be in a normal function call. So
call_user_func_array('myfunc',array(1,2,3);

works just like

myfunc(1l,2,3);

The call_user_func_array() strategy lets start_paragraph() work as a kind of
front end to the paragraph() function. A call to start_paragraph() like this one:

start_paragraph(array('align'=>"'center'));
is equivalent to

paragraph(array('align'=>"center', 'start'=>'yes'));

Chapter 9: Survey

285

Both calls produce the same HTML output:
<p align="center">

END_PARAGRAPH() This function just prints out an end paragraph tag (</p>), as
follows:

function end_paragraph ()
{
$output = "\n</p>\n";
return $output;

Its main reason for existing, besides making a lovely matched set with
start_paragraph(), is to let you close any opening tags you might want to hard-
code into the opening of a paragraph —a tag, for example.

UL_LIST() With this function you can create a bulleted list. Most frequently, an
array will be passed to the function, each element prepended with an <1i> tag. The
function also deals with occasions in which a string is sent as the only argument.

function ul_Tlist ()
{
static $_defaults = array(
'values' => array()
, 'contents' => NULL
, 'allowed' => array('Common', 'compact', 'type')
)
static $_simple = array('values');
$p = func_get_args();
$p = parse_arguments($p, $_simple, $ defaults);
$attlist = get_attlist($p);

$output = "<ul $attlist>\n";

if (lempty($pl'values'])
&& lis_array($p['values'])
&& !is_object($pl['values'])

$output .= $pl'values'];
}
else

{

array_key_remove($p,array('_defaults','_simple',"allowed"'));

286

Part 111: Simple Applications

foreach ((array)$pl'values'] as $p['text'])

{
$output .= 1i_tag($p);

}

$output .= $pl['contents'];
$output .= "\n";
return $output;

}

START_TABLE() Every HTML table begins with more or less the same code, so we
have a function to generate it for us.

function start_table ()

{
static $_defaults = array(

‘cellspacing' => 0

, 'cellpadding' =>1

, 'allowed' =>
array('Common', 'border', 'cellpadding', 'cellspacing’

,'datapagesize', 'frame', 'rules’', 'summary"','width',"align', 'bgcolor’
)
)
static $_simple = array('width');
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);
$output = "\n<table $attlist>\n";
return $output;
}

END_TABLE() The same goes for the end of the table —it’s boilerplate, and boiler-
plate should be generated programmatically. Here’s a function that does just that.

function end_table ()

{
$output = "\n</table>\n";

return $output;
}

TABLE() Here, unlike with the similar paragraph functions, start_table() is the
function that knows how to generate the opening <table> tag, and it is the overall
table() function that calls it. This is because we’d like to be able to pass in the

Chapter 9: Survey

287

width as an argument when we are only opening a table. However, when we're cre-
ating a whole table, any unlabeled arguments are going to be rows in the resulting
table. Because the two situations need two different values for $_simple,
start_table() can’t be just a front end to table().

function table ()
{
static $_defaults = array(
"rows' => array()
)s
static $_simple = array('rows');

$p func_get_args();
$p = parse_arguments($p, $_simple,

$output = start_table($p);

foreach ((array)$pl'rows'] as $row)

{
$output .= table_row($row);

$output .= end_table($p);

return $output;
}

$_defaults);

TABLE_ROW() This function does not only print out the opening <tr> tag and its
attributes; it also prints the table cells that will be nested within the <tr> tags.

function table_row ()
{
static $_defaults = array(
'cells' => array()
, 'allowed' =>
array('Common', 'align','valign', 'char'
, 'bgcolor’

)s

static $_simple = array('cells');
$p = func_get_args();

$p = parse_arguments($p, $_simple,
$attlist = get_attlist($p);
$output = "\n <tr $attlist>\n";

,'charoff'

$_defaults);

288

Part 111: Simple Applications

foreach ((array)$pl'cells'] as $cell)

{
if (lpreg_match('/<t[dhl/i"', $cell))
{

$output .= table_cell($cell);
}

else

{

$output .= $cell;

}
$output .= "\n </tr>\n";
return $output;

The following table row() call has two arguments, one of which is itself
another function call. The table_cel11() function (described later) is executed first,
and the results are passed in to table_row().

print table_row(

"A simple cell"

, table_cell(array('value'=>"A not-so-simple cell",
"align'=>"right'))
)3

So when table_row() goes through the values in its $cells argument, it finds
one plain string ('A simple cel1"'), which it runs through table cell()
itself, and one already-formatted cell (the output of the table cel1() call in our
initial code), which it just tacks onto its output string as is.

TABLE_CELL() Not too much is new here. It might be worth pointing out the way
the $value attribute is handled: You check to see if it’s an array or an object,
because PHP lets you cast an object as an array —you get back an associative array
of the properties of the object.

function table_cell ()
{
static $_defaults = array(

"align' => 'left’
, 'valign' => "top'
, 'value' => "'
, 'allowed' =>

array('Common', "abbr','align', 'axis', 'char', 'charoff’

,'colspan', "headers', 'rowspan', "scope','valign', 'width', "height'

Chapter 9: Survey 289

,'nowrap"', 'bgcolor'

)
static $§_simple = array('value');

$p = func_get_args();
$p = parse_arguments($p, $_simple, $ defaults);
$attlist = get_attlist($p);

if (is_array($pl'value']) or is_object($p['value']))
{
$pl'value'] = implode("",(array)$pl'value']);

$output = "\n <td $attlist>{$p['value']}</td>\n";
return $output;
}

FUNCTIONS FROM /BOOK/FUNCTIONS/FORMS.PHP
Most of these functions are fairly straightforward and don’t require any explana-
tion. We will show a couple just for examples.

text_field() This prints out a text field. All the expected attributes should be
passed to the function. (Note: Tabelize() is a function in /book/functions/basic —
essentially a slightly trickier version of ucwords().)

function text_field ()
{
static $_defaults = array(
"type' => "text'
'size' => 40
'name' => 'textfield'
"Tabel' => NULL
"default' => NULL
"value' => NULL
'source' => NULL
)s
static $_simple = array('name','label", 'default');
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
array_key remove($p,array('_defaults',' simple'));
if ($pl['Tabel'] === NULL)
{
$p['Tabel'] = labelize($p['name']);

290

Part 111: Simple Applications

$pl'value'] =

get_field value($p['name'],$p['default'],$pl'value'],$pl['source’']);
return input_field($p);

}

Most of the other functions look similar to this one, the only real exceptions
being the checkbox and radio button.

checkbox_field() The only thing that may be of interest about this function is how
we decide if a checkbox is to be checked by default. We can do this by adding an
argument called $match. If $match equals either the value of the field or the label
(unless you tell it not to match the label by setting 1abel match to FALSE), the field
will be checked when displayed. The radio_field() function works the same way.

function checkbox_field ()
{
static $_defaults = array(
"type' => 'checkbox'
, 'name' => 'checkboxfield'
, 'value' => "'
, 'label' => NULL
, 'match' => NULL
, 'default' => NULL
, 'checked' => NULL
, 'source' => NULL
, 'prefix"' => "<nobr>’
, 'suffix' => '</nobr>'
, 'Tabel_match' => TRUE
);
static $_simple = array('name', 'value','label");

$p func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
if ($p['label'] === NULL)
{
$p['Tabel'] = Tabelize($p['value']);

if (!$pl'skip_selection'])
{
$p['value'] = get_field value($pl'name"]
, $pl['default']
, $pl'value']
, $pl['source']
)

Chapter 9: Survey

291

}

$p['checked'] = (
in_array($pl'value'],(array)$pl'match'])
I«
$pl'Tabel_match']
&& in_array($pl'Tabel'],(array)$pl 'match'])
)
) ? STANDALONE : NULL

$output = $pl'prefix'].input_field($p)."

".$pl'Tabel"J.$pL'suffix"];

}

return $output;

FUNCTIONS AND CODE FROM /BOOK/BOOK.PHP
This is a kind of uberheader file, which the following examples include to set up the
basic environment and call in the reusable functions from /book/functions.

book_constants() We store information about how your site is configured in a file
named ‘book.ini’, using the same format as PHP’s own ‘php.ini’ file. This lets us use
the built-in function parse_ini_file() to read it in and set up the location of
your /book directory, your /dsn directory, etc. as constants.

function book_constants()

{

static $constants = NULL;
if ($constants === NULL)

{

}

$ini_file = dirname(__FILE__)."/book.ini";
if (Ifile_exists($ini_file))
{

generate_ini_file($ini_file);
}
$constants = parse_ini_file($ini_file);
foreach ($constants as $k => $v)
{

if (ldefined($k))

{

define($k, $v);

return $constants;

292

Part 111: Simple Applications

path_separator() This is a simple function to figure out what character separates
directory names for your environment:

function path_separator()
{
static $path_separator = NULL;
if ($path_separator === NULL)
{
// if the include path has semicolons in it at all, then
they're
// there to separate the paths; use a colon otherwise
if (strchr(ini_get('include_path'),"';"') === FALSE)
{
$path_separator = ":';

}
else

{

$path_separator = ';';

}
return $path_separator;
}

add_to_include_path() This function adds a directory to PHP’s default include path.

function add_to_include_path()
{
$include_path = ini_get('include_path');

$ps = path_separator();
book_constants();

$paths = explode($ps, $include_path);
$above_book = realpath(BOOK_ROOT.'/../');
if (lin_array($above_book, $paths, TRUE))
{

$paths[] = $above_book;
}
$args = func_get_args();
foreach ($args as $newpath)
{

if ($newpath == "")

Chapter 9: Survey

293

$newpath = $above_book;
;1se1‘f (strpos($newpath,'/book") === 0)
| $newpath = $above_book.$newpath;
if (lin_array($newpath, $paths, TRUE))
| $paths[] = $newpath;

}

$new_include_path = implode($ps, $paths);

if (lini_set('include_path', $new_include_path))

{

die("Could not set the "include_path' configuration variable

to "$new_include_path'");

}

return $new_include_path;

The PHP configuration variable 'include_path' defines a set of directories that
PHP will search through to find files included with the include() and require()
functions. (Several of the built-in file system functions, like fopen(), will also use
this path if asked politely, a nice feature.) The add_to_include_path() function
figures out where it is on the actual file system of your server and what character
your installation uses to separate directories in 'include _path' (a semicolon in
Windows, a colon elsewhere). This lets us add the /book directory to the include
path, even if the example code is not really in the root document directory of your
Web server. The only reason the code is in a function, by the way, is to avoid creat-
ing global variables, which is considered bad style.

INITIALIZATION CODE Having defined add_to_include_path, we promptly call
it, and then include the book/functions.php file, which sets up our reusable set of
functions:

// use the local PEAR Tibraries
ini_set('include_path', '.");
add_to_include_path('/book", '/book/pear/PEAR', '/book/classes');

require_once('book/autoload.php');

// include the core function set
if (!defined('no_include'))

294

Part 111: Simple Applications

require_once('book/functions.php');
}

The survey application

We’re ready to dive into the code of the survey itself now, starting as always with
our header.php file.

CODE FROM /BOOK/SURVEY/HEADER.PHP

This file is included in all the pages of the survey application.

<?php

require_once(
preg_replace('|/survey/.*|"','/book.php',realpath(__FILE_))
)3

// include the function definitions for this application

// (use a path from book/survey so the include will work if we're
// running a script in the survey/admin directory)
require_once('book/survey/functions.php');

// connect to the database
my_connect('survey', 'joeuser', 'resueoj');

// make sure the domain isn't on our blocked Tist
check_domain();

7>

This code has been put inside an i f statement as a precaution. There is no need
to reload the header once it has been loaded. We can make sure that it isn’t reloaded
by creating a constant named SURVEY_HEADER. If by chance this page were loaded
a second time, you wouldn’t have to worry that included files would be imported
more than once.

The first thing we do is include the /book/book.php file. Because the survey
header file is included by pages in the [survey/admin subdirectory, as well as the
main pages in [survey, we have to specify an absolute location for /book/book.php.
We can do this using _ FILE_ . _FILE_ is a PHP language construct that works
like an ordinary constant, and that always contains the full name of the current file.

After /book/book.php has run, all of our main functions are defined. Then we
load the local set of function definitions. After connecting to the database, we
check to see if we've blocked the user’s domain (see the following section).

Chapter 9: Survey

295

FUNCTIONS FROM /BOOK/SURVEY/FUNCTIONS

The following are useful functions used in the application.

check_domain() As mentioned earlier, this is a facility to block domains, and we
use the check_domain() function to enforce the block:

function check_domain()
{
// check to see if the user is coming from a domain that is
listed
// as currently blocked in the blocked_domains database table,
// as specified by the $ SERVER values REMOTE_HOST or
REMOTE_ADDR.
// if it is, print out an error and exit.

$remote_host =
(string)array_key_value($_SERVER, "REMOTE_HOST',"");
$remote_addr =
(string)array_key_value($_SERVER, "REMOTE_ADDR","");
$wheres = array();
if (lempty($remote_host))
{
$wheres[] = "'$remote_host' like concat('%',domain)";
}
if (lempty($remote_addr))
{
$wheres[] = "'$remote_addr' like concat(domain,'%')";
}
if (count($wheres) > 0)
{
$is_blocked = 0;
$where = implode(' or ', $wheres);
$query = "select 1 as is_blocked from blocked domains
where release_dt is null and ($where)

",
B

$result = my_query($query);
1ist($is_blocked) = mysql_fetch_row($result);
mysql_free_result($result);
if ($is_blocked == 1)
{
// Be noncomittal.
print subtitle('Page unavailable."');
exit;

296

Part 111: Simple Applications

In order to understand this code, look more closely at the query, particularly the
Tike predicates. When we bring up this Web page from my ISP (att.net),
$_SERVER['REMOTE_HOST'] is something like this: 119.san-francisco-18-19rs.
ca.dial-access.att.net. When you block domains, you’'ll be blocking the top-
level domain — in this case att.net. And this top-level domain is what will reside
in the database. So the query will have checked on any number of wildcard charac-
ters prior to the top-level domain name.

To achieve the wildcard checking, you will need to concatenate the domain
names with the % wildcard character —so that, for instance, the query will work
against %att.net. Doing this may seem somewhat different from using your typi-
cal 11ike predicate. It’s another powerful technique to use with SQL.

Or, since you might not have $_SERVER['REMOTE_HOST'] available on your
server, you might have entered a literal IP address instead. In this case, the most
general part is the beginning of the string, rather than the end. So when we compare
the domain field to $_SERVER['REMOTE_ADDR'], we concatenate the % character
onto the end rather than the beginning.

Also note that the start of the select statement contains select 1 rather than
select count(*). This leads to a good way of testing if any rows meet the condi-
tion of the where clause. If the where clause matches any number of rows the query
will return a single column with the value of 1, which in the programming world
means TRUE. If no rows are returned you know the where portion of the query had
no matches.

This function is just intended to demonstrate some general techniques for check-
ing server variables and comparing them against a database. In the real world it
would be about as hacker-proof as a wet tissue.

weekstart() This function generates SQL, MySQL style, to figure out the day of the
week for a particular date. You use this in the application to pick a winner for the
current week.

function weekstart ($when='")
{

if (empty($when))

{

$when = 'now()"';
}
elseif ($when != 'create_dt')
{

$when = "'$when'";

}
return "from_days(to_days($when)-dayofweek($when) + 1)";

The MySQL to_days() function returns an integer of the number of days since
January 1, 1000. dayofweek () returns an integer representing the day of the week

Chapter 9: Survey 297

(Sunday equals 1, Saturday equals 7). So the portion (to_days($now)-
dayofweek($when) + 1) will return an integer representing the Sunday of the
week in question. The from_days() function will then turn that number into a
date. Here is the result of this query run on Monday August 4, 2002 (the day this
chapter was first written):

mysql> select from_days(to_days(now())-dayofweek(now()) + 1);

e e e +
| from_days(to_days(now())-dayofweek(now()) + 1) |
e e e +
| 2002-08-04 |
T +

1 row in set (0.01 sec)

Note that the value passed here can be a string representing a date, it can be
empty, or it can be a field from the users table — namely the create_dt field.

fetch_question() This function grabs the contents of a row in the questions table
and returns them as an associative array.

function fetch_question ($question_id=0)
{

$result = my_query(

'select * from questions where

question_id=".(int)$question_id

)

$output = mysql_fetch_assoc($result);

mysql_free_result($result);

return $output;

This will return from the database all the information regarding a particular
question, based on the question_id.

fetch_user() This function grabs the contents of a row in the users table and
returns them as an associative array.

function fetch_user ($user_id='")
{
$result = my_query(
'select * from users where user_id="'.(int)$user_id
)s
$output = mysql_fetch_assoc($result);
mysql_free_result($result);
return $output;

298 Part 111: Simple Applications

This function returns the result set based on a user_id.

get_answers() This function returns an array of answers associated with a ques-
tion, along with the total number of votes so far for each answer.

function get_answers($question_id=0)
{
$question_id = (int)$question_id;
$query = "select a.answer, a.answer_id, count(r.user_id) as
votes
from answers a
left join responses r on a.answer_id = r.answer_id
where a.question_id = $question_id
group by a.answer_id
having votes > 0
order by votes desc

",
s

$answers = array();
$result = my_query($query);
while ($row = mysql_fetch_assoc($result))
{
$answers[] = $row;
}
mysql_free_result($result);
return $answers;

Interesting Code Flow

There are a few pages in this application that could stand some explanation.
However, you should be able to follow most of them if you understand the func-
tions in the previous section.

admin/questions.php

This is a fairly lengthy page, and for good reason: it is used for adding, editing, and
deleting questions in the database. The portion of the page to be run will be deter-
mined by the values passed by forms or links. The first time through, there will be
no variables passed, so a list of the current questions will be presented along with a
form for entering a new question. Each of the links to questions that already exist
in the database looks like this:

Chapter 9: Survey

299

When a link like this is clicked, and the questions.php script is run again, the
very last of the initial if-else tests in the setup code at the top of the file run, as
shown here:

else
{
// if the ID of a question is passed in, retrieve its
information
// from the database for editing.
extract(fetch_question($question_id));

// set the form title to indicate the action the user can
perform
$qform_title = 'Edit A Question : #'.$question_id;

print subtitle($gform_title);

print start_form('questions.php');

print paragraph(
"Question:"
, text_field(array(
'name'=>"question', 'value'=>$question, 'size'=>60
))
, hidden_field(array(
'name'=>"'question_id', 'value'=>$question_id
))
)s

Notice how you can get all the information associated with $question_id with
one function call (fetch_question()). Since fetch _question() is returning an
associative array, we can use extract() to create variables from the values in the
array.

Next, go into this loop:

$1ines = array('Answers:
"');

// print form elements for answers to the question.
$acount = 0;
if ($question_id > 0)
{
$query = "select answer_id, answer from answers

300 Part 111: Simple Applications

where question_id = $question_id order by answer_id

$result = my_query($query);
while (list($aid,$atxt) = mysql_fetch_row($result))
{
// we increment the count first because we want the
// first key value to be 1, not 0, to make sure that
// the key will test as non-empty.
$acount++;
$1ines[] = text_field(array(
"name'=>"answer_text[$acount]"
, 'value'=>$atxt
, 'size'=>60
))s
$1ines[] = hidden_field(array(
"name'=>"answer_id[$acount]"
, 'value'=>$aid
))s
$1ines[] = " ($aid)
\n";
}
mysql_free_result($result);

This block gets the answers for the selected question and prints them out inside
text fields. Additional information is put inside hidden fields. When printed out the

result for one answer will look like this:

<input type="text" name="answer_text[1]" value="Answer" size="60" >

<input type="hidden" name="answer_id[1]" value="10">

When this form is submitted, $answer_text will be an array. $acount will see
that the key of the array is incremented by one for each additional form field. Note
that we need to make use of a hidden form element here, because each answer
requires three pieces of information: the answer number (1-10), the answer text,
and, if the answer came from the database, the primary key of the row the answer
came from. The hidden field will create an array named $answer_id. The value in
each element of that array will be the primary key of the row storing the answer.
The index of that array will be the match for the index of $answer_text. In code

the technique looks like this:

$i = 1;
$answer_text[$i];
$answer_id[$i];

Chapter 9: Survey

301

You'd know, when receiving and processing the information from this screen,
that $answer_id[$1] contains the primary key of a row, and $answer_text[$i] is

the answer text that belongs in that row.

The previous section of code will print out form elements only where an answer
exists. But you should offer blank form elements so the administrator can enter

new answers:

// print out blank fields to bring us up to at least 10 answers

while ($acount < 10)

{

}

$acount++;

$lines[] = text_field(array(
'name' => "answer_text[$acount]"
, 'value' => "'
, 'size' => 60

));

$1ines[] = hidden_field(array(
"name' => "answer_id[$acount]"
, 'value' => 0

));

$lines[] = "
\n";

print paragraph($lines);

<input type="text" name="answer_text[8]" value=
<input type="hidden" name="answer_id[8]" value="0">

This will complete the form and display it, giving all the blank elements you need.
For these blank answers, the form will contain the following:

In these form elements, the value of the hidden field is set to 0. That way, when
it comes time to process these form elements, the script will have something to
evaluate: If $answer_id[$1] is equal to O, this is a new element.

If the user clicks the Save Changes button to submit this form, the preceding
chunk of code will run after handling the update of the database record for the
question itself. There will always be 10 elements to be looped through, so a for

loop works nicely.

(array)array_key_value($_POST, "answer_text',array());

(array)array_key_value($_POST, "answer_id',array());

$answer_texts =

$answer_ids =

for ($1 = 1; $1 <= 10; $i++)

size="60" >

302 Part 111: Simple Applications

$atxt = (string)$answer_texts[$i7;
$aid = (int)$answer_ids[$i];
if (empty($atxt))
{
if (lempty($aid))
{

If no text exists for the answer, and a value exists for the answer ID, the user has
blanked out an existing answer. So delete it from the database:

my_query('delete from answers where answer_id =
"L(int)$aid);
}
}
else
{
$answer = mysql_real_escape_string(cleanup_text($atxt));
if (empty($aid))
{
// if we have no ID for the answer,
// it doesn't exist yet. create a new
// record in the answers table.
$query = "insert into answers (question_id, answer)
values ($question_id, "$answer')

Pay attention to the explicit casting — (int) — at the beginning of that passage.
It prevents an error when the value is 0. If the element of $answer_id is not empty
(which means it can’t be equal to 0), an insert statement is run:

else
{
// if we do have an ID, the answer is already
// in the answers table. update it.
$query = "update answers
set question_id = $question_id, answer =
"$answer’
where answer_id = $aid

}
my_query($query);

Chapter 9: Survey 303

Otherwise, if an existing answer was present, an update query will do the trick.

admin/get_winner.php

Most of this file is readable by humans. Our goal is to draw a qualified winner at
random from the database. First we use the weekstart() function (discussed earlier
in this chapter in the section “Functions from /book/survey/functions”) to get the
date on which the current week begins:

$weekdate = (string)array_key_value($_REQUEST, 'weekdate','"');

$result = my_query('select '.weekstart($weekdate));
list($thisweek) = mysql_fetch_row($result);
mysql_free_result($result);

print subtitle('Draw a winner for the week of '.$thisweek);

// get a Tist of qualifying entries for the given week.
$query = "select name, email, user_id from users
where week(create_dt) = week('$thisweek')

and year(create_dt) = year('$thisweek")
and name is not null and name != "'
and email is not null and email !=
and age > 0
and country is not null and country !=

and email Tike '%@%.%'

We then create a query that will determine who is qualified. As you can see,
we've decided that in addition to having signed in during the last week, participants
need to have entered a name, an email address, and a legitimate age to qualify.

admin/winners.php

We created a few pages to ensure that the winner selected is notified of the exciting
news and that we issue the notification in a way that provides some security. The
security isn’t much, but to make reasonably sure that the person who claims the
prize is the person we intended, we would need to make use of a login system, and
users of a silly little survey may not be interested in keeping track of yet another
password.

The best we can do here is to try to make sure that if some immoral person sees
the claim information one week, that person will not be able to easily spoof our
system in future weeks. When we send the winner notification, we will include an
eight-character claim code. This prize can only be claimed with the code. To make
things as secure as possible, we want to make sure this code is unique and very dif-
ficult to guess.

304

Part 111: Simple Applications

mt_srand ((double) microtime() * 1000000);
$claim_code = substr(md5(uniqgid(rand())),0,8);

The preceding code uses the uniqueid() and md5() functions to create a string
that is very random. There’s little for a hacker to latch onto in trying to figure out
how the string is constructed. md5() will create a string that is 32 characters long,
but that can be a bit unwieldy. So we're using substr() to limit the string to eight
characters.

The user_id, the claim code, and the week of during which the contest took
place are inserted into the winners table:

$query = "replace into winners (weekdate, user_id, claim_code,
notify_dt)
values ('$weekdate', $user_id, '$claim_code', now())

The winner is sent an email containing a URL that includes a claim code that
matches one in the database: http://mydomain.com/book/survey/claim.
php?claim_code=54fa3399.

If the user is interested, he or she will go to this page.

claim.php

If the winner comes to claim.php, we first need to check that the claim code exists
in the database. The query in the following code grabs queries from the database to
see if the claim code exists; if it does, the query performs a join and returns the user
information associated with the claim code.

$user_id = 0;
$winner_email = NULL;
$weekdate = NULL;

$claim_code = (string)array_key_value($_REQUEST,'claim_code',"'"');

if (lempty($claim_code))
{

$query = "select u.user_id, u.email, w.weekdate from users u,
winners w
where w.claim_code = '$claim_code' and w.user_id = u.user_id

"o,
s

$result = my_query($query);

list($user_id, $winner_email, $weekdate) =
mysql_fetch_row($result);

mysql_free_result($result);

Chapter 9: Survey

305

if ($user_id == 0)

{
// we couldn't find a record corresponding to the claim_code
// submitted (if any). print out an error and exit.
$msg = <<<EO0Q

['m sorry, that doesn't appear to be a valid claim code.

The URL may not have registered properly.

Make sure to copy the complete Tink into your browser and try again,
or forward your original prize notification to $admin_email.

E0Q;
print paragraph($msg);
exit;

Once it is established that a claim code is valid, we want to do a bit of double-
checking and make sure that the person who submitted this claim code knows the
email address to which the notification was sent. The application does this by dis-
playing a form asking the user to enter the correct email. That form is sent and
processed by the form page. When the form is submitted, the following code will
execute:

$user_email = (string)array_key_value($_POST, 'user_email',"'");

if (lempty($user_email))
{
// the user has submitted an email address to claim
// the prize.
if ($user_email != $winner_email)
{
// the email address submitted by the user doesn't
// match the one stored for the winning entry.
// display an error message.
$notice = <KKEOQ

I'm sorry, that email address doesn't match our records.
Please try again, or forward your original prize notification
to $admin_email.

EO0Q;
}

306

Part 111: Simple Applications

The comparison $user_email != $winner_email will work because the query
that ran at the top of the page retrieved the correct winner’'s email, and we get
$user_email from the form submitted by the user. If that comparison fails, an error
message prints. If it does not fail, the following code updates the winners database,
recording the time the prize was claimed, and sends an email to the winner letting
him or her know that the claim was successful:

else

{
// everything matches. we can update the database
// to record a valid claim.

$claimquery = "update winners set claim_dt = now()
where user_id = $user_id
and claim_code = '$claim_code'
and weekdate = '$weekdate'

my_query($claimquery);

if (mysql_affected_rows() > 0)

{
// send a notification to the administrator that
// the prize has been claimed.
$confirm_url = regular_url('admin/winners.php');
$msgtext = <<KKEOQ

The prize for $weekdate has been claimed by $user_email.
Confirm the prize at
$confirm_url

E0Q;
$subject = '"Prize Claim';
$result = mail($admin_email,$subject,$msgtext);

if ($result)
{
// we don't need to re-display the form now.
// print out congratulations and bail.
$msg = <<<EO0Q
Thanks! Your claim has been accepted.
Your prize should be on its way soon!
E0Q;
print paragraph($msg);
exit;

Chapter 9: Survey

307

else
{
$private_error = <<KKEOQ
could not send claim notification:
admin_email=($admin_email)
subject=($subject)
msgtext=($msgtext)
E0Q;
user_error('Warning: Could not notify administrator
of your claim."', E_USER_WARNING);
1
1
else
{
// just in case the database is broken or
// some other horror has occurred...
$msgtext = <KKEOQ
The prize for $weekdate has been claimed by $user_email, but the
database
update did not work.
E0Q;
$subject = 'Prize Claim';
$result = mail($admin_email,$subject,$msgtext);
if (!$result)
{
$private_error = <<<E0Q
could not send claim problem notification:
admin_email=($admin_email)
subject=($subject)
msgtext=($msgtext)
E0Q;
user_error('Warning: Could not notify administrator
of your claim."', E_USER_WARNING);
}

// let the user know that something broke
// and re-display the form by continuing
// with the script.

$notice = <KKEOQ

Your claim is valid, but we were unable to record that fact.
Please try again later, or forward your initial prize notification

to $admin_email and let them know there was a problem.

E0Q;

308

Part 111: Simple Applications

The final portion of this page simply prints the form in which the user will enter
his or her email. There’s really no need to show that here.

Summary

The survey application involves quite a bit of code, but it isn’t anything that you
shouldn’t be able to figure out with some close scrutiny of the files and the comments.
Take a look at the complex_results.php page and its includes (age_results.php,
state_results.php, and country_results.php) for a look at how MySQL aggregate
functions can come in handy.

This application contains much more complexity than the guestbook. In it is a
real database schema complete with related tables. In the course of the application
we need to make use of queries that contain MySQL functions. (See Appendix J for
more information on MySQL functions.)

Another notable item seen in this chapter is the function set we've created for
creating common HTML elements. Whether you want to make use of such functions
or not is up to you. You may prefer typing out individual form elements, tables, and
the like. But you will be seeing these functions used in the remainder of this book.

Part

Not So Simple Applications

CHAPTER 10
Threaded Discussion

CHAPTER 11
Content-Management System
CHAPTER 12
Catalog
CHAPTER 13
Problem-Tracking System
CHAPTER 14
Shopping Cart
CHAPTER 15
XML Parsing

CHAPTER 16
SOAP

CHAPTER 17
Project Management

Chapter 10

Threaded Discussion

IN THIS CHAPTER

¢ Adding to your Web site features that promote community
¢ Using an advanced technique to write functions
¢ Looking at other criteria to use when designing a database

¢ Setting up error-handling and debugging functions

IF YOU'VE CREATED a Web site or are looking to create one, it’s probably safe to
assume that you want people to return frequently to your pages. But as everyone in
the Web industry knows, loyalty is fleeting, and people are always looking for
something better, more engaging, or closer to their interests.

One way to keep the anonymous masses involved with your site is to offer your
visitors a way to contribute to its content. If someone has accessed your site, it’s
likely that he or she has an opinion on the topic you are presenting. And if our con-
clusions from 30-plus years of observation are correct, people love to share their
opinions.

Using the threaded-discussion application in this chapter, you can create an area
on your Web site where your users can share their opinions and interact with you
and each other.

Once you have this piece of your site up and running, you are well on your way
to creating your own Web community. I make special mention of the word commu-
nity for two reasons.

¢ First, it is a huge buzzword within the industry. Everyone is looking to
create a sense of familiarity and inclusion that tempts users to return.

¢ Second — and perhaps more importantly — you, the Webmaster, should
know what you're getting yourself into. From personal experience, we
can tell you that “community” can be a real pain in the butt. On the Web,
everyone is pretty much anonymous, and few consequences are associated
with antisocial behavior. Thus, in many discussion groups, opinionated
windbags have a way of ruining a promising discussion.

311

312 Part TV: Not So Simple Applications

Before too long, you will undoubtedly see things that are mean or dis-
tasteful, and you must be prepared to deal with it. We're not trying to
scare you away from including a discussion list on your site. We're just
letting you know that you need to put some effort into administering it.
Whether you monitor the list yourself or appoint someone to do it for
you, somebody will need to make sure your users behave if you want it
to be orderly and functional.

Determining the Scope and Goals
of the Application

The purpose of any discussion board is reasonably simple. Any visitor to the site
should be able to post a new topic to the board or reply to any of the existing top-
ics. Furthermore, the board must be flexible enough to deal with any number of
replies to an existing topic, or replies to replies, or replies to replies to replies, and
so on. Put another way, the board must be able to deal with an indefinite level of
depth. The script must be able to react appropriately, whether the discussion goes
one level deep, five levels deep, or ten levels deep, which requires some new tech-
niques, both in your data design and in your scripts.

What do you need?

You need only two files to generate all the views needed for this application. But
these two files can have very different looks, depending on the information that is
displayed.

The first file displays topics and their replies. The first time users come to the
message board they will not know what threads they wish to read. Therefore, a list
of topics will be displayed. Figure 10-1 shows the list of top-level topics.

Once a user chooses a topic the page lists all the posts within that topic. As you
can see in Figure 10-2, the top of the page shows the text and subject of the post
being read. Below that, immediate replies to that post are indicated with a colored
border, and the text of the immediate replies is also printed. Figure 10-2 also shows
that the application provides a subject, a name, and a link to posts that are more
than one level deep in the thread. You can see that it is rather easy to tell who has
replied to what.

This same page provides another view. If a user clicks through to a post that does
not start a topic, the page shows all threads beneath that post. At the top of the
page the script will print the top-level post (or roof) and the post immediately prior
to the one being viewed (or parent). Figure 10-3 shows an example of this view.

Chapter 10: Threaded Discussion 313

3 Display Topics - Microsoft Internet Explorer

JEiIe Edit View Favorites Iools|ﬂelp

| Address [&] hitp://192.188.1.1/bock/discussion/index. php ~| pEo
) W A DB S H
Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

topic list | new topic
Tlove Snacks
Sausages?

Tet Another Topic

i
Astart| | € D @2 A& [@][BTIe B LFTPB 709 P

Figure 10-1: List of top-level topics

43 Display Topics - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help |

JAddreSS I@ hittp:44182.168.1.1 /book /discussion/indes. php Propic_id=1 j & Go
y ="
) W R DIB9S H
Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit
topic list | new topic -

Ilove Snacks by JG (192.168.1.2) on 20000827102311
Dion't vou just love food! Thnow I do.
Reply to this

Cumments!

Ee: Tlove Snacks by Donnie (192 1638.1.2)
Snacks are great, but they are nothing without a beverage.

s Ee Be Tlove Snacks by Walter (192 162.1.2)
o Re:REe EeTlowve Snacks by Irving (152, 168.1.2)
n Ee Ee Ee Ee:Tlove Snacks by Yoohoo Man (152 163.1.2) —
o Ee Ee Ee Tlove Snacks by Josh (192.168.1.2) |

Astart| | € @ W 3 A& |[[6) @ | BEIe B £FTPH 711 P
Figure 10-2: Display of a thread

314

Part TV: Not So Simple Applications

< Display Topics - Microsoft Internet Explorer
J Eile Edit ¥Yiew Favorites Tools Help o
JAddreSS I@ http: #4192.168.1.1 /book Adizcussion/findex. php Ptopic_id=3 j 6> Go

) W QA G P B9 W
Back Fanward Stop Refresh Home Search Favortes History il Frint Edit
(==

root: Ilove Snacks

parent: Ee: Tlove Snacks

Re: Re: Ilove Snacks by Walter (192 162.1.2) on 2000082 7102507

EBeverages? Mo, Tthiz 15 a snack discussion. Please go the bevnet com to discuss hguids.
Reply to this

Comments:

Ee: Re: Be: Tlove Snacks by Irving (192.168.1.2) L
“What about Toohoo! I believe that 1z a iquid snack.

» e Re Fe Re:Tlove Snacks by Yoohoo Man (192.168.1.2)

Aster| | €D G W 3 A ||[&) W wlH BEFIVAL LFUDB 712 PM
Figure 10-3: View further down a thread

[

Everything you saw in the previous figures was handled by one page. The sec-
ond page posts threads to the board. This posting requires only a simple form that
contains form elements for a subject, a name, and room for the comment. The form
needs to be aware of where in the thread the message belongs. For new top-level
topics a form without any context is fine (see Figure 10-4), but for replies within an
existing thread some context is helpful (see Figure 10-5).

What do you need to prevent?

As you've seen in previous chapters, you need to spend quite a bit of time making
sure things work properly. Unless every post is reviewed before it becomes available
on the site, there is no good way of preventing users from posting nonsense and
then replying to their own meaningless posts. This kind of thing can get pretty dis-
tracting — and again, no foolproof way of preventing it exists. However, you can
make it a bit more obvious to other users who is making the nefarious postings. For
that reason, this application uses the IP of origin to generate a unique ID number,
which can make it more plain who is posting what. This strategy isn’t great protec-
tion, but it is better than nothing.

Chapter 10: Threaded Discussion 315

3 Write Topic - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help

| Address [#] hitp://192.168.1.1/back/discussion/wiite_topic. php ~| pEo
) W A DB S H
Back Fanward Stop FRefresh Home Search Favortes History b ail Frint Edit

|»

topic list | ne