

MySQL®/PHP
Database
Applications,
Second Edition

Brad Bulger, Jay Greenspan,
and David Wall

MySQL®/PHP Database Applications,
Second Edition

MySQL®/PHP
Database
Applications,
Second Edition

Brad Bulger, Jay Greenspan,
and David Wall

MySQL®/PHP Database Applications, Second Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 0-7645-4963-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2O/RW/RQ/QT

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail: permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH
A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Cataloging-in-Publication Data: 2002114859

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or registered trademarks
of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. MySQL is a registered trademark of MySQL AB Company. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

About the Authors
Brad Bulger can remember when computers were as big as refrigerators and old-
timers would come into the machine room and call them “mini.” After working for
several companies that no longer exist, he is now a member of The Madfish Group
(http://www.madfishgroup.com), where he builds Web sites for money. He would
still like to know when the future is going to get here but has a sneaking suspicion
he already knows.

Jay Greenspan is a New York–based writer, editor, and technical consultant. He
has contributed to sites run by Apple Computer and Wired Digital, and is author of
MySQL Weekend Crash Course. He runs Trans-City Productions, Inc. (http://www.
trans-city.com), a firm that provides editorial services to high-tech companies.

David Wall is a freelance technical consultant, lecturer, and writer. He specializes
in Linux/Apache/MySQL/PHP (LAMP) servers and in Voice over IP technologies
from IBM and Cisco Systems. His consultancy, David Wall Enterprises (http://
www.davidwall.com), has offices in Washington, D.C., and Sydney.

Credits

ACQUISITIONS EDITORS
Debra Williams Cauley
Jim Minatel

PROJECT EDITORS
Kevin Kent
Neil Romanosky

TECHNICAL EDITORS
Zak Greant
Bill Patterson
Liz Warner

COPY EDITOR
S. B. Kleinman

EDITORIAL MANAGER
Mary Beth Wakefield

VICE PRESIDENT & EXECUTIVE
GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND
EXECUTIVE PUBLISHER

Bob Ipsen

VICE PRESIDENT AND PUBLISHER
Joseph B. Wikert

EXECUTIVE EDITORIAL DIRECTOR
Mary Bednarek

PROJECT COORDINATOR
Maridee Ennis

GRAPHICS AND PRODUCTION
SPECIALISTS

Beth Brooks
Jennifer Click
LeAndra Hosier
Michael Kruzil

PERMISSIONS EDITOR
Carmen Krikorian

MEDIA DEVELOPMENT SPECIALIST
Angela Denny

PROOFREADING AND INDEXING
TECHBOOKS Production Services

To Lizma, who’s still here; Jon Postel, who isn’t;
and a free Internet, which might not be much longer

For Catou

Preface
Welcome. If you are thumbing through these pages, you’re probably considering
writing Web-based applications with PHP and MySQL. If you decide to go with
these tools, you’ll be in excellent company. Thousands of developers — from total
newbies to programmers with years of experience — are turning to PHP and MySQL
for their Web-based projects, and for good reason.

Both PHP and MySQL are easy to use, fast, free, and powerful. If you want to get
a dynamic Web site up quickly, there are no better choices. The PHP scripting lan-
guage was built for the Web. All the tasks common to Web development can be per-
formed in PHP with an absolute minimum of effort. Similarly, MySQL excels at tasks
common to dynamic Web sites. Whether you’re creating a content-management sys-
tem or an e-commerce application, MySQL is a great choice for your data storage.

Is This Book for You?
Quite a few books deal with PHP, and a few cover MySQL. We’ve read some of these
and found a few to be quite helpful. If you’re looking for a book that deals with the
gory details of either of these packages, you should probably look elsewhere.

The focus of this book is applications development. We are concerned with what
it takes to get data-driven Web sites up and running in an organized and efficient
way. The book does not go into arcane detail of every aspect of either of these tools.
For example, in this book you will not find a discussion of PHP’s LDAP functions
or MySQL’s C application program interface (API). Instead, we focus on the pieces
of both packages that affect one another. We hope that by the time you’re done
with this book you’ll know what it takes to get an application up and running using
PHP and MySQL.

How This Book Is Organized
We have organized the book into five parts.

Part I: Working with MySQL
Before you code any PHP scripts you need to know how to design a database, cre-
ate tables in your database, and get the information you want from the database.
Part I of this book shows you just about everything you need to know to work with
MySQL.

ix

Part II: Working with PHP
As an applications developer, you will spend the bulk of your time writing scripts
that access the database and present HTML to a user’s browser. Part II starts by
showing you the basics of the PHP scripting language, covering how PHP works
with variables, conditions, and control structures. Part II also covers many of PHP’s
functions and discusses techniques for writing clean, manageable code.

Part III: Simple Applications
In this part we present two of the nine applications in this book: a guestbook and a
survey. Here you see the lessons from Parts I and II put into practice as we build
working applications.

Part IV: Not So Simple Applications
Here the applications become more complex, as we present applications commonly
used on the Web. You see how you can design a content management system, a
discussion board, a shopping cart, and other useful applications. Along the way
we show you some tips and techniques that should be helpful as you write your
applications.

Part V: Appendixes
The appendixes cover several topics of interest to the MySQL/PHP developer. In
them you can find installation and configuration instructions, quick reference
guides to PHP and MySQL functions, a regular expressions overview, and guides to
MySQL administration. In addition, you can find a few helpful resources, some
snippets of code, and instructions on using the CD-ROM.

x Preface

Acknowledgments
I owe so many people so many bags of chocolate peanuts for helping me that I
should start a chocolate-peanut farm. Making this book happen, trying to cover
products under very active development, has been like trying to paint an oil por-
trait of a manic chameleon in a camouflage factory. I must single out Debra
Williams Cauley, Acquisitions Editor, and Kevin Kent, Development Editor, for their
help and their patience — they have been the essence of diplomacy; Jay Greenspan,
for getting me into this; and Liz Warner, for all disclosed and undisclosed forms of
assistance, but especially for helping me stay sane(ish). Thanks so much to MySQL
AB for the generous use of the MySQL Function Reference in Appendix J, and to
Zak Greant, Erik Granstrom, Bill Patterson, and David Sides, CEO of Dolphin, for all
their assistance. To everyone who helped, thank you — you have our gratitude. —
Brad Bulger

Thanks to my friends, family, and colleagues for their support and freely shared
expertise during the creation of this book. — David Wall

xi

Contents at a Glance

Preface. ix

Acknowledgments . xi

Introduction. xxv

Part I Working with MySQL

Chapter 1 Database Design with MySQL 3
Chapter 2 The Structured Query Language for Creating and

Altering Tables . 23
Chapter 3 The Structured Query Language for Inserting,

Editing, and Selecting Data 53

Part II Working with PHP

Chapter 4 Getting Started with PHP — Variables 91
Chapter 5 Control Structures . 117
Chapter 6 PHP’s Built-in Functions 133
Chapter 7 Writing Organized and Readable Code 191

Part III Simple Applications

Chapter 8 Guestbook 2003, the (Semi-)Bulletproof
Guestbook . 229

Chapter 9 Survey . 261

Part IV Not So Simple Applications

Chapter 10 Threaded Discussion . 311
Chapter 11 Content-Management System 349
Chapter 12 Catalog . 397
Chapter 13 Problem-Tracking System 441
Chapter 14 Shopping Cart . 477
Chapter 15 XML Parsing . 505
Chapter 16 SOAP . 519
Chapter 17 Project Management . 537

xii

Part V Appendixes

Appendix A What’s on the CD-ROM . 557
Appendix B HTML Forms . 561
Appendix C Brief Guide to MySQL/PHP Installation and

Configuration . 571
Appendix D MySQL Utilities . 583
Appendix E MySQL User Administration 597
Appendix F PHP Function Reference 607
Appendix G Regular Expressions Overview 659
Appendix H Helpful User-Defined Functions 669
Appendix I PHP and MySQL Resources 691
Appendix J MySQL Function Reference 697

Index . 735

End-User License Agreement 765

xiii

Contents

Preface. ix

Acknowledgments . xi

Introduction. xxv

Part I Working with MySQL

Chapter 1 Database Design with MySQL . 3
Why Use a Relational Database? . 3
Blasted Anomalies . 5

The update anomaly . 5
The delete anomaly . 8
The insert anomaly . 8

Normalization . 10
First normal form . 10
Second normal form . 11
Third normal form . 13

Types of Relationships . 15
The one-to-many relationship . 15
The one-to-one relationship . 16
The many-to-many relationship . 17

Advanced Database Concepts . 19
Referential integrity . 19
Transactions . 20
Stored procedures . 21

Summary . 22
Chapter 2 The Structured Query Language for Creating

and Altering Tables . 23
Essential Definitions . 24

Null values . 24
Indexes . 26

The create database Statement . 26
The use database Statement . 27
The create table Statement . 28
Column Types . 29

String column types . 29
Numeric column types . 33
Date and time types . 35

Creating Indexes . 37 xv

Table Types . 39
MyISAM . 39
InnoDB Tables . 40
BerkeleyDB . 41
Heap . 41

The alter table Statement . 41
Changing a table name . 41
Adding columns . 42
Dropping columns . 43
Adding indexes . 43
Dropping indexes . 43
Changing column definitions . 43

Using the show Command . 44
show databases . 44
show tables . 45
show columns . 46
show index . 46
show table status . 47
show create table . 47

GUI Tools for Manipulating MySQL Tables and Data 48
Using phpMyAdmin . 48
MySQL Control Center . 50
Using MacSQL . 50

Summary . 52
Chapter 3 The Structured Query Language for Inserting,

Editing, and Selecting Data . 53
The insert Statement . 53
The update Statement . 55
The delete Statement . 59
The replace Statement . 61
The Basic select Statement . 64

The where clause . 67
order by . 73
limit . 73
group by and aggregate functions . 74

Joining Tables . 80
The two-table join (equi-join) . 80
The multi-table join . 81
The outer join . 82
The self join . 85
Unions . 86
Correlated subqueries . 86

Summary . 87

xvi Contents

Part II Working with PHP

Chapter 4 Getting Started with PHP — Variables 91
Assigning Simple Variables Within a Script 91

Delimiting strings . 94
Assigning arrays within a script . 96
Assigning two-dimensional arrays in a script 99

Accessing Variables Passed from the Browser 100
HTML forms variables . 100
Passing arrays . 102
Cookies . 104
Sessions . 106

Using Built-In Variables . 108
PHP variables . 108
Apache variables . 109
Other Web server variables . 111

Testing Variables . 112
isset() . 112
empty() . 112
is_null() . 113
is_int() . 113
is_double() . 113
is_string() . 113
is_array() . 113
is_bool() . 113
is_object() . 114
is_resource() . 114
is_scalar() . 114
gettype() . 114

Changing Variable Types . 114
Type casting . 114
Using settype() . 115
intval(), doubleval(), and stringval() . 115

Variable Variables . 115
Summary . 116

Chapter 5 Control Structures . 117
The if Statement . 117

Determining true or false in PHP . 118
Comparison operators . 122
Logical operators . 123
Complex if statements . 123
if ... else statements . 125
if ... elseif statements . 125

switch ... case . 126

Contents xvii

Loops . 127
while ... 127
do ... while . 129
for . 129
foreach . 130
continue and break . 131

Summary . 132
Chapter 6 PHP’s Built-in Functions . 133

Function Basics . 134
Arguments . 134
Return values . 135

Function Documentation . 136
Important PHP Functions . 137

String handling functions . 137
Regular expression functions . 142
Variable functions . 148
Type-conversion functions . 149
Array functions . 155
Object/class functions . 163
Print functions . 164
Date/time functions . 166
File-system functions . 170
Script Control functions . 175
Random number generator functions 177
Session functions . 179
MySQL functions . 179
HTTP header functions . 179
Image functions . 181
Mail function . 183
URL functions . 184
Error functions . 186
Output buffering . 187
Information functions . 188

Summary . 189
Chapter 7 Writing Organized and Readable Code 191

Indenting . 191
Code blocks . 192
Function calls . 194
SQL statements . 196

Includes . 197
include() and require() . 199
include_once() and require_once() . 199

xviii Contents

User-Defined Functions . 200
Function basics . 200
Returning values . 203
Using a variable number of arguments 205
Variable scope . 206

Object-Oriented Programming . 209
Classes, Continued . 210
Object cloning . 218
Destructors . 219
Exceptions . 219

Object-Oriented Code versus Procedural Code 220
Comments . 221
Summary . 224

Part III Simple Applications

Chapter 8 Guestbook 2003, the (Semi-)Bulletproof
Guestbook . 229
Determining the Scope and Goals of the Application 229

Necessary pages . 230
What do we need to prevent? . 231

Designing the Database . 234
Code Overview . 235
Code Breakdown . 236

From functions/basic.php . 236
Interesting code flow . 255

Scripts . 259
Summary . 259

Chapter 9 Survey . 261
Determining the Scope and Goals of the Application 261

Necessary pages . 262
Preventive measures . 265

Designing the Database . 266
Code Overview . 270
Code Breakdown . 274

HTML functions . 276
The survey application . 294

Interesting Code Flow . 298
admin/questions.php . 298
admin/get_winner.php . 303
admin/winners.php . 303
claim.php . 304

Summary . 308

Contents xix

Part IV Not So Simple Applications

Chapter 10 Threaded Discussion . 311
Determining the Scope and Goals of the Application 312

What do you need? . 312
What do you need to prevent? . 314

The Data . 316
Code Overview . 320
Code Breakdown . 321

Reusable functions . 321
Functions from /book/discussion/functions 321
Error-handling and debugging functions 332

Summary . 347
Chapter 11 Content-Management System 349

Determining the Scope and Goals of the Application 350
Necessary pages . 350
What do we need to prevent? . 353

Designing the Database . 355
Code Overview . 361
Code Breakdown . 362

Functions from /dsn . 362
Functions from /book/functions/database 365
Functions from /content/functions . 374

Interesting Code Flow . 387
content/authenticate.php . 387
content/admin/user.php . 389
content/story.php . 392

Summary . 395
Chapter 12 Catalog . 397

Determining the Scope and Goals of the Application 398
Necessary pages . 398
What do we need to prevent? . 402

The Data . 403
Code Overview . 408

The object-oriented approach . 408
Accessing the file system . 408
Uploading files . 409

Code Breakdown . 410
Objects in theory . 410
Classes . 411
Sample script . 434

Summary . 439

xx Contents

Chapter 13 Problem-Tracking System . 441
Determining the Scope and Goals of the Application 441

What do you need? . 442
What do you need to prevent? . 444

Designing the Database . 444
Code Overview . 452
Code Breakdown . 453

Reusable functions from /book/tracking/functions.php 453
Scripts . 464

Summary . 475
Chapter 14 Shopping Cart . 477

Determining the Scope and Goals of the Application 477
What do you need? . 478
What do you need to prevent? . 479

The Data . 479
Configuration Overview . 480

Configuring for encryption and security 480
Configuring Apache for credit-card authorization 482
Configuring for session handling . 483

Code Overview . 484
Session functions . 484
Dealing with the credit-card processor 486

Code Breakdown . 486
Classes . 486
Scripts . 492

Summary . 504
Chapter 15 XML Parsing . 505

Scope and Goals of Application . 506
Code Overview . 508

An introduction to parsers . 508
Using Simplexml . 509

Code Breakdown . 511
Laying the groundwork . 512

Summary . 518
Chapter 16 SOAP . 519

Overview of SOAP . 520
The SOAP envelope . 520
The SOAP body . 521
A typical request/response pair . 522

Code Overview . 524
The essence of NuSOAP . 525
A simple NuSOAP service call . 526

Contents xxi

Determining the Goals of the Application 527
Code Breakdown . 528

The Barnes & Noble application . 528
The Babelfish application . 532
Writing a SOAP server application . 534

Summary . 535
Chapter 17 Project Management . 537

Determining the Goals of the Application 537
Necessary pages . 537

Designing the Database . 541
User types . 541
Application users . 542
Project and task status . 542
Projects . 542
Project-user mappings . 543
Tasks . 543
Files . 543

Code Overview . 544
Logging in and establishing a session 544
Showing active projects . 544
Creating a new project . 545
Uploading a file . 545
Viewing a file . 545
Adding a user . 545

Code Breakdown . 545
Session management . 545
Authentication . 546
Viewing projects’ status . 548
Uploading a file . 552
Displaying the contents of a file . 553

Summary . 553

Part V Appendixes

Appendix A What’s on the CD-ROM . 557
Appendix B HTML Forms . 561
Appendix C Brief Guide to MySQL/PHP Installation and

Configuration . 571
Appendix D MySQL Utilities . 583
Appendix E MySQL User Administration 597
Appendix F PHP Function Reference 607
Appendix G Regular Expressions Overview 659
Appendix H Helpful User-Defined Functions 669

xxii Contents

Appendix I PHP and MySQL Resources 691
Appendix J MySQL Function Reference 697

Index . 735

End-User License Agreement . 765

Contents xxiii

Introduction
Soon we will head off on a fabulous journey, a journey on which we will explore
the ins and outs of MySQL and PHP database applications in great detail. It’s going
to be a fun trip; we just know it.

Okay, maybe we’re being a bit optimistic. If you’re anything like us, points of
this particular journey will be a lot more tedious than they are exciting. Let’s face
facts: Application development isn’t always the most exciting thing in the world.
And as with any other venture that involves programming, some very frustrating
times are sure to be ahead, whether because of a syntax error you can’t find or a
piece of code that won’t do what you think it ought to do. But despite all that, here
you are, and we think there is a very good reason for that.

Web applications are the present and the future. No matter your background,
whether you have a history with Visual Basic or COBOL, or maybe just some HTML
and JavaScript, your résumé is only going to improve with some Web application
development experience. We don’t think there’s a better combination of tools to
have under your belt than PHP and MySQL. The numbers bear us out. PHP and
MySQL are becoming increasingly popular, and the demand for people who can use
these tools will only increase.

A bit later in this introduction we go into a more detailed explanation of why
you should use PHP and MySQL. However, before we can get to that, we want take
a bit of time to go over the architecture of Web applications. Once we’ve done this,
we can explain in detail why PHP and MySQL should be the centerpieces of your
application-development environment. Once we’ve sold you on these tools, we pre-
sent a very quick and grossly under-coded application. As you look over this appli-
cation, you can see the basic syntax and principles behind PHP and MySQL.

As we proceed with the book, we assume that you have read and under-

stand everything presented in this introduction.

Basic Architecture
At the most basic level, the Web works off a client/server architecture. Simply
stated, that means that both a central server and a client application are responsi-
ble for some amount of processing. This setup differs from that of a program such
as Microsoft Word, which operates just fine without any help from a server. Those
of you who used older VAX machines might remember the days of dumb terminals,
which had no processing power whatsoever. Depending on where you work today,

xxv

perhaps in a university or a bank, you might still use applications that are in no
way dependent on the client. In other words, applications in which all the work is
done on the central computer.

The client
In this book, you’ll learn how to use MySQL and PHP to create applications that
make use of a single client: the Web browser. This is not the only possibility for
Internet-based applications. For very sophisticated applications that require more
client-side processing or that need to maintain state (we talk about maintaining
state later in the introduction) a Java applet may be necessary. But unless you’re
coding something like a real-time chat program, client-side Java is completely
unnecessary.

So the only client you need to be concerned with is the Web browser. The appli-
cations need to generate HTML to be rendered in the browser. As you probably
already know, the primary language of browsers is the Hypertext Markup
Language, or HTML. HTML provides a set of tags that describe how a Web page
should look. If you are new to the concept of HTML, get on the Web and read one
of the many tutorials out there. It shouldn’t take long to learn the basics. Some of
the best include:

◆ National Center for Supercomputer Applications (http://archive.
ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html)

◆ Davesite (http://www.davesite.com/webstation/html/)

◆ Webmonkey (http://hotwired.lycos.com/webmonkey/teachingtool/)

Of course, most browsers accept more than HTML. All kinds of plug-ins, includ-
ing RealPlayer, Flash, and Shockwave, are available, and most browsers also have
some level of support for JavaScript. Some can even work with XML. But, like most
Web developers, we are taking a lowest-common-denominator approach in this
book. We’re going to create applications that can be read in any browser. We don’t
use JavaScript, XML, or anything else that could prevent some users from render-
ing the pages we serve. HTML it is.

The server
Almost all of the work of Web applications takes place on the server. A specific
application, called a Web server, is responsible for communicating with the
browser. A relational-database server stores whatever information the application
requires. Finally, you need a language to broker requests between the Web server
and the database server; it is also used to perform programmatic tasks on the infor-
mation that comes to and from the Web server. Figure I-1 represents this system.

xxvi Introduction

Figure I-1: Architecture of Web applications

But, of course, none of this is possible without an operating system. The Web
server, programming language, and database server you use must work well with
your operating system.

THE OPERATING SYSTEM
Many operating systems are out there. Windows 98/2000/CE/XP and Macintosh OS
are probably the most popular. But that’s hardly the end of it. Circumstances might
have forced you to work with some obscure OS for the past few years. You might
even be under the impression that your OS is the best thing going. That’s fine. But
if you’re planning on spending a lot of time on the Web and on running applica-
tions, you’re best off getting to know either Windows NT/2000 or some version of
Unix. These two account for well over 90 percent of all the servers on the Web. It is
probably easier for you to learn a little NT/2000/XP or Unix than it is to convince
everybody else that the AS/400 is the way to go.

Web Browser
(Internet Explore
Netscape)

Internet

Web Server
(Apache, IIS)

Middleware
PHP, ColdFusion
ASP, JSP

Relational
Database
(MySQL, Oracle, MS
SQL)

Introduction xxvii

Apple’s Mac OS X is based on a FreeBSD/Unix foundation and gives you

everything you expect from a Unix OS.

Which should you use? Well, this question is a complex one, and the answer for
many will be based partially on philosophical approach. In case you’re unaware of
it, let’s take a moment to talk about the broad topics in this philosophical debate.

If you don’t know what we are talking about, here are the basics. PHP and
MySQL belong to a class of software known as open source. This means that the
source code for the heart of the applications is available to anyone who wants to
see it. These applications make use of an open-source development model, which
enables anyone who is interested to participate in the development of the project.
In the case of PHP, coders all over the world participate in the development of the
language and see no immediate pay for their substantial work. Most of the people
who participate are passionate about good software and code for the enjoyment of
seeing people like you and me develop with their tools.

This method of development has been around for some time, but it has gained
prominence as Linux has become increasingly popular. More often than not, open-
source software is free of charge. You can download the application, install it, and
use it without getting permission from anyone or paying a dime to anyone.

Suffice it to say that Microsoft, Oracle, and other traditional software companies
do not make use of this method of development.

If you are not an open-source adherent, there are excellent reasons for choosing
NT/2000/XP. Usually, the thing that steers people towards NT/2000/XP is inertia. If
you or your company has been developing with Microsoft products for years, it is
probably going to be easier to stay within that environment than to make a change.
If you have a team of people who know Visual Basic, you are probably going to
want to stick with NT/2000/XP. But even if this is the case, there’s nothing to pre-
vent you from developing with PHP and MySQL. Both products run on Windows
95/98 and Windows NT/2000/XP/CE.

But in the real world, almost all PHP/MySQL applications are running off some
version of Unix, whether Linux, BSD, Irix, Solaris, HP-UX, or one of the other flavors.

The major advantage of Unix is its inherent stability. Boxes loaded with Linux
have been known to run for months or years without crashing. Linux and BSD also
have the advantage of being free of charge and able to run on standard PC hardware.
If you have any old 486, you can load it up with Linux, MySQL, PHP, and Apache
and have yourself a well-outfitted Web server. You probably wouldn’t want to put it
on the Web, where a moderate amount of traffic might overwhelm it, but it can
serve nicely as a development server, a place where you can test your applications.

THE WEB SERVER
The Web server has what seems to be a fairly straightforward job. It sits there, run-
ning on top of your operating system, listening for requests that somebody on the

xxviii Introduction

Web might make, responding to those requests, and serving out the appropriate Web
pages. In reality, it is a bit more complicated than that, and because of the 24/7
nature of the Web, the stability of the Web server is a major issue.

There are many Web servers out there, but two dominate the market. These are
Apache and Microsoft’s Internet Information Server (IIS).

INTERNET INFORMATION SERVER IIS is deeply tied to the Windows environment
and is a key component of Microsoft’s Active Server Pages (ASP). If you’ve chosen
to go the Microsoft way, you’ll almost certainly end up using IIS.

There is a certain amount of integration between the programming language and
the Web server. At this point, PHP 4 and 5 integrate well with IIS.

APACHE The Apache Web server is the most popular Web server there is. It, like
Linux, PHP, and MySQL, is an open-source project. Not surprisingly, Apache works
best in Unix environments, but also runs just fine under Windows.

Apache makes use of third-party modules. Because it is open source, anyone
with the skill can write code that extends the functionality of Apache. PHP most
often runs as an Apache extension, known as an Apache module.

Apache is a great Web server. It is extremely quick and amazingly stable. The
most frequently stated complaint about Apache is that, like many pieces of Unix
software, the graphical tools for manipulating the application are limited. You alter
Apache by specifying options on the command line or by altering text files. When
you come to Apache for the first time, all this can be a bit opaque.

Though Apache works best on Unix systems, versions also run on Windows
operating systems. Nobody, not even the Apache developers, recommends that
Apache be run on a busy server under Windows. If you have decided to use the
Windows platform for serving Web pages, you’re better off using IIS.

But there are conditions under which you’ll be glad Apache does run under
Windows. You can run Apache, PHP, and MySQL on a Windows 98 machine and
then transfer those applications to Linux with practically no changes to the scripts.
This approach is the easiest way to go if you need to develop locally on Windows
but to serve off a Unix/Apache server.

MIDDLEWARE
PHP belongs to a class of languages known as middleware. These languages work
closely with the Web server to interpret the requests made from the World Wide
Web, process these requests, interact with other programs on the server to fulfill the
requests, and then indicate to the Web server exactly what to serve to the client’s
browser.

The middleware is where you’ll be doing the vast majority of your work. With a
little luck you can have your Web server up and running without a whole lot of
effort. And once it is up and running, you won’t need to fool with it a whole lot.

But as you are developing your applications, you spend a lot of time writing code
that makes your applications work. In addition to PHP, several languages perform
similar functions. Some of the more popular choices are ASP, Perl, and ColdFusion.

Introduction xxix

RELATIONAL DATABASES
Relational database management systems (RDBMSes) provide a great way to store
and access complex information. They have been around for quite a while. In fact,
they predate the Web, Linux, and Windows, so it should be no surprise that there
are many RDBMSes to choose from. All the major databases make use of the
Structured Query Language (SQL).

Some of the more popular commercial RDBMSes are Oracle, Sybase, Informix,
Microsoft’s SQL Server, and IBM’s DB2. In addition to MySQL, there are now two
major open-source relational databases. Postgres has been the major alternative to
MySQL in the open-source arena for some time. For a while, Borland released its
Interbase product under an open-source license and allowed free download and
use. The results of that release are a software project called Firebird.

Why These Products?
Given the number of choices out there, you might be asking yourself why you should
choose PHP and/or MySQL. We answer this question in the following sections.

Why PHP?
Programming languages are a lot like shoes. Some look good to some people yet
look really ugly to others. To carry the analogy a little further, some shoes just fit
well on some feet.

What we mean is this: When it comes to Web programming, all languages do
pretty much the same things. They all interact with relational databases, they all
work with file systems, and they all interact with Web servers. The question of
which language is best is rarely a matter of a language’s ability or inability to per-
form certain actions. It’s usually more a matter of how quickly and easily you can
do what you need to do.

IT’S FAST AND EASY
What about speed? There are really only three things that we know for sure when it
comes to comparing the speeds of Web-programming languages.

◆ Applications written in C will be the fastest.

◆ Programming in C is rather difficult and takes much longer than program-
ming in any of the other languages mentioned so far.

◆ Comparisons among languages are extremely difficult.

From everything we know, we feel safe in saying that PHP is as fast as anything out
there.

More often than not, choosing a language comes back to the same issues involved
in buying shoes. You want to go with what’s most comfortable. If you’re like us,

xxx Introduction

you find that PHP represents the perfect combination of power, structure, and ease
of use. Again, this is largely a matter of opinion, but we do believe that the syntax
of PHP is superior to those of ASP and JSP. And we believe it puts more power at
your fingertips more quickly than ColdFusion and is not as difficult to learn as Perl.

In the end, we believe PHP offers you the best opportunity to develop powerful
Web applications quickly. That generalization made, we do believe there are other
excellent reasons for choosing PHP.

IT’S CROSS-PLATFORM
In the rundown of Web architecture, we mentioned that PHP runs on Windows
2000/NT/CE/XP and Unix and with both IIS and Apache. But the cross-platform
abilities of PHP go far beyond these platforms. If you happen to be using Netscape,
Roxen, or just about anything else, it is likely PHP works with it.

Yes, ASP can be run on Linux, ColdFusion can work on Solaris and Linux, and
JSP is adaptable across many platforms. At this point, PHP works as well on as
wide a variety of systems as any other available product.

IT ACCESSES EVERYTHING
What do you need to access in the course of creating your Web applications?
LDAP? IMAP mail server? Oracle? Informix? DB2? Or maybe you need an XML
parser or WDDX functions.

Whatever you need to use, it is more than likely that PHP has a built-in set of
functions that make getting whatever you need very easy. But what if it doesn’t
have something built in that you’d like? That brings us to our next point.

IT’S CONSTANTLY BEING IMPROVED
If you are new to open-source development, you might be surprised by the high
quality of the software. There are thousands of very technical, very talented pro-
grammers out there who love to spend their time creating great, and mostly free,
software. In an active project such as PHP, a variety of developers look to improve
the product almost daily.

It is truly remarkable. If you happen to find a bug, you can submit a report to a
mailing list that the core developers read. Depending on its severity, it is likely that
the bug will be addressed within a couple of hours to a couple of days.

When PHP was put together, it was done so in a modular fashion. This makes
adding greater functionality reasonably easy. If there are sets of functions you’d like
added to PHP, there’s a good chance that someone can do it with minimal effort.

YOUR PEERS CAN SUPPORT YOU
Most languages have active mailing lists and development sites. PHP is no excep-
tion. If you run into trouble — if there’s a bug in your code that you just can’t figure
out or if you can’t seem to fathom some function or another — someone among the
hundreds subscribed to PHP mailing lists will be happy to check and fix your code.

The open-source nature of PHP creates a real feeling of community. When you
get into trouble, your PHP-hacking brethren will feel your pain and ease it.

Introduction xxxi

IT’S FREE
If you have a computer, Linux, Apache, and PHP are all completely free.

Why MySQL?
This one is perhaps a little tougher to answer. Although MySQL has much to rec-
ommend it, it also has a variety of competitors, many of whom may be better suited
for a particular task.

In Part I of this book we discuss MySQL in some detail. In these chapters we
mention features available in other relational databases that MySQL does not sup-
port. (If you know your way around databases and are curious, these include stored
procedures, triggers, and subqueries.)

Given these limitations, MySQL is definitely not the best choice in certain envi-
ronments. If you are planning on starting, for example, a bank or a savings and
loan, MySQL probably isn’t for you.

But for the majority of people using the majority of applications, MySQL is a
great choice. It is particularly well suited for Web applications.

IT’S COST-EFFECTIVE
Think you need an Oracle installation? Get ready to shell out tens of thousands of
dollars at a minimum. There’s no doubt that Oracle, Sybase, and Informix create
terrific databases, but the cost involved is prohibitive for many.

MySQL is free for development and can be used in a live production environ-
ment for a minimal cost (see https://order.mysql.com/index.php?infopage=1
for more details on licensing MySQL).

IT’S QUICK AND POWERFUL
MySQL might not have every bell and whistle available for a relational database,
but for most users it has plenty. If you are serving out Web content or creating a
moderately sized commerce site, MySQL has all the power you need.

For small to-medium-sized databases, MySQL is extremely fast. The developers
of MySQL take great pride in the speed of their product. For applications like the
ones presented in Parts III and IV of this book, it is unlikely you’ll find a database
that’s any faster.

IT’S IMPROVING ALL THE TIME
MySQL is improving at a staggering rate. The developers release updates frequently
and are adding impressive (and we do mean impressive) features all the time. It’s
even possible that at the time you’re reading this book MySQL will support sub-
queries and stored procedures.

xxxii Introduction

Your First Application
Enough of the prelude. Now we turn to writing an application so you can see how
all these parts come together in a real live application. By the time you have fin-
ished reading this introduction, you should have a pretty good idea of how it all
comes together.

Tool check
You need a few key elements to get going. We run through them here so you know
what you need.

SOFTWARE
This is a Web-based application, so you’re clearly going to need a Web server. You
will probably be using Apache, whether you are using Windows or Unix. You need
to install Apache so that it can access the PHP language.

In addition, you need to have MySQL installed. And PHP has to be able to rec-
ognize MySQL. Apache, MySQL, and PHP are provided on the accompanying CD,
and installation instructions are provided in Appendix C. You might want to install
these packages before proceeding, or you can just read along to get an idea of what
we’re doing and install the packages later when you want to work with the more
practical examples in this book.

TEXT EDITOR/INTEGRATED DEVELOPMENT ENVIRONMENT
To code PHP and your Web pages, you need, at a minimum, a text editor. You can
use Notepad or something similarly basic, but if you’re starting without an alle-
giance to any particular editor, we suggest you get something with good syntax
highlighting. On Windows, Macromedia HomeSite (www.macromedia.com) is a tool
that works well with PHP, and we’ve heard excellent things about Editplus
(www.editplus.com).

If you have been working on Unix for some time, it is likely that you already
know and love some text editor or another, whether it be Emacs, vi, or Kedit. If not,
any of these are fine, though the first two do take some getting used to. If you’re
working on Unix, but don’t have the patience to learn vi, try Pico. It’s very easy
to use.

In the last couple of years, a few companies have released integrated develop-
ment environments (IDEs) for use with PHP. Zend Technologies (www.zend.com),
whose employees have been deeply involved with PHP for years, sells a suite of
products that can make your PHP coding life much easier. Based on code that was
originally open source, NuSphere Corporation (www.nusphere.com) has also cre-
ated a very competent IDE for Windows and Linux.

Introduction xxxiii

Application overview
We start this book with an example of a simple Web application that stores user
information, a place where users can enter their names, email addresses, URLs, and
maybe even comments — in essence, a guestbook.

The guestbook is a simplified example, something you would never want to

run on a live Web server. We re-create this application in a more robust form

in Chapter 8.

Creating the database
Now that you know exactly what you need, the first step is to create a database that
stores this information. To do this, you use the language common to most every
database server: SQL. You read a lot more about this later, so don’t worry if you don’t
understand everything right away. Just read through the rest of the Introduction
and then read Chapter 1.

Start up the MySQL command-line client. If you’re working on Unix, typing
mysql at the shell should do the trick (or you might have to go to the directory that
contains the MySQL executable — typically /mysql/bin or /usr/local/mysql/bin).

If you are on Windows, you need to go to the DOS prompt, find the path to
mysql.exe, and execute it. Then, at the prompt, create a new database. When you’re
done, you should have something that looks very much like this:

[jay@mybox jay]$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 716 to server version: 4.0.1-log

Type ‘help’ for help.

mysql> create database guestbook;
Query OK, 1 row affected (0.00 sec)

mysql>

Now, within the database named guestbook you need a table that stores the user
information. This table is also created in the MySQL monitor. The command to cre-
ate the table isn’t very complex. You basically need to let MySQL know what kind
of information to expect, whether numbers or strings, and whether or not any of
the information can be omitted (or NULL). Details appear in Chapter 2, but for now
just note that the basic command is create table; you get something that looks
about like the following:

xxxiv Introduction

mysql> use guestbook;
Database changed
mysql> create table guestbook

-> (
-> name varchar(40) null,
-> location varchar(40) null,
-> email varchar(40) null,
-> url varchar(40) null,
-> comments text null
->)
-> ;

Query OK, 0 rows affected (0.00 sec)

mysql>

Then you have to give your application permission to use the table:

mysql> grant delete, insert, select, update on guestbook
-> to nobody@localhost identified by ‘ydobon’;

Query OK, 0 rows affected (0.00 sec)

Then you issue a quick statement that forces the server to re-read the permis-
sions tables, effectively putting the new ones into effect:

mysql> FLUSH PRIVILEGES;

So now you have a database named guestbook and a table, also named guest-
book, within the database. Now it’s time to write an application in PHP that will
enable you to insert, edit, and view information kept in this guestbook.

Your PHP script
Now’s the time to move to the text editor. In the course of configuring your Web
server, you need to let it know which files should be handed off to PHP so the
engine can interpret the page. Most often these files have a .php extension, though
it is possible to have PHP interpret anything, including .html files. These scripts live
inside the folder designated to hold Web pages. For Apache, this is usually /htdocs.

BASIC SYNTAX
One neat thing about PHP is that it lets you move between straight HTML and com-
mands that are part of the PHP programming language. It works like this: The sec-
tions of your script between the opening tag (<?php) and the closing tag (?>) are
interpreted by the PHP engine, and portions not within these tags are treated as
plain HTML. Check out the following PHP page.

Introduction xxxv

<?php
echo “Hi, “;
?>
mom.

When run through the Web server, this code creates a Web page that prints,
simply, Hi, mom. PHP’s echo command manages the first part of the line. But, of
course, PHP can do quite a bit more than that. Like any other programming lan-
guage, it can work with variables and make decisions.

<?php
echo “Hi, mom. “;

$var = date(“H”);
if ($var <= 11)
{

echo “good morning”;
}
elseif ($var > 11 and $var < 18)
{

echo “good afternoon”;
}
else
{

echo “good evening”;
}
?>

In the preceding code, after printing out the greeting, there is some real pro-
gramming. We have used PHP’s built-in date function to grab the hour of the day
in 24-hour format. That value is immediately assigned to a variable named $var.
Then a decision is made, and the appropriate text is printed, depending on the time
of day. Notice the syntax here. Each PHP command ends with a semicolon (:). In
the if statement, curly braces ({}) hold the commands to be executed depending
on the condition. And the condition itself is held within parentheses (()).

The date() function and echo, which are used in the previous example, are just
two of the hundreds of functions built into PHP, many of which you learn to use in
the course of this book. If you are going to access the database, you’re going to
need a few more.

CONNECTING TO THE DATABASE
While you’re installing PHP you should let it know that you plan on using MySQL
with it. If you don’t do this, what we discuss now won’t work. Even if PHP is aware
that you’re using MySQL, in your specific scripts you must identify the exact data-
base you need access to. In this case, that is the guestbook database you just created.

xxxvi Introduction

mysql_connect(“localhost”,”nobody”,”ydobon”)
or die(“<h3>could not connect to MySQL</h3>\n”);

mysql_select_db(“guestbook”)
or die(“<h3>could not select database ‘guestbook’</h3>\n”);

The first line in the preceding code tells MySQL that the Web server (the entity
running the script) is on the local machine, has a username of nobody, and has a
password of ybodon. Then, if the connection is successful, the specific database is
selected with the mysql_select_db() command. With these lines safely tucked
away in your scripts, you should be able to manipulate the database with your
commands.

Because you’re going to need these lines in every page in this application, it
makes sense to save some typing, put them in a file of their own, and include them
in every page. If you’ve done any programming at all, you know that this involves
dumping the entire contents of that file into the file being accessed. These lines are
kept in a file called dbconnect.php. At the top of every other file in this application
will be the following line:

include(‘dbconnect.php’);

INSERTING INFORMATION INTO THE DATABASE
Because you have yet to put any users in the database, we start by reviewing the
script that enables you to do that. But first, we need to tell you a little bit more
about PHP variables. A bit earlier in this introduction in the section “Basic Syntax,”
we showed that you can create variables within a PHP script, but because this is a
client/server environment, you’re going to need to get variable data from the client
(the Web browser) to PHP. You usually do this with HTML forms.

There’s a basic rundown of HTML forms in Appendix B. Check that if you need
to. For now we just want to point out that every form element has a name and that
when a form is submitted, the names of those form elements become available as
variables in the PHP script the form was submitted to.

In older versions of PHP, these variables would automatically be created as
global variables: If you submitted a form with a field named firstname, the script
receiving the form would have a variable named $firstname defined when it
began. This can lead to some serious security problems, however. So now, the val-
ues are available as elements in the system-defined “superglobal” arrays, such as
$_GET (for fields passed in as part of the URL) and $_POST (for fields submitted
from forms). The simplest of these to use is $_REQUEST, which combines GET, POST,
and cookie values. If you’re not understanding all of this right now, don’t worry
about it; these concepts are covered in greater detail later in the book, particularly
in Chapter 9.

As soon as the following form is submitted, the variables $_REQUEST
[‘surname’] and $_REQUEST[‘submit’] become available in the PHP script
myscript.php. The value of $_REQUEST[‘surname’] is whatever the user enters into
the text field. The value of $_REQUEST[‘submit’] is the text string submit.

Introduction xxxvii

<form action=”myscript.php”>
<input type=”text” name=”surname”>
<input type=”submit” name=”submit” value=”submit”>

</form>

Before we show the script itself, now is a good time to note that Web program-
ming is slightly different from other types of programming in one important respect:
It is stateless. To display a page, a Web server must first receive a request from a
browser. The language they speak is called HTTP, the Hypertext Transfer Protocol.
The request includes several things — the page the browser wishes to see, the form
data, the type of browser being used, and the IP address the browser is using. Based
on this information, the Web server decides what to serve.

Once it has served this page, the server maintains no connection to the browser.
It has absolutely no memory of what it served to whom. Each HTTP request is dealt
with individually with no regard to what came before it. For this reason, in Web
programming you need to come up with some way of maintaining state. That is, if
you are progressing through an application, you need some way of letting the
server know what happened. Essentially, you need ways of passing variables from
page to page. This comes up in our applications. The applications have three ways
in which to do this: by passing hidden form elements, by using cookies, or by using
sessions.

Now back to the script.

<form action=”myscript.php”>
<input type=”text” name=”surname”>
<input type=”submit” name=”submit” value=”submit”>

</form>

You can decide what you display on a page based on the variable information
that comes from HTML forms. For example, you can find out whether the preceding
form has been submitted by checking if the variable name $_REQUEST[‘submit’]
has a value of submit. This very technique comes into play when it we create the
page for inserting information into the database.

There is one page in our application, called sign.php, that has an HTML form.
The action of the form (the program to run as a result of the submission) in this
page is create_entry.php. Here’s the page in all its glory:

<h2>Sign my Guest Book!!!</h2>

<form method=”post” action=”create_entry.php”>

Name:
<input type=”text” size=”40” name=”name”>

xxxviii Introduction

Location:
<input type=”text” size=”40” name=”location”>

Email:
<input type=”text” size=”40” name=”email”>

Home Page URL:
<input type=”text” size=”40” name=”url”>

Comments:
<textarea name=”comments” cols=”40” rows=”4”
wrap=”virtualv></textarea>

<input type=”submit” name=”submit” value=”Sign!”>
<input type=”reset” name=”reset” value=”Start Over”>

</form>

When the user fills out this form and submits it, the information is sent to
create_entry.php. The first thing to do on this page is to check if the form has been
submitted. If it has, take the values entered into the form and use them to create a
query to send to MySQL. Don’t worry about the specifics of the query just yet. Just
know that it inserts a row into the database table you created earlier.

<?php
include(“dbconnect.php”);

if ($_REQUEST[“submit”] == “Sign!”)
{

$query = “insert into guestbook
(name,location,email,url,comments) values (‘“

.$_REQUEST[“name”]

.”’, ‘“

.$_REQUEST[“location”]

.”’, ‘“

.$_REQUEST[“email”]

.”’, ‘“

.$_REQUEST[“url”]

.”’, ‘“

.$_REQUEST[“comments”]

.”’) “
;

Introduction xxxix

mysql_query($query);
?>
<h2>Thanks!!</h2>
<h2>View My Guest Book!!!</h2>
<?php
}
else
{

include(“sign.php”);
}
?>

If the form, which is in sign.php, hasn’t been submitted, it is included and, there-
fore, shows the same form. You might notice that this page is submitted to itself.
The first time the create_entry.php page is called, the form in sign.php is displayed.
The next time, though, the data are inserted into the database.

Figures I-2 and I-3 show the pages that this script creates.

Figure I-2: create_entry.php the first time through

xl Introduction

Figure I-3: create_entry.php after submission

VIEWING INFORMATION IN THE DATABASE
This shouldn’t be too tough. You already know that the file needs to include
dbconnect.php. Other than that, we’ve already mentioned that databases store
information in tables. Each row of the table contains information on a specific
person who signed the guestbook, so to view all the information the page needs to
retrieve and print out every row of data. Here’s the script that can do it (you should
notice that it’s pretty sparse):

<?php include(“dbconnect.php”); ?>

<h2>View My Guest Book!!</h2>

<?php

$result = mysql_query(“select * from guestbook”)
or die(mysql_error());

while ($row = mysql_fetch_array($result))
{

Introduction xli

echo “Name:”;
echo $row[“name”];
echo “
\n”;
echo “Location:”;
echo $row[“location”];
echo “
\n”;
echo “Email:”;
echo $row[“email”];
echo “
\n”;
echo “URL:”;
echo $row[“url”];
echo “
\n”;
echo “Comments:”;
echo $row[“comments”];
echo “
\n”;
echo “
\n”;
echo “
\n”;

}
mysql_free_result($result);
?>

<h2>Sign My Guest Book!!</h2>

The query in the preceding code asks MySQL for every row in the database. Then
the script enters a loop. Each row in the database is loaded into the variable $row,
one row at a time. Rows continue to be accessed until none is left. At that time, the
script drops out of the while loop.

As it works through the loop, each column in that row is displayed. For example,
the following code prints out the email column for the row being accessed:

echo $row[“email”]

When run, the simple script at the beginning of this section prints out every row
in the database. Figure I-4 shows what the page will look like.

xlii Introduction

Figure I-4: view.php

And that about does it for our first application.

WHY YOU SHOULD NOT USE THIS APPLICATION
Again, we strongly recommend against putting the application discussed in this
introduction anywhere that the general public can get to it. If you want a guest-
book, use the application made exclusively for this book, which you find in Chapter
8. We call this application Guestbook 2003. But we cover a lot of ground and pre-
sent a lot of information before we get there.

We hope you enjoy the read!

Introduction xliii

Working with MySQL
CHAPTER 1

Database Design with MySQL

CHAPTER 2
The Structured Query Language for Creating

and Altering Tables

CHAPTER 3
The Structured Query Language for Inserting,

Editing, and Selecting Data

Part I

Chapter 1

Database Design with
MySQL
IN THIS CHAPTER

◆ Identifying the problems that led to the creation of the relational database

◆ Learning the normalization process

◆ Examining advanced database concepts

THE BULK OF THIS CHAPTER is for those of you who have made it to the early twenty-
first century without working with relational databases. If you’re a seasoned data-
base pro, having worked with Oracle, Sybase, or even something like Microsoft
Access or Paradox, you may want to skip this little lesson on database theory.
However, we do suggest that you look at the final section of this chapter, where we
discuss some of MySQL’s weirder points. MySQL’s implementation of SQL is incom-
plete, so it might not support something you want to use.

Why Use a Relational Database?
If you’re still here and are ready to read with rapt attention about database theory
and the wonders of normalization, you probably don’t know much about the his-
tory of the relational database. You may not even care. For that reason, I’ll keep this
very brief. Dr. E. F. Codd was a research scientist at IBM in the 1960s. A mathe-
matician by training, he was unhappy with the available models of data storage,
finding them all prone to error and redundancy. He worked on these problems and
then, in 1970, published a paper with the rousing title “A Relational Model of Data
for Large Shared Data Banks.” In all honesty, nothing has been the same since.

A programmer named Larry Ellison read the paper and started work on software
that could put Dr. Codd’s theories into practice. If you’ve been a resident of this
planet during the past 20 years, you may know that Ellison’s product and company
took the name Oracle and that he is now one of the richest individuals in the world.
His earliest product was designed for huge mainframe systems. Responding to mar-
ket demands over the years, Oracle, and many other companies that have sprung up
since, have designed systems with a variety of features geared toward a variety of

3

operating systems. Now relational databases are so common that you can get one
that runs on a Palm Pilot.

To understand why Dr. Codd’s theories have revolutionized the data-storage
world, it’s best to have an idea of what the troubles are with other means of data
storage. Take the example of a simple address book — nothing too complex, just
something that stores names, addresses, phone numbers, emails, and the like. If you
have no persistent, running program to put this information into, the file system of
whatever OS you’re running becomes the natural choice for storage.

For a simple address book, a delimited text file can be created to store the infor-
mation. If the first row serves as a header and commas are used as delimiters, the
text file might look something like this:

Name, Addr1, Addr2, City, State, Zip, Phone, Email
Jay Greenspan, 211 Some St, Apt 2, San Francisco, CA, 94107,
4155551212, jay@not.real
Brad Bulger, 411 Some St, Apt 6, San Francisco, CA, 94109,
4155552222, brad@not.real
John Doe, 444 Madison Ave, , New York, NY, 11234, 2125556666,
nobody@mysqlphpapps.com

This isn’t much to look at, but it is at least machine-readable. Using whatever
language you wish, you can write a script that opens this file and then parses the
information. You will probably want it in some sort of two-dimensional or associa-
tive array so that you’ll have some flexibility in addressing each portion of each
line of the file. Any way you look at it, there’s going to be a fair amount of code to
write. If you want this information to be sortable and queryable by a variety of cri-
teria, you’re going to have to write scripts that will, for instance, sort the list alpha-
betically by name or find all people within a certain area code. What a pain.

You might face another major problem if your data needs to be used across a
network by a variety of people. Presumably more than one person is going to need
to write information to this file. What happens if two people try to make changes at
once? For starters, it’s quite possible that one person will overwrite another’s
changes. To prevent this from happening, the programmer has to specify file lock-
ing if the file is in use. While this might work, it’s kind of a pain in the neck for the
person who gets locked out. Obviously, the larger the system gets the more unman-
ageable this all becomes.

What you need is something more robust than the file system — a program or
daemon that stays in memory seems to be a good choice. Furthermore, you’ll need
a data-storage system that reduces the amount of parsing and scripting that the
programmer needs to be concerned with. No need for anything too arcane here. A
plain, simple table like Table 1-1 should work just fine.

Now this is pretty convenient. It’s easy to look at and if a running program
accesses this table it should happen pretty quickly. What else might this program
do? First, it should be able to address one row at a time without affecting the oth-
ers. That way, if two or more people want to insert information into this table they

4 Part I: Working with MySQL

won’t be tripping over each other. It would be even spiffier if the program provided
a simple and elegant way to extract information from a table such as this. There
should be a quick way to find all of the people from California that doesn’t involve
parsing and sorting the file. Furthermore, this wondrous program should be able to
accept statements that describe what you want in a language very similar to
English. That way you can just say: “Give me all rows where the contents of the
state column equal CA.”

Yes, this program is great, but it isn’t enough. Major problems still need to be
dealt with. These problems, which we’ll discuss in the following pages, are the same
ones that made Dr. Codd write his famous paper, and the same ones that made Larry
Ellison a billionaire.

Blasted Anomalies
Dr. Codd’s goal was to have a model of information that was dependable. All of the
data-storage methods available to him had inherent problems. He referred to these
problems as anomalies. There are three types of anomalies: update, delete, and insert.

The update anomaly
Now that you can assume that a table structure can quickly and easily handle mul-
tiple requests, you need to see what happens when the information gets more com-
plex. Adding some more information to the previous table introduces some serious
problems (Table 1-2).

Table 1-2 is meant to store information for an entire office, not just a single per-
son. Since this company deals with other large companies, there will be times when
more than one contact will be at a single office location. For example, in Table 1-2
two contacts are present at 1121 43rd St. At first this may appear to be okay; you
can still get at all the information available relatively easily. The problem comes
when the BigCo Company decides to up and move to another address. In that case,
you’d have to update the address for BigCo in two different rows. This may not
sound like such an onerous task, but consider the trouble if this table has 3,000
rows instead of 3 — or 300,000 for that matter. Someone, or some program, has to
make sure the data are changed in every appropriate place.

Another concern is the potential for error. It’s very possible that one of these
rows could be altered while the other one remained the same. Or, if changes are
keyed in one row at a time, it’s likely that somebody will introduce a typo. Then
you’d be left wondering if the correct address is 1121 or 1211.

The better way to handle this data is to take the company name and address and
put that information in its own table. This process of separating a table out into
multiple new tables is usually called decomposition. The two resulting tables will
resemble Table 1-3 and Table 1-4.

Now the information pertinent to BigCo is in its own table, Companies. If you
look at the next table (Table 1-4), Contacts, you’ll see that we’ve inserted another

Chapter 1: Database Design with MySQL 5

6 Part I: Working with MySQL

TA
BL

E
1-

1
SI

M
PL

E
TA

BL
E

FO
R

DA
TA

 S
TO

RA
GE

na
m

e
ad

dr
1

ad
dr

2
ci

ty
st

at
e

zi
p

ph
on

e
em

ai
l

Ja
y

G
re

en
sp

an
21

1
So

m
e

St
.

Ap
t.

2
Sa

n
Fr

an
ci

sc
o

CA
94

10
7

41
55

55
88

88
ja
y@
no
t.
re
al

Br
ad

 B
ul

ge
r

41
1

So
m

e
St

.
Ap

t.
6

Sa
n

Fr
an

ci
sc

o
CA

94
10

9
41

55
55

22
22

br
ad
@n
ot
.r
ea
l

Jo
hn

 D
oe

44
4

M
ad

is
on

 A
ve

.
N

ew
 Y

or
k

N
Y

11
23

4
21

25
55

66
66

no
bo
dy
@
my
sq
lp
hp
ap
ps
.c
om

TA
BL

E
1-

2
PR

O
BL

EM
AT

IC
 T

AB
LE

 S
TO

RA
GE

id
co

m
pa

ny
_n

am
e

co
m

pa
ny

_a
dd

re
ss

co
nt

ac
t_

na
m

e
co

nt
ac

t_
ti

tl
e

ph
on

e
em

ai
l

1
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.
Ja

y
G

re
en

sp
an

Vi
ce

 P
re

si
de

nt
41

55
55

12
12

ja
y@
no
t.
re
al

2
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.
Br

ad
 B

ul
ge

r
Pr

es
id

en
t

41
55

55
22

22
br
ad
@n
ot
.r
ea
l

3
Li

tt
le

Co
 C

om
pa

ny
44

44
 4

4t
h

St
.

Jo
hn

 D
oe

La
ck

ey
21

25
55

66
66

no
bo
dy
@h
ot
ma
il
.c
om

Chapter 1: Database Design with MySQL 7

TA
BL

E
1-

3
CO

M
PA

N
IE

S

co
m

pa
ny

_i
d

co
m

pa
ny

_n
am

e
co

m
pa

ny
_a

dd
re

ss

1
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.

2
Li

tt
le

Co
 C

om
pa

ny
44

44
 4

4t
h

St
.

TA
BL

E
1-

4
CO

N
TA

CT
S

co
nt

ac
t_

id
co

m
pa

ny
_i

d
co

nt
ac

t_
na

m
e

co
nt

ac
t_

ti
tl

e
ph

on
e

em
ai

l

1
1

Ja
y

G
re

en
sp

an
Vi

ce
 P

re
si

de
nt

41
55

55
12

12
ja
y@
no
t.
re
al

2
1

Br
ad

 B
ul

ge
r

Pr
es

id
en

t
41

55
55

22
22

br
ad
@n
ot
.r
ea
l

3
2

Jo
hn

 D
oe

La
ck

ey
21

25
55

66
66

no
bo
dy
@m
ys
ql
ph
pa
pp
s.
co
m

column, company_id. This column references the company_id column of the
Companies table. In Brad’s row, you see that the company_id (the second column)
equals 1. You can then go to the Companies table, look at the information for
company_id 1, and see all the relevant address information. What’s happened here
is that you’ve created a relationship between these two tables — hence the name
relational database.

You still have all the information you had in the previous setup, you’ve just seg-
mented it. In this setup you can change the address for both Jay and Brad by alter-
ing only a single row. That’s the kind of convenience you want to be after.

Perhaps this leaves you wondering how you get this information un-segmented.
Relational databases give you the ability to merge, or join, tables. Consider the fol-
lowing statement, which is intended to give all the available information for Brad:
“Give me all the columns from the contacts table where contact_id is equal to 1,
and while you’re at it throw in all the columns from the Companies table where the
company_id field equals the value shown in Brad’s company_id column.”

In other words, in this statement, you are asking to join these two tables where
the company_id fields are the same. The result of this request, or query, looks some-
thing like Table 1-5.

In the course of a couple of pages, you’ve learned how to solve a data-integrity
problem by segmenting information and creating additional tables. But we have yet
to give this problem a name.

When we learned the vocabulary associated with relational databases from a
very thick and expensive book, this sort of problem was called an update anomaly.
There may or may not be people using this term in the real world; if there are, we
haven’t met them (people in the real world call it “breach of contract” when
addressing their consultants). However, we think this term is pretty apt. In Tables
1-1 and 1-2, if you were to update one row in the table, other rows containing the
same information would not be affected.

The delete anomaly
Now take a look at Table 1-6, focusing on row 3.

Consider what happens if Mr. Doe is deleted from the database. This may seem
like a simple change but suppose someone accessing the database wants a list of all
the companies contacted over the previous year. In the current setup, when you
remove row 3, you take out not only the information about John Doe, you remove
information about the company as well. This problem is called a delete anomaly.

If the company information is moved to its own table, as you saw in the previ-
ous section, this delete anomaly won’t be a problem. You can remove Mr. Doe and
then decide independently if you want to remove the company he’s associated with.

The insert anomaly
Our final area of concern is problems that will be introduced during an insert.
Looking again at the Table 1-6, you can see that the purpose of this table is to store
information on contacts, not companies. This becomes a drag if you want to add a

8 Part I: Working with MySQL

Chapter 1: Database Design with MySQL 9

TA
BL

E
1-

5
Q

UE
RY

 R
ES

UL
TS

co
m

pa
ny

_
co

m
pa

ny
_

co
nt

ac
t_

co
nt

ac
t_

co
m

pa
ny

_i
d

na
m

e
ad

dr
es

s
co

nt
ac

t_
id

na
m

e
ti

tl
e

ph
on

e
em

ai
l

1
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.
2

Br
ad

 B
ul

ge
r

Pr
es

id
en

t
41

55
55

22
22

br
ad
@n
ot
.r
ea
l

TA
BL

E
1-

6
TA

BL
E

W
IT

H
 D

EL
ET

E
AN

O
M

AL
Y

co
m

pa
ny

_
co

m
pa

ny
_

co
nt

ac
t_

co
nt

ac
t_

co
m

pa
ny

_i
d

na
m

e
ad

dr
es

s
na

m
e

ti
tl

e
ph

on
e

em
ai

l

1
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

Ja
y

G
re

en
sp

an
Vi

ce
 P

re
si

de
nt

41
55

55
12

12
ja
y@
no
t.
re
al

2
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

Br
ad

 B
ul

ge
r

Pr
es

id
en

t
41

55
55

22
22

br
ad
@n
ot
.r
ea
l

3
Li

tt
le

Co
 C

om
pa

ny
44

44
 4

4t
h

St
Jo

hn
 D

oe
La

ck
ey

21
25

55
66

66
no
bo
dy
@m
ys
ql
ph
pa
pp
s.
co
m

company but not an individual. For the most part, you’ll have to wait to have a
specific contact to add to the database before you can add company information.
This is a ridiculous restriction. The solution is to store contact information in one
table and company information in another. By storing company information in its
own table, you can add a new company there even if you (as yet) have no contacts
to go with it. Ditto for contacts with no matching companies.

Normalization
Now that we’ve shown you some of the problems you might encounter, you need to
learn the ways to find and eliminate these anomalies. This process is known as nor-
malization. Understanding normalization is vital to working with relational data-
bases. But to anyone who has database experience normalization is not the be-all
and end-all of data design. Experience and instinct also play a part in the creation
of a good database. The examples in this book will usually be normalized. However,
in some cases, a denormalized structure is preferable, for performance reasons, code
simplification, or so on.

One other quick caveat. The normalization process consists of several normal
forms. Normal forms are standards of database regulation that promote efficiency,
predictability of results, and unambiguousness.

In this chapter we cover first, second, and third normal forms. In addition to
these, the normalization process can involve four other (progressively more rigor-
ous) normal forms. (For the curious, these are called Boyce-Codd normal form,
fourth normal form, fifth normal form, and Domain/Key normal form.) We know
about these because we read about them in a book. In the real world, where real
people actually develop database applications, these normal forms aren’t discussed.
If you get your data into third normal form that’s about good enough — mainly
because data in the third normal form meets the requirements of the first and sec-
ond normal forms, by definition. Yes, a possibility exists that anomalies will exist
in third normal form, but if you get this far you should be OK.

First normal form
Getting data into first normal form is fairly easy. Data need to be in a table struc-
ture and to meet the following criteria:

◆ Each column must have a unique name and define a single attribute of
the table as a whole.

◆ Each row in the table must have a set of values that uniquely identifies
the row (this is known as the primary key of the table).

◆ No two rows can be identical.

10 Part I: Working with MySQL

◆ Each cell must contain an atomic value, meaning that each cell contains
only one value. No arrays or any other manner of representing more than
one value can exist in any cell.

◆ No repeating groups of data are allowed.

The final item here is the only one that may require some explanation. Take a
look at Table 1-7.

As you’ve already seen with these data, row 1 and row 2 contain two columns
that contain identical information. This is a repeating group of data. Only when
you remove these columns and place them in their own table will these data be in
first normal form. The separation of tables that we did in Tables 1-3 and 1-4 will
move this data into first normal form.

Before we move on to chat about second and third normal form, you’re going to
need a couple of quick definitions. The first is of the term primary key. The primary
key is a column or set of columns by which each row can be uniquely identified.

Primary keys, while very important, are difficult to understand both in theory
and in practice. The theory is straightforward: Each row in the column designated
as the primary key must have a unique value. In practice, the easiest way to get a
series of unique numbers is to use a series of sequential numbers, in which the
value of the primary key column in each row increments the previous row’s pri-
mary key value by one. Because this is such a popular solution to the primary key
problem, all database servers of any consequence create the incremental values for
you as records are created. MySQL has such a mechanism; you use it by designat-
ing your primary key column as type auto_increment.

Depending on your data, all kinds of values will work for a primary key. Social
Security numbers work great, as do email addresses and URLs. The data just need to
be unique. In some cases, two or more columns may comprise your primary key.
For instance, to continue with the address-book example, if contact information
needs to be stored for a company with many locations, it is probably best to store
the switchboard number and mailing address information in a table that has the
company_id and company_location as its primary key.

Next, we need to define the word dependency, which means pretty much what
you think it means. A dependent column is one that is inexorably tied to the pri-
mary key. It can’t exist in the table if the primary key is removed.

With that under your belt, you are ready to tackle second normal form.

Second normal form
This part of the process only comes into play when you end up with one of those
multi-column primary keys that we just discussed. Assume that in the course of
dividing up your address tables you end up with Table 1-8. Here, the company_name
and company_location columns comprise the multi-column primary key.

Chapter 1: Database Design with MySQL 11Chapter 1: Database Design with MySQL 11

12 Part I: Working with MySQL

TA
BL

E
1-

7
TA

BL
E

W
IT

H
 R

EP
EA

TI
N

G
GR

O
UP

S
O

F
DA

TA

co
m

pa
ny

_
co

m
pa

ny
_

co
nt

ac
t_

co
nt

ac
t_

co
m

pa
ny

_i
d

na
m

e
ad

dr
es

s
na

m
e

ti
tl

e
ph

on
e

em
ai

l

1
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.
Ja

y
G

re
en

sp
an

Vi
ce

 P
re

si
de

nt
41

55
55

12
12

ja
y@
no
t.
re
al

2
Bi

gC
o

Co
m

pa
ny

11
21

 4
3r

d
St

.
Br

ad
 B

ul
ge

r
Pr

es
id

en
t

41
55

55
22

22
br
ad
@n
ot
.r
ea
l

3
Li

tt
le

Co
 C

om
pa

ny
44

44
 4

4t
h

St
.

Jo
hn

 D
oe

La
ck

ey
21

25
55

66
66

no
bo
dy
@h
ot
ma
il
.c
om

TABLE 1-8 TABLE NOT IN SECOND NORMAL FORM

company_name company_location company_ceo company_address

BigCo Company San Francisco Bill Hurt 1121 43rd St.

LittleCo Company Los Angeles Bob Ouch 4444 44th St.

You should be able to see pretty quickly that an insertion anomaly would work
its way in here if you were to add another location for BigCo Company. You’d have
the CEO name, Bill Hurt, repeated in an additional row, and that’s no good.

You can get this table into second normal form by removing rows that are only
partially dependent on the primary key. Here, the CEO is dependent only on the
company_name column. It is not dependent on the company_location column. To
get into second normal form, you move rows that are only partially dependent on
a multi-field primary key into their own table (see Tables 1-9 and 1-10). Second
normal form does not apply to tables that have a single-column primary key.

TABLE 1-9 TABLE IN SECOND NORMAL FORM

company_id company_name company_ceo

1 BigCo Company Bill Hurt

2 LittleCo Company Bob Ouch

TABLE 1-10 TABLE IN SECOND NORMAL FORM

company_id company_location company_address

1 San Francisco 1121 43rd St.

2 Los Angeles 4444 44th St.

Third normal form
Finishing up the normalization process, third normal form is concerned with tran-
sitive dependencies. A transitive dependency describes a situation in which a col-
umn exists that is not directly reliant on the primary key. Instead, the field is reliant

Chapter 1: Database Design with MySQL 13

on some other field, which in turn is dependent on the primary key. A quick way to
get into third normal form is to look at all the fields in a table and ask if they all
describe the primary key. If they don’t, you’re not there.

If your address book needs to store more information on your contacts, you
might find yourself with a table like Table 1-11.

TABLE 1-11 TABLE NOT IN THIRD NORMAL FORM

contact_ contact_ assistant_ assistant_
contact_id name phone name phone

1 Bill Jones 4155555555 John Bills 2025554444

2 Carol Shaw 2015556666 Shawn Carlo 6505556666

You might think we’re doing OK here. But look at the assistant_phone column
and ask if that really describes the primary key (and the focus of this table), which
is your contact. It’s possible, even likely, that one assistant will serve many people,
in which case it’s possible that an assistant name and phone will end up listed in
the table more than once. That would be a repeating group of data, which you
already know you don’t want. Tables 1-12 and 1-13 are in third normal form.

TABLE 1-12 TABLE IN THIRD NORMAL FORM

assistant_id assistant_name assistant_phone

1 John Bills 2025554444

2 Shawn Carlo 6505556666

TABLE 1-13 TABLE IN THIRD NORMAL FORM

contact_id contact_name contact_phone assistant_id

1 Bill Jones 4155555555 1

2 Carol Shaw 2015556666 2

14 Part I: Working with MySQL

Types of Relationships
In the applications you’ll see later in this book we create a bunch of tables that
don’t have anomalies. We include columns that maintain relationships among these
tables. You’ll encounter three specific types of relationships in database land.

The one-to-many relationship
This is by far the most common type of relationship that occurs between two tables.
When one value in a column references multiple fields in another table, a one-to-
many relationship is in effect (Figure 1-1).

Figure 1-1: Tables with a one-to-many relationship

Figure 1-1 shows a classic one-to-many relationship. Here, each company is
associated with a certain industry. As you can see, one industry listed in the indus-
try table can be associated with one or more rows in the company table. This in no
way restricts what you can do with the companies. You are absolutely free to use
this table as the basis for other one-to-many relationships. Figure 1-2 shows that
the Companies table can be on the “one” side of a one-to-many relationship with a
table that lists city locations for all the different companies.

Industries

1
2

industry_nameindustry_id
Utilities
Construction

3 Banking

Companies

company_id
1
2

company_name
Big Co Corporation
Little Co Corporation

industry_id
1
1

3 Joe's Utility 1
4 Leadfoot Builders 2

5 Angel's Cement Boots 2

6 Al's Bank 3

Chapter 1: Database Design with MySQL 15

Figure 1-2: Tables with two one-to-many relationships

The one-to-one relationship
A one-to-one relationship is essentially a one-to-many relationship where only one
row in a table is related to only one row in another table. During the normalization
process, we mentioned a situation in which one table holds information about cor-
porate executives and another holds information about their assistants. This could
very well be a one-to-one relationship if each executive has one assistant and each
assistant works for only one executive. Figure 1-3 gives a visual representation of
this relationship.

Industries

1
2

industry_nameindustry_id
Utilities
Construction

3 Banking

Companies

company_id
1
2

company_name
Big Co Corporation
Little Co Corporation

industry_id
1
1

3 Joe's Utility 1
4 Leadfoot Builders 2

5 Angel's Cement Boots 2

6 Al's Bank 3

co_location_id
1
2

company_id
2
2

city
San Francisco
New York

3 2 Chicago
4 5 Dallas

16 Part I: Working with MySQL

Figure 1-3: Tables with a one-to-one relationship

The many-to-many relationship
Many-to-many relationships work a bit differently from the other two kinds of
relationships. For instance, suppose that the company keeping the data has a vari-
ety of newsletters that it sends to its contacts, and suppose that it needs to add this
information to the database. There’s a weekly, a monthly, a bi-monthly, and an
annual newsletter, and to keep from annoying clients, the newsletters must only be
sent to those who request them.

To start, you could add a table that stores the newsletter types (Table 1-14).

TABLE 1-14 NEWSLETTERS TABLE

newsletter_id newsletter_name

1 Weekly

2 Monthly

3 Bi-monthly

4 Annual

Table 1-14 can’t be directly related to another table that stores contact informa-
tion. So it’s not sufficient to define which clients have requested which types of
newsletters. The only way to make that work is to add a column to the Contacts table
that stores the newsletters that each contact receives. Right away, you should notice
a problem with Table 1-15. In Table 1-15 the Newsletters column contains more

Executives

1
2

exec_first_nameexecid
Jon
Melinda

3 Larry

exec_last_name
Dust
Burns
Gains

Assistants

1
2

exec_idasst_id
1
2

3 3

asst_first_name
Walter
James
Nancy

asst_last_name
James
Walter
Els

Chapter 1: Database Design with MySQL 17

than one value. The value looks a lot like an array. As mentioned earlier, this should
never occur within a database — you want only atomic values in each column.

TABLE 1-15 REVISED CONTACTS TABLE

contact_id contact_first_name contact_last_name Newsletters

1 Jon Doe 1,3,4

2 Al Banks 2,3,4

In situations like this you’ll need to create another table, of a type often known
as a mapping table because it maps the relationship of one table to another. Figure
1-4 shows how the relationship between these values can be made to work.

Figure 1-4: Tables with a many-to-many relationship

With this structure, any number of contacts can have any number of newsletters
and any number of newsletters can be sent to any number of contacts.

1
2

contact_first_namecontact_id
Jon
Al

contact_last_name
Doe
Banks

newsletter_id
1
2
3

newsletter_name
Weekly
Bi-Weekly
Annual

4 Semi-annual

contact_id
1
1
2

newsletter_id
1
2
2

2 3
2 4

18 Part I: Working with MySQL

Newcomers to databases often overlook many-to-many relationships and

instead choose designs that require excessive columns within a table or

arrays within a column. Make sure to consider a many-to-many relationship

if your structure seems unmanageable.

Advanced Database Concepts
For a long time MySQL was a polarizing piece of software in the applications-
development community. It had (and still has) aspects that many developers loved:
it’s free (at least, when used in applications that conform to the GNU Public
License), it doesn’t take up a whole lot of resources, it’s very quick, and it’s easy to
learn compared to packages like Oracle and Sybase. However, it didn’t originally
offer features common in other databases, such as subselects or joins in updates,
and these shortcomings kept many from adopting MySQL for their applications. But
since the publication of the first edition of this book a lot of work has been done on
MySQL, and it now offers at least partial support for the features discussed in the
following sections.

Referential integrity
Every example used so far in this chapter has made use of foreign keys. A foreign
key is a column that references the primary key of another table in order to main-
tain a relationship. In Table 1-4, the Contacts table contains a company_id column,
which references the primary key of the Companies table (Table 1-3). This column
is a foreign key to the Companies table.

In Chapter 2 we demonstrate how to create tables in MySQL. It’s easy enough to
create tables with all the columns necessary for primary keys and foreign keys.
However, in MySQL foreign keys are not universally available.

In packages like Oracle, Sybase, or PostgreSQL, tables can be created that explic-
itly define foreign keys. For instance, with Oracle the database system could be
made aware that the company_id column in the Contacts table has a relationship to
the company_id column in the Companies table. This capability is potentially a
very good thing and is known as a foreign-key constraint. If the database system is
aware of a relationship, it can check to make sure the value being inserted into the
foreign-key field exists in the referenced table. If it does not, the database system
will reject the insert. The capability of the database server to reject records because
they don’t satisfy the requirements of linked tables is known as referential integrity.

With MySQL, at the time of this writing, foreign-key constraints are only avail-
able when you’re using the InnoDB table type. You’ll see how to work with foreign-
key constraints in InnoDB in Chapter 2.

Chapter 1: Database Design with MySQL 19

To demonstrate the importance of foreign-key constraints we’ll show you how
you’d achieve the same effect using MySQL table types other than InnoDB. Before
inserting or updating records in your table, you have to take some extra steps.

To be ultra-safe, you would need to go through the following steps in order to
insert a row in the Contacts table (Table 1-4), for example:

1. Get all the values for company_id in the Companies table.

2. Check to make sure the value for company_id to be inserted into the
Contacts table exists in the data you retrieved in Step 1.

3. If it does, insert values.

The developers of MySQL had long argued that referential integrity was not nec-
essary and that including it would slow down MySQL. Further, they argued that it
is the responsibility of the application interacting with the database to ensure that
the inserted data is correct. There is a logic to this way of thinking. In Parts III and
IV of this book we present several applications that would work just fine without
enforcing referential integrity or the method of checking shown above. In general,
in these applications, all the possible values are pulled from a database anyway and
there’s very little opportunity for errors to creep into the system.

But there’s no doubt that having the option of enforcing referential integrity is a
good thing.

Transactions
In relational databases, things change in groups. As shown in a variety of applica-
tions in this book, many changes require that rows be updated in several tables
concurrently. An e-commerce site may contain code that works in the following
manner:

1. Insert a customer into the Customers table.

2. Check the inventory table to see that a sufficient quantity of the item
exists to place the order.

3. Add invoice information into the Invoice table.

4. Reduce the quantity available for the item in the inventory table by the
quantity ordered.

When you’re working with a series of steps like this, serious problems can occur.
If the operating system crashes or power goes out between steps three and four, the
database will contain bad data. It’s also important to remember that MySQL and
other relational databases are multi-threaded, which means that they can process
directives from multiple clients simultaneously. Imagine what would happen with
the previous listing if two orders were placed almost simultaneously for an item
that was nearly out of stock. Two threads (in the case of an e-commerce site, two

20 Part I: Working with MySQL

customers working through their browsers) could find themselves requesting the
final item at the same time. If precautions are not taken, it’s possible that one per-
son might receive confirmation that the order is available when in fact it is not.

To prevent such occurrences, most sophisticated database systems make use of
transactions. A transaction is a bundle of commands treated as an indivisible unit.
If any one of these commands fails to go through, the whole group of commands
fails, and the database returns to the state it was in before the first command was
attempted. This is known as a commit/rollback approach. Either all the requests are
committed to the database, or the database is rolled back to the state it was in prior
to the transactions. This works both to prevent threads from stepping on each other
and to protect data in the event of a crash.

With the example given above, if in Step 2 the application were to discover that
no items are left, a ROLLBACK command will be given and no items will be removed
from the inventory. In the case of a crash, the in-progress transactions will be auto-
matically rolled back.

A transaction-capable database must support the four properties that go by the
acronym ACID, which are defined as follows:

◆ Atomicity — The operations that make up each transaction are treated col-
lectively as a single, or atomic, unit. Either all changes are committed or
none are.

◆ Consistency — The available data will never be in an inconsistent state;
either other threads will see the data in the state it was in prior to the
transaction, or other threads will see the data in the state it winds up in
after the transaction is completed.

◆ Isolation — Each transaction is isolated from all others. The effects of
Transaction A are not visible to Transaction B until Transaction A is com-
pleted. If a transaction is in progress, the interim state of the data will not
be visible to other transactions.

◆ Durability — When a transaction is complete, the changes are permanent.
Even if a database crashes, the information from a committed transaction
will be available and complete.

In older versions of MySQL transactions were not supported. This was a major
problem for many developers, who could not fathom the idea of designing proper
applications without this feature. Now MySQL features several table types (includ-
ing InnoDB and BerkeleyDB) that support transactions. You read more about these
tables in Chapter 2.

Stored procedures
The big fancy database systems allow for procedural code (real computer code, sim-
ilar to PHP or Perl) to be placed within the database. Using stored procedures pro-
vides a couple of key advantages. First, it can reduce the amount of code needed in

Chapter 1: Database Design with MySQL 21

middleware applications. If MySQL accepted stored procedures (which it unfortu-
nately does not — yet), a single PHP command could be sent to the database to
query data, do some string manipulation, and then return a value ready to be dis-
played in your page.

The other major advantage comes when you are working in an environment in
which more than one front-end is accessing the same database. Consider a situation
in which there happens to be one front-end written for the Web and another, acces-
sible on Windows machines, written in Visual C++. It would be a pain to write all
the queries and transactions in two different places. You’d be much better off writ-
ing stored procedures and accessing those from your various applications. Stored
procedures are planned for MySQL version 5.0.

Summary
At this point you should have a pretty good idea of how relational databases work.
The theory covered here is really important, as quality data design is one of the cor-
nerstones of quality applications. If you fail in the normalization process, you
could create difficulties that will haunt you for months or years.

In the applications in Parts III and IV of this book, you see how we approach and
normalize several sets of data.

Now that you know how tables in a relational database work, move on to
Chapter 2, where you see how to make these tables in MySQL.

22 Part I: Working with MySQL

Chapter 2

The Structured Query
Language for Creating
and Altering Tables
IN THIS CHAPTER

◆ Creating tables and databases in MySQL

◆ Choosing the proper column type and column attributes for tables

◆ Choosing the proper tables for your applications

◆ Altering existing tables

◆ Using phpMyAdmin

◆ Using MySQLCC

◆ Using MacSQL

IN CHAPTER 1 you learned that tables are the basis of all the good things that come
from working with relational databases. You can do a fair amount with these tables,
as you’ll see throughout this book. So it should come as no surprise that creating
and maintaining them requires some knowledge.

If you’re coming to MySQL from a background in Microsoft’s SQL Server or
a desktop package like Access, you may be used to creating tables with a slick
WYSIWYG (what you see is what you get) interface. There’s no doubt that working
with a graphical interface can be a lot more pleasant than figuring out the syntax
of a language — any language. In fact, you can use any of several GUI tools to cre-
ate and manipulate tables, and we’ll discuss some of these later in the chapter.
However, even if you plan on installing and using a GUI tool, you should take some
time to learn how to create and maintain tables using the Data Definition Language
(DDL), which is part of SQL. Specifically, it will be a great help to you to understand
the create and alter commands. Before too long you will have to use these com-
mands within your scripts. There also may be an occasion when you don’t have
access to the graphical interface, and you’ll need this knowledge to fall back on.

23

Essential Definitions
Before we get to creating tables and databases in MySQL, you’ll need to understand
a couple of items. The concepts we’re about to present are very important — make
sure you understand how to deal with these before you move forward in your data-
base design.

Null values
One of the first decisions you will have to make for every column in your table is
whether or not to allow null values. If you remember back to your basic math, you
may recall the null set — a group that contains nothing. In relational databases, null
has the same meaning: A null field contains nothing.

The concept of nothing is different from the concept of zero. A field that is null
is distinctly different from a field containing a text string with no characters (a
zero-length string) or a numerical value of 0. The difference is that empty strings
and zeros are values.

This SQL statement . . .

select * from mytable where myfield = 0;

returns rows in which the myfield column contains the numerical value 0. In
contrast, the statement . . .

select * from mytable where myfield = ‘’;

returns an entirely different set of rows: those with nothing at all in their
myfield columns.

Value comparisons do not work with null. Since null is the absence of value, any
comparison with any value (including another null) is meaningless. In Chapter 3
you can see that using null values requires that the application developer be very
careful when writing table joins. To give you a quick preview, consider what would
happen if we wanted to join Table 2-1 and Table 2-2:

In your SQL select statements (covered in Chapter 3), you can deter-

mine if a field contains a null value in a couple of ways. First, you can use

MySQL’s isnull() function. For example, to find rows in a table where the

middle_name column contains null values, you could run the following

query:

select * from names where isnull(middle_name);

Or, to exclude null values from the query result:

select * from names where !isnull(middle_name);

24 Part I: Working with MySQL

The exclamation point means “not.”

You can also use the is null and is not null statements. For example:

select * from users were addr2 is null;
select * from users where addr2 is not null;

TABLE 2-1 CONTACTS

first_name last_name fantasy_spouse_id

Jay Greenspan 1

Brad Bulger NULL

TABLE 2-2 desired_spouse

fantasy_spouse_id First_name last_name

1 Nicole Kidman

If you wanted to find the authors of a great book on MySQL and PHP and their
dream spouses, you would have to join these tables on the fantasy_spouse_id
field. (Don’t worry if you don’t understand the exact syntax, it will be covered in
the next chapter.)

SELECT * FROM contacts, desired_spouse
WHERE contacts.fantasy_spouse_id =

desired_spouse.fantasy_spouse_id;

This statement works fine for Jay, but there’s going to be a problem for Brad
because he’s a happy bachelor and his fantasy_spouse_id field is null. He will not
show up in the result set even though the goal of the query is to get all the people
in the contacts table and the associated fantasy spouses, if the retrieved contacts
have them.

Again, this is just a preview, an example of why null is so important. In Chapter
3 you can see how the outer join solves problems like this.

Chapter 2: The Structured Query Language for Creating and Altering Tables 25

Indexes
Arguably the single greatest advantage of a relational database is the speed with
which it can query and sort tremendous amounts of information. To achieve this
great speed, MySQL and all other database servers make use of optimized data-
retrieval mechanisms called indexes.

An index allows a database server to create a representation of a column that it
can search with amazing speed. Indexes are especially helpful in finding a single
row or group of rows from a large table. They can also speed up joins and aggre-
gate functions, like min() and max(), which we cover in Chapter 3.

Given these advantages, why not just create an index for every column for every
table? There are some very good reasons. First, indexes can actually slow some things
down. It takes time for your database server to maintain indexes. You wouldn’t
want to create overhead for your server that is not going to be a benefit to you
down the road. Also, on some occasions the indexes themselves are slower. If you
need to iterate through every row in a table, you’re actually better off not using an
index. Also, unnecessary indexes will use a lot of disk space and memory.

A table’s primary key is often the subject of searches (for obvious reasons). Thus
the column or columns that you declare as your primary key in a table definition
will automatically be indexed.

We’ll talk more about creating indexes later in this chapter.

The create database Statement
Before you can get to creating your tables, you’ll need to create a database to hold
them. This should take all of a second. The basic create database statement is
fairly simple and can be run from any interface that has access to MySQL.

The general syntax is as follows:

create database database_name

In case you’re wondering, after running this command, MySQL creates a

folder in which it stores all the files needed for your database. On our Linux

machines the database folders are stored in /usr/local/mysql/lib.

When naming databases, or for that matter columns or indexes, avoid using
names that will cause confusion down the road. On operating systems in which file
names are case-sensitive, such as most Unix systems, database names will also be
case-sensitive. Come up with conventions that you plan on sticking to, such as
using all-lowercase names for tables and columns. Spaces are not allowed.

Though MySQL can work around potentially bad choices, you should avoid
using words that MySQL uses in the course of its business. For instance, naming a

26 Part I: Working with MySQL

table “Select” is a really bad idea. Chapter 6 of the MySQL reference manual lists
over 150 reserved words. If you stay away from words used by SQL or MySQL func-
tions, you should be okay.

From the MySQL command-line client, you can simply type in the following
command:

mysql> create database my_database;

The MySQL command-line client is in the bin/ directory of your MySQL

installation and has the file name mysql (in Unix) or mysql.exe (in DOS/

Windows).

From PHP, you can use the mysql_query() function. The following piece of
code would create two databases. (Keep in mind that you need to log into MySQL
as a user with the proper rights for the code to work.)

$conn = mysql_connect(“localhost”,”username”, “password”)
or die (“Could not connect to localhost”);

mysql_query(“ CREATE DATABASE IF NOT EXISTS my_database “) or
die (“Could not create database”);

The use database Statement
Before you can begin making tables in MySQL you must select a database that
has been created. Though you can do this in individual SELECT statements, it’s eas-
ier to define a default working database with the use command. If you are access-
ing MySQL through the MySQL command-line client, you will have to enter this
statement:

use database_name

If you’re accessing a database through PHP, use the mysql_select_db()
function:

$conn = mysql_connect(“localhost”,”username”, “password”)
or die (“Could not connect to localhost”);

mysql_select_db(“test”, $conn) or
die (“Could not select database”);

Chapter 2: The Structured Query Language for Creating and Altering Tables 27

The create table Statement
Once you have created and selected a database, you are ready to create a table. The
basic create table statement is fairly simple and takes this basic form:

create table table_name
(

column_name_1 column_type column_attributes,
column_name_2 column_type column_attributes,
primary key (column_name),
index index_name(column_name)

)type=table_type

Column types, column attributes, and details on indexes are covered in the fol-
lowing sections. Before we get to those, we should mention two simple column
attributes:

◆ null | not null

◆ default

The first gives you the opportunity to allow or forbid null values. If you don’t
specify null or not null it is assumed that null values are allowed. The second, if
declared, sets a value if none is declared when you insert a row into the table. (If a
column is defined as “not null” and no default value is specified, MySQL assigns
a default value for the column based on its data type. See the “CREATE TABLE
Syntax” section of the online MySQL Language Reference Manual for details.)

Here’s an example create statement that demonstrates these two attributes, and
a few others.

create table topics (
topic_id integer not null auto_increment,
parent_id integer default 0 not null,
root_id integer default 0,
name varchar(255),
description text null,
create_dt timestamp,
modify_dt timestamp,
author varchar(255) null,
author_host varchar(255) null,

primary key(topic_id),
index my_index(parent_id)
)type=myisam;

28 Part I: Working with MySQL

This statement creates a table named topics with nine columns and two indexes,
one for the primary key and one for the parent_id column. In the preceding state-
ment four column types are used: integer, varchar, text, and timestamp. These
and many other column types are discussed in further detail in the following exam-
ple. Before you set out to create tables you should have a good understanding of all
the column types available as well as of ways to create indexes.

To create tables from the command-line client, key in the entire command. From
PHP, use the mysql_query() function as follows:

$conn = mysql_connect(“localhost”,”username”,”password”) or
die (“Could not connect to localhost”);

mysql_select_db(“test”, $conn) or
die(“could not select database”);

$query = “create table my_table (
col_1 int not null primary key,
col_2 text

)”;
mysql_query($query) or

die(mysql_error());

Column Types
MySQL provides you with a range of column types. While several are similar, sub-
tle yet important differences exist among them. Give this section a read and choose
carefully when deciding on column types for your tables.

String column types
Eight MySQL column types are suitable for storing text strings:

◆ char

◆ varchar

◆ tinytext/tinyblob

◆ text/blob

◆ mediumtext/mediumblob

◆ longtext/longblob

◆ enum

◆ set

Chapter 2: The Structured Query Language for Creating and Altering Tables 29

Using char or varchar
For the most part, there is little practical difference between char and varchar.
Which one you decide to use will depend on which will require more space, the
trailing spaces in a char column or the size byte in varchar. If your field stores
something like last names, you’ll probably want to allow 25 characters, just to be safe.
If you were to use the char column type and someone had the last name Smith, your
column would contain 20 trailing spaces. There’s no need for that; you’re much better
off using varchar and allowing MySQL to track the size of the column. However,
when you want to store passwords of five to seven characters, it would be a waste to
use varchar to track the size of the column. Every time a varchar field is updated,
MySQL has to check the length of the field and change the character that stores the
field length. You’d be better off using char(7).

char
Usage: char(length)

The char column type has a maximum length of 255 characters. This is a fixed-
length type, meaning that the field will be right-padded with spaces when a value
is inserted that has fewer characters than the maximum length of the column. So if
a column has been defined as char(10) and you want to store the value happy,
MySQL will actually store happy and then five spaces. The spaces are removed from
the result when the value is retrieved from the table. Values longer than the column
width are truncated.

varchar
Usage: varchar(length)

This type is nearly identical to char and is used in many of the same places. It
also has a maximum length of 255 characters. The difference is that varchar is a
variable-length column type, meaning that values will not be padded with spaces.
Instead MySQL will add one character to each varchar field to store the length of
the field.

MySQL removes spaces from the end of strings in varchar fields, but this behav-
ior might change in future releases of the language.

If you define a column as varchar with a column length of less than four,

MySQL will automatically change the column to the char type. Similarly, if

you try to mix chars and varchars with a column length of more than four,

they all become varchars.

30 Part I: Working with MySQL

tinytext/tinyblob
Usage: tinytext/tinyblob

These are the first of the four binary (or blob) column types. You can use
these columns to store both large strings and binary objects. Notice that we have
paired a text and a blob column here and in the following three listings. The only
difference between the paired items is the way in which MySQL will sort and com-
pare the values stored in the columns. For blob-column types (blob, tinyblob
mediumblob, largeblob), MySQL will perform case-sensitive comparisons. For
text-column types (tinytext, text, mediumtext, largetext), MySQL will perform
case-insensitive comparisons.

For example, if you were to make a table with the following create statement:

create table blob_test
(

blob_column text
);

and then insert a row with the following data into the table:

insert into blob_test (blob_column) values (‘THIS IS A STRING FOR MY BLOB’);

MySQL would run case-insensitive comparisons. Therefore, the following select
statement would return the inserted row:

mysql> select * from blob_test where blob_column like ‘this%’;
+---------------------------------+
| blob_column |
+---------------------------------+
| THIS IS A STRING FOR MY BLOB |
+---------------------------------+

If, however, the column were declared as a blob:

create table blob_test2
(

blob_column blob
);

and the same data were inserted, the previous select statement would not
match the row.

Chapter 2: The Structured Query Language for Creating and Altering Tables 31

All of the statements used in this example will be explained in the remain-

der of Chapter 2 and in Chapter 3.

All of these types (tinytext/tinyblob, text/blob, mediumtext/mediumblob,
and largetext/largeblob) are variable column types, similar to varchar. They
differ only in the size of the string they can contain. The tinytext/tinyblob
type has a maximum length of 255, so in fact it serves the same purpose as
varchar(255). An index can be created for an entire tinytext column, but remem-
ber that tinytext and tinyblob fields preserve trailing whitespace characters.

text/blob
Usage: text/blob

The text/blob type has a maximum length of 65,535 characters.

mediumtext/mediumblob
Usage: mediumtext/mediumblob

The mediumtext/mediumblob type has a maximum length of 16,777,215
characters.

longtext
Usage: longtext/longblob

The longtext type has a maximum length of 4,294,967,295 characters. However,
this column currently is not very useful, as MySQL allows strings of only 16 million
bytes.

enum
Usage: enum (‘value1’, ‘value2’, ‘value3’ ?) [default ‘value’]

With enum, you can limit the potential values of a column to those you specify.
It allows for 65,535 values, though it’s difficult to imagine a situation in which
you’d want to use this column with more than a few potential values. This type is
of use when, for example, you want to allow only values of yes or no. The create
statement that makes use of enum will look like this:

create table my_table (
id int auto_increment primary key,
answer enum (‘yes’, ‘no’) default ‘no’

);

set
Usage: set (‘value1’, ‘value2’, ‘value3’ ?) [default ‘value’]

32 Part I: Working with MySQL

This column type defines a superset of values. It allows for zero or more values
from the list you specify to be included in a field. You will not see this column type
used in this book: We do not like to see multiple values in a single field, as it vio-
lates very basic rules of database design. (Reread Chapter 1 if you don’t know what
we mean by this.) You can see an example of where set makes sense in the MySQL
grant tables, which are discussed in Appendix E.

Bear in mind that set columns can yield big savings in storage space and

improvements in performance as databases get bigger. Suppose you have

20,000,000,000 rows and you need to store the state of eight binary

switches for each row. To normalize this out would require a bigint and a

tinyint for each switch. Even without indexes you are looking at about

185GB for the table. Using a set column, you would require only 37.25GB for

this problem. However, this isn’t something you’ll see in this book.

Numeric column types
MySQL provides you with seven column types suitable for storing numeric
values. Note that the following are synonyms: int and integer; double, double
precision, and real; and decimal and numeric.

◆ int/integer

◆ tinyint

◆ mediumint

◆ bigint

◆ float

◆ double/double precision/real

◆ decimal/numeric

Be aware that real is synonymous with float when running in ANSI mode.

For all numeric types the maximum display size is 255. For most numeric

types you will have the option to zerofill a column — to left-pad it with zeros.

For example, if you have an int column that has a display size of 10 and you

insert a value of 25 into this column, MySQL will store and display

0000000025.The numeric column types may also be defined as signed or

unsigned.signed is the default definition.

Chapter 2: The Structured Query Language for Creating and Altering Tables 33

int/integer
Usage: int(display size) [unsigned] [zerofill]

If you use the unsigned flag, this column type can store integers from 0 to
4,294,967,295. If you use the signed flag, the range is from -2,147,483,648 to
2,147,483,647. int will often be used with auto_increment to define the primary
key of a table:

create table my_table (
table_id int unsigned auto_increment primary key,
next_column text

);

Note that we’ve used an unsigned column because an auto_increment column
has no need for negative values.

tinyint
Usage: tinyint(display size) [unsigned] [zerofill]

If unsigned, tinyint stores integers between 0 and 255. If signed, the range is
from -128 to 127.

mediumint
Usage: mediumint(display size) [unsigned] [zerofill]

If you use the unsigned flag, mediumint stores integers between -8,388,608 and
8,388,607. If you use the signed flag, the range is from 0 to 1677215.

bigint
Usage: bigint(display size) [unsigned] [zerofill]

If you use the signed flag, bigint stores integers between -9,223,372,036,854,
775,808 and 9,223,372,036,854,775,807. If you use the unsigned flag, the range is
from 0 to 18,446,744,073,709,551,615.

float
Float has two distinct usages.

◆ Usage: float(precision) [zerofill]

In this usage, float stores a floating-point number and cannot be
unsigned. The precision attribute can be ≤ 24 for a single-precision
floating-point number, and between 25 and 53 for a double-precision
floating-point number.

◆ Usage: float[(M,D)] [zerofill]

This is a small (single-precision) floating-point number and cannot be
unsigned. Allowable values are -3.402823466E+38 to -1.175494351E-38,
zero, and 1.175494351E-38 to 3.402823466E+38. M is the display width
and D is the number of decimals. If the float attribute is used without an

34 Part I: Working with MySQL

argument or with an argument of ≤ 24, the column will store a single-
precision floating-point number.

double/double precision/real
Usage: double[(M,D)] [zerofill]

This column stores a double-precision floating-point number and cannot be
unsigned. Allowable values are -1.7976931348623157E+308 to -2.2250738585072
014E-308, zero, and 2.2250738585072014E-308 to 1.7976931348623157E+308. M
is the display width and D is the number of decimals.

decimal
Usage: decimal[(M[,D])] [zerofill]

Numbers in a decimal column are stored as characters. Each number is stored as a
string, with one character for each digit of the value. M is the display width, and D
is the number of decimals. If M is left out, it’s set to 10. If D is 0, values will have no
decimal point. The maximum range of decimal values is the same as for double.
Remember, though, that decimal, like all real types, can cause rounding errors.

Date and time types
MySQL provides you with five column types suitable for storing dates and times:

◆ date

◆ datetime

◆ timestamp

◆ time

◆ year

MySQL date and time types are flexible, accepting either strings or numbers as
part of insert statements. Additionally, MySQL is pretty good at interpreting dates
that you give it. For instance, if you create this table:

create table date_test(
id int unsigned auto_increment primary key,
the_date date

);

the following insert statements are all interpreted correctly by MySQL:

insert into date_test (a_date) values (‘00-06-01’);
insert into date_test (a_date) values (‘2000-06-01’);
insert into date_test (a_date) values (‘20000601’);
insert into test6 (a_date) values (000601);

Chapter 2: The Structured Query Language for Creating and Altering Tables 35

MySQL prefers to receive dates as strings, so 000601 is a better choice than

a similar integer. Using strings for date values may save you from encounter-

ing some errors down the road.

Extracting information from date and time columns can be a challenge. MySQL
provides many functions that help manipulate these columns.

date
Usage: date

The date column type stores values in the format YYYY-MM-DD. It will allow val-
ues between 1000-01-01 and 9999-12-31.

datetime
Usage: datetime [null | not null] [default]

The datetime type stores values in the format YYYY-MM-DD HH:MM:SS. It will
allow values between 1000-01-01 00:00:00 and 9999-12-31 23:59:59.

timestamp
Usage: timestamp(size)

This is a handy column type that will automatically record the time of the most
recent change to a row, whether from an insert or an update. Size can be defined
as any number between 2 and 14. Table 2-3 shows the values stored with each col-
umn size. The default value is 14. Bear in mind that if there are multiple
‘Timestamp’ fields, only the first will be automatically changed. A timestamp field
can later be forced to update by explicitly assigning it to NULL.

TABLE 2-3 timestamp FORMATS

Size Format

2 YY

4 YYMM

6 YYMMDD

8 YYYYMMDD

10 YYMMDDHHMM

12 YYMMDDHHMMSS

14 YYYYMMDDHHMMSS

36 Part I: Working with MySQL

time
Usage: time

This type stores time in the format HH:MM:SS and has a value range from
-838:59:59 to 838:59:59. The reason for the large values is that the time column
type can be used to store the results of mathematical equations involving times.

year
Usage: year[(2|4)]

In these post-Y2K days it’s hard to imagine that you’d want to store your years
in two-digit format, but you can. In two-digit format, allowable dates are those
between 1970 and 2069, inclusive. The digits 70–99 are prefaced by 19, and 01–69
are by 20.

Four-digit–year format allows values from 1901 to 2155.

Creating Indexes
MySQL can create an index on any column. There can be a maximum of 16 indexed
columns for any standard table. (MyISAM tables support 32 indexes by default and
can be made to support 64.) The basic syntax is as follows:

index [index_name] (indexed_column)

Although the index name is optional, you should always name your indexes.

It becomes very important should you want to delete or change your index

using the SQL alter statement. If you don’t specify a name, MySQL will

base the index name on the first column in your index.

Another way to create an index is to declare a column as a primary key. Note
that any auto_increment column must be defined as part of a unique index and is
normally (but not necessarily) the primary key of the table. In the following code,
the id_col column is indexed:

create table my_table (
id_col int unsigned auto_increment primary key,
another_col text

);

Chapter 2: The Structured Query Language for Creating and Altering Tables 37

The primary key can also be declared like other indexes, after the column defin-
itions, as in the following code:

create table my_table (
id_col int unsigned not null auto_increment,
another_col text,
primary key(id_col)

);

Indexes can span more than one row. If a query uses two rows in concert during
a search, you can create an index that covers the two with this statement:

create table mytable(
id_col int unsigned not null,
another_col char(200) not null,
index dual_col_index(id_col, another_col)

);

The preceding index will be used for searches that start on id_col and can
include another_col. Indexes of this kind work from left to right. So this index
will be used for searches that are exclusively on id_col. However, it will not be
used for searches on another_col.

You can also create indexes on only part of a column. For char, varchar, and
blob columns, you can create indexes for the initial portion of a column. Here the
syntax is as follows:

index index_name (column_name(column_length))

For example:

create table my_table(
char_column char (255) not null,
text_column text not null,
index index_on_char (char_column(20)),
index index_on_text (text_column(200))

);

An index can also assure that unique values exist in every row in a table by
using the unique constraint, as follows.

create table my_table(
char_column char (255) not null,
text_column text not null,
unique index index_on_char (char_column)

);

38 Part I: Working with MySQL

Table Types
MySQL offers several table types: MyISAM, BDB, InnoDB, and Heap. The default
table type is MyISAM. The syntax for declaring a table type is as follows:

create table table_name (
column_name column_type column_attributes

)type=table_type

In Chapter 1 we discussed transactions and the importance of that concept to
relational databases and the applications built around relational databases. For a
long time MySQL didn’t support transactions, and this absence was seen by many
as a fatal flaw. A lot of developers wouldn’t go near MySQL because of it.

But that is no longer the case: MySQL does support full ACID transactions (see
Chapter 1 for the definition of ACID). But in order to make use of transactions you
need to use table types that support this feature. The following discussion of the
table types available in MySQL is extremely important. Make sure to read it care-
fully and keep up on changes to MySQL table types by checking the MySQL online
manual semi-regularly. If you have further questions about MySQL table types you
should consult the online manual for the latest information.

MyISAM
On most installations MyISAM is the default MySQL table type. A couple of gener-
ations back it was the only table type available in MySQL. MyISAM tables are
extremely fast and stable; however, they do not support transactions. They only
offer table-level locking of data.

MyISAM tables are optimized for speed in retrieving data with select state-
ments. Because of the optimization and lack of transaction support, MyISAM tables
are best for tables that are going to run select operations far more frequently than
they run update or delete operations.

For example, if you are creating a shopping cart (as we do in Chapter 14) you
likely have a table or two dedicated to the product catalog and other tables dedi-
cated to recording user information and orders. The tables that hold catalog infor-
mation (the items available in your store) probably won’t change all that
frequently — at most a couple of times a day. And if your store is doing well, these
data will be queried frequently, as users browse the items you have available.
MyISAM tables are perfect for tables that serve this purpose. The tables that store
shopping-cart data and record sales information are going to be subject of insert
and update queries far more frequently than they will be subject of select queries.
For these sorts of tables you’re much better off using one of the transactional table
types: InnoDB, Gemini, or BerkeleyDB.

On almost all systems, MyISAM will be the default table type. You’ll be able to
run any valid create statement, and MySQL will create a MyISAM table, even if

Chapter 2: The Structured Query Language for Creating and Altering Tables 39

you don’t include a type attribute in your create statement. If you want to be extra
careful, however, you can include type=myisam in your statement, like so:

create table mytable(
col1 int,
col2 text

) type=myisam;

InnoDB Tables
InnoDB tables provide full ACID transaction support (see Chapter 1 for the defini-
tion of ACID) and row-level locking. Though other transactional table types are
available in MySQL, InnoDB is probably the transactional table that most readers of
this book will decide to use. MySQL AB (the company that maintains MySQL) pack-
ages InnoDB tables with its standard distribution and is working closely with
Innobase (www.innobase.com) to see that these tables work well with MySQL.

If you’re hosting your application at an ISP, you’ll want to make sure that the
host supports InnoDB tables before you write your applications for those tables.
You can check to see that these tables are available by running the following query:
show variables like ‘have%’.

mysql> show variables like ‘have%’;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
have_bdb	NO
have_innodb	YES
have_isam	YES
have_raid	NO
have_symlink	YES
have_openssl	NO
+---------------+-------+
6 rows in set (0.30 sec)

As you can see from the preceding output, the value for have_innodb is YES. If
the value on your or your ISP’s system is NO, InnoDB tables are not available.

To create InnoDB tables add type=innodb to your create statement, as follows:

create table mytable(
col1 int,
col2 text

) type=innodb;

40 Part I: Working with MySQL

In the applications presented in this book, we have chosen to implement

transactions using InnoDB tables. Even if you come to this book with a

strong background in relational databases, you will need to read Chapter 12,

where we discuss InnoDB’s transactional model in detail.

BerkeleyDB
BerkeleyDB tables come from Sleepycat software. This table type provides transac-
tion support but offers only page-level locking. While these tables are reasonably
good, there’s very little reason to use Berkeley tables when InnoDB tables are avail-
able. And at this point InnoDB tables are available to just about everyone.
Sleepycat’s Web site is www.sleepycat.com.

Heap
Heap tables are actually memory-resident hash tables. They are not stored in any
physical location and therefore will disappear in case of a crash or power outage.
But because of their nature, they are blazingly fast. You should use these tables
only for temporary tables — but remember that all users can access heap tables.

The alter table Statement
If you’re not happy with the form of your table, you can modify it with the alter
table statement. Specifically, this statement enables you to rename tables,
columns, and indexes; add or drop columns and indexes; and change the defini-
tions of columns and indexes. It also enables you to change tables from one type to
another (from MyISAM to InnoDB, for example). This statement always starts with
alter table table_name. The rest of the command depends on the action needed,
as described in the following sections.

Changing a table name
The syntax for changing a table name is as follows:

alter table table_name rename new_table_name

To rename a table named users to users_old, you would use the following
command:

alter table users rename users_old;

Chapter 2: The Structured Query Language for Creating and Altering Tables 41

If you have MySQL version 3.23.27 or higher you can make use of the

rename statement.The basic syntax of this statement is as follows:

rename table_name TO new_table_name

Adding columns
When adding a column, include all column definitions expected in the create
statement (column name, type, null|not null, default value, and so on). The basic
syntax is as follows:

alter table table_name add column column_name column_attributes

For example, to add a column to a table named users that stores a cell-phone
number, you could run the following command:

alter table users add column cell_phone varchar(14) not null;

In MySQL you can also specify the location of a column — that is, where in the
listing of columns it should appear (first, last, or before or after a specific column).
Use the word first at the end of your alter statement to place your inserted col-
umn as the first column in the table; use the phrase after column-name to place
the column after a column that already exists, as shown in the following examples.
So if you wanted to put the cell_phone column first in your users table, you
would use the following command:

alter table users add column cell_phone varchar(14) not null first;

If you wanted to place the cell_phone column between the home_phone and
work_phone columns, you would use the following:

alter table users add column cell_phone varchar(14) not null after
home_phone;

Don’t spend a lot of time worrying about the order of your columns within a

table. One of the tenets of database design holds that column order is arbi-

trary. Any time the order of columns retrieved form the database is impor-

tant, you need to specify the column order in your query.

42 Part I: Working with MySQL

Dropping columns
To drop a column, you need only the following command:

alter table table_name drop column column_name

So to drop the cell_phone column, use this:

alter table users drop column cell_phone;

Adding indexes
You can add indexes using the index, unique, and primary key commands in the
same way you would use them in the create statement:

alter table my_table add index index_name (column_name1, column_name2, ?)
alter table my_table add unique index_name(column_name)
alter table my_table add primary key(my_column)

For example, if you wanted to add an index on the email column of the users
table the following would do the trick:

alter table users add index index_on_email (email);

Dropping indexes
Making your indexes go away is easy enough with the drop command:

alter table table_name drop index index_name

To drop the index on the email column, use:

alter table users drop index index_on_email;

Changing column definitions
It is possible to change a column’s name or attributes with either the change or
modify command. To change a column’s name you must also redefine the column’s
attributes. The following will work:

alter table my_table change my_col2 my_col3 int not null;

But this will not:

alter table my_table change my_col2 my_col3;

Chapter 2: The Structured Query Language for Creating and Altering Tables 43

If you wish to change only the column’s attributes, you can use the change com-
mand and make the new column name the same as the old column name. For
example, to change the lname column from a varchar(25) column to a char(25)
column, you can use the following:

alter table users change lname lname char(25);

Or you may prefer the modify command:

alter table users modify lname char(25);

When altering a table, try to get all of your changes into a single alter
statement and separate the different portions with commas. It’s better prac-

tice than, for example, deleting an index in one statement and creating a

new one in another statement. For example, the following statement would

run a single alter command on a table named users that modifies the

column type of lname and adds an index on the email column:

mysql> alter table users
-> modify lname char(25),
-> add index index_on_email(email);

Using the show Command
A series of commands in MySQL enables you examine the databases on your sys-
tem and lets you know what is available in your MySQL installation. Keep these
commands in mind, because they come in handy at times.

show databases
When you start your MySQL command line, you are connected to the MySQL server
but are initially given no indication as to what is available to the server.

shell> mysql -u root;
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 73 to server version: 3.23.39

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

44 Part I: Working with MySQL

That prompt is nice but not especially helpful. Your initial interest is probably in
seeing what databases are available. You can get a list of databases by issuing the
show databases command:

mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| store |
| test |
+----------+
3 rows in set (0.14 sec)

The MySQL installation includes the other two databases (mysql and test) auto-
matically. The mysql database is covered in great detail in Appendix D.

If you want to work with any of these databases in the command-line client,
issue the use command:

mysql> use store;
Database changed

show tables
After you are connected to a specific database, you can view the tables that make
up the database by running the show tables command:

mysql> show tables;
+-----------------+
| Tables_in_store |
+-----------------+
| addresses |
| formats |
| items_for_sale |
| order_items |
| orders |
| places |
| products |
| users |
+-----------------+
8 rows in set (0.01 sec)

Chapter 2: The Structured Query Language for Creating and Altering Tables 45

show columns
You can get specific information about the columns within a table. The syntax of
the command is show columns from table_name. Note that there are two syn-
onyms to show columns: show fields (show fields from table_name) and
describe (describe table_name).

mysql> show columns from users;
+------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+----------------+
user_id	int(11)		PRI	NULL	auto_increment
fname	varchar(25)				
lname	varchar(40)				
email	varchar(60)	YES		NULL	
home_phone	varchar(14)	YES		NULL	
work_phone	varchar(14)	YES		NULL	
fax	varchar(14)	YES		NULL	
+------------+-------------+------+-----+---------+----------------+
7 rows in set (0.12 sec)

The preceding query lists most of what you need to know about this table. The
first column, Field, shows the column name; Type (logically enough) shows the
column type; Null indicates whether or not null values are permitted in the col-
umn; Key shows if an index was created for the column, and if so what kind;
Default shows the default value (if one was indicated in the create statement);
and Extra gives some added information (in the preceding table, you can see that
user_id is an auto_increment column).

show index
There will come times when you will need to examine the indexes on your tables.
You can get a lot of information from the show index command. The following
command lists all indexes on the addresses table:

mysql> SHOW INDEX from addresses \G
*************************** 1. row ***************************

Table: addresses
Non_unique: 0
Key_name: PRIMARY

Seq_in_index: 1
Column_name: address_id
Collation: A

Cardinality: 7
Sub_part: NULL

46 Part I: Working with MySQL

Packed: NULL
Comment:

1 row in set (0.13 sec)

Notice that in the preceding command we used \G to terminate the command.
This lets the MySQL command-line client know that the data are listed in the pre-
ceding format, rather than in the tabular format you’ve seen so far. This kind of
layout, showing the column name, a colon, and then the value, is convenient when
a query result contains more rows than can comfortably fit in a table.

show table status
If you want to get more detailed information on each table, you can run the show
table status command. This command will show you the number of rows in each
table, the time the table was created, and quite a few other interesting tidbits. You
can get the information on all tables in a database at once by simply running show
table status, or you can get the information on a specific table by using a com-
mand like the following (wildcards % and ‘’ are legal):

mysql> show table status like ‘addresses’ \G
*************************** 1. row ***************************

Name: addresses
Type: MyISAM

Row_format: Dynamic
Rows: 7

Avg_row_length: 58
Data_length: 412

Max_data_length: 4294967295
Index_length: 2048

Data_free: 0
Auto_increment: 8

Create_time: 2001-10-25 15:32:08
Update_time: 2001-10-27 08:51:44
Check_time: 2001-11-27 09:45:46

Create_options:
Comment:

1 row in set (0.01 sec)

show create table
Before running an alter command, you may want to know exactly what statement
was used to create the table in the first place. You can get this information using
the show create table command:

mysql> SHOW CREATE TABLE addresses \G

Chapter 2: The Structured Query Language for Creating and Altering Tables 47

*************************** 1. row ***************************
Table: addresses

Create Table: CREATE TABLE `addresses` (
`address_id` int(11) NOT NULL auto_increment,
`user_id` int(11) default NULL,
`place` varchar(25) NOT NULL default ‘’,
`addr_1` varchar(255) NOT NULL default ‘’,
`addr_2` varchar(255) default NULL,
`city` varchar(50) NOT NULL default ‘’,
`state` char(2) NOT NULL default ‘’,
`ZIP` varchar(5) NOT NULL default ‘’,
`country` varchar(5) default NULL,
PRIMARY KEY (`address_id`)

) TYPE=MyISAM
1 row in set (0.00 sec)

GUI Tools for Manipulating MySQL
Tables and Data
So far in this book we’ve shown you how to work with MySQL tables and data
using standard SQL statements. However, the process of creating tables and view-
ing table data can a bit of a drag when you’re using the command-line client.
Happily, a variety of programs are available that will help you create and alter
tables and view table data.

Using phpMyAdmin
phpMyAdmin is probably the most widely used MySQL-administration tool. It’s
written in PHP and can therefore run on any platform on which PHP can run. (And
given the subject of this book, we feel safe in assuming that you’re running a PHP-
capable platform.) Be aware, though, that you have to carefully follow the installa-
tion instructions to prevent security problems.

The first step in working with phpMyAdmin is to grab a copy of the source files.
A version is on the book accompanying this CD, but we recommend getting the lat-
est possible source files. You can get the most recent release from http://www.
phpmyadmin.net/. If you’re working off of a Unix or Mac OS X machine, you’ll
want to get the copy of the source that has a .tar.gz extension; for example,
phpMyAdmin-2.5.1-rc3-php.tar.gz. For Windows, get a copy of the source with
the .zip extension (for example, phpMyAdmin-2.5.1-rc3-php.zip).

You’ll want to copy the folder to your Web server’s root directory. On Apache
installations, this directory is usually called /htdocs. You can then uncompress the
file using the following command:

shell> tar xvzf phpMyAdmin-2.5.1-rc3-php.tar.gz

48 Part I: Working with MySQL

phpMyAdmin will then be available through your Web server via a URL like the fol-
lowing: http://localhost/phpMyAdmin-2.5.1-rc3/

On Windows, you’ll use a zip utility like WinZip or pkzip to unzip the files.
Before you can access the application, you’ll need to make changes to the

config.inc.php file. In most cases, all you’ll need to do is put the appropriate user-
name and password on the following lines:

$cfg[‘Servers’][$i][‘user’] = ‘root’; // MySQL user
$cfg[‘Servers’][$i][‘password’] = ‘mypass’; // MySQL
password

If you’re finding an error that states you don’t have iconv support compiled in,
simply change the following entry in the config.inc.php file to FALSE.

$cfg[‘AllowAnywhereRecoding’] = TRUE

Once you are done with the configuration you should be able to go to the
/index.php page and start using phpMyAdmin.

Using phpMyAdmin is fairly straightforward, and we won’t explain it here. Just
spend some time clicking around and you’ll get a good idea of how it works.
Figures 2-1 and 2-2 show what you can expect from a couple of phpMyAdmin’s
screens.

Figure 2-1: View of a table in phpMyAdmin

Chapter 2: The Structured Query Language for Creating and Altering Tables 49

Figure 2-2: Creating a table in phpMyAdmin

MySQL Control Center
This program is an offering from MySQL AB, the company that does most of the
work on the MySQL server daemon and that maintains mysql.com. The graphical
client, called MySQL Control Center (MySQLCC), has the advantage of working on
a wide variety of systems, including FreeBSD, OpenBSD, Solaris, and Linux. If you
want a graphic administrative client that doesn’t use HTTP, as phpMyAdmin does,
this will be one of your better choices.

To give MySQLCC a spin, download it from www.mysql.com/downloads/ and
follow the installation instructions. Figure 2-3 shows what you can expect
MySQLCC to look like. It includes tools for creating tables, viewing table contents,
and running queries (manually and automatically).

Using MacSQL
The people at Runtime Labs have created a very nice, sophisticated GUI front for
Mac OS X that connects to a variety of SQL Servers, MySQL included. You can get
a copy of this software, called MacSQL, from the rtlabs.com Web site. Runtime
provides a free demo that you can take for a test run.

After you download and install MacSQL, you can start the application by double-
clicking the MacSQL icon. At that point MacSQL will detect that you have MySQL
installed and will offer you a screen like the one shown in Figure 2-4.

50 Part I: Working with MySQL

Figure 2-3: The MySQL Control Center interface

Figure 2-4: The Connections screen for MacSQL

To make a connection to MySQL on the local machine, make sure that the Port
item is blank and that the username, host (localhost), and password are appropriate.
At this point you’ll be presented with a screen, like the one shown in Figure 2-5,
that offers several options.

If you’re using OS X, we recommend that you download the free demo and work
through each of the options on this screen. You’ll find that most anything you want
to do with MySQL you can accomplish with this software. At that point you may
decide that it’s worth the $99 for a version of MacSQL Lite.

Chapter 2: The Structured Query Language for Creating and Altering Tables 51

Figure 2-5: Options for MacSQL

Summary
This chapter discussed what you need to know in order to create and maintain
databases and database tables when working with MySQL. It is possible that you
will never need to commit the details of the create statement to memory, as graph-
ical tools like phpMyAdmin can help you create and alter tables. Still, it is impor-
tant to understand the column types and the purposes of indexes, as a quick and
efficient database will always use the correct data type and will only include
indexes when necessary.

This chapter also introduced you to some of the GUI tools that can be used to
administer a MySQL installation. In the end, most find that using some type of GUI
tool is easier than manually inputting SQL commands for creating and altering
databases and tables. With these highly useful tools, you’ll likely come to the same
conclusion.

52 Part I: Working with MySQL

Chapter 3

The Structured Query
Language for Inserting,
Editing, and Selecting
Data
IN THIS CHAPTER

◆ Using the insert statement

◆ Using the update statement

◆ Using the replace statement

◆ Using the delete statement

◆ Using the basic select statement

◆ Joining tables

NOW THAT YOU KNOW how to make tables, you need to learn how to put data into
them and get data out of them. You need to familiarize yourself with only a few
simple SQL statements in order to get data into tables, and you need only another
couple to edit data once it’s in your tables. Following that, you need to learn the
select statement, which retrieves your data in about as many ways as you can
imagine, either from a single table, or by joining two or more tables together.

The insert Statement
You will use the insert statement to place rows of data into your tables. The basic
form of the SQL insert statement is as follows:

Insert into tablename (column1 [, column2 [, column3 [, ...]]])
values (value1 [, value2 [, value3 [, ...]]])

53

If a column in your table allows null values, you can leave that column out of
the insert statement.

Text strings must be surrounded by single quote marks (‘), or double-quote
marks (‘’) if you’re not running in ANSI mode. For example:

insert into table_name (text_col, int_col) values (‘hello world’, 1)

This can cause a problem because undoubtedly someone is going to want to
insert a contraction into a table and that would confuse your database because it
would interpret the first single quote it sees (after the start of the string) as the end
of the string, and it then wouldn’t know what to do with the remainder of the
string. Therefore you’ll need a way of escaping, or working around, the single quote
character, by preceding it with a backslash (\). The same applies to the backslash
character itself:

insert into mytable (mycolumn) values (‘This is\’nt going to
fail.’);
insert into mytable (mycolumn) values (‘this \\ stores a
backslash’);

It’s worth noting that % and _ need to be escaped only in contexts where wild-
card matching is allowed. You can also escape single quotes by using two consecu-
tive single quote marks (‘’), and double quotes within a double-quoted string by
using two consecutive double quotes (“”).

The following characters are identified in MySQL by their typical escape
sequences:

◆ \n (newline)

◆ \t (tab)

◆ \r (carriage return)

◆ \b (back space)

For the most part, you won’t have to worry about escaping all of these char-

acters while doing your PHP programming. As you’ll see, functions and set-

tings built into PHP handle this automatically. The addslashes() function

and the magic quotes settings in the php.ini (covered in the MySQL docu-

mentation at http://www.mysql.com) are particularly helpful.

54 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 55

In MySQL you can also use the insert statement to add more than one row of
data at a time. All you need to do is include additional sets of values. For example:

insert into table_name (text_col, int_col)
values

(‘hello world’, 1),
(‘hello mars’, 2)

;

This approach has a few significant benefits, including that the database has less
parsing to do and that less data has to be sent to the database server over a net-
work. It’s a matter of reducing overhead.

The update Statement
The SQL update statement is slightly different from the others you have seen so far
in that it makes use of a where clause. A where clause enables you to pick out par-
ticular rows from your table — the rows where these conditions are true. Most often,
the conditions have to do with matching the values of fields in the row to the par-
ticular values you’re looking for. The general syntax is as follows:

update table_name set col_1=value1, col_2=value_2 where col=value

Once again, if you’re inserting a string you’ll need to surround it with single
quotes and escape special characters properly. Keep in mind that the comparisons
in the where portion of the update statement can use any comparison operator (for
example, ‘col = value’, ‘col > value’, and so on).

Often the where clause will be used to identify a single row by its primary key.
In Table 3-1, id is the primary key. (The where clause is discussed in more detail
later in the chapter.)

TABLE 3-1 THE FOLKS TABLE

id Fname lname Salary

1 Don Ho 25,000

2 Don Corleone 800,000

3 Don Juan 32,000

4 Don Johnson 44,500

The following statement would affect only Don Corleone:

update folks set fname=’Vito’ where id=2;

As you can see, it would be risky to run an update statement based on the fname
column, as you could accidentally update every column in this table.

update folks set fname=’Vito’ where fname=’Don’;

You can also use update to give your underpaid employees a raise:

update folks set salary=50000 where salary<50,000;

As of MySQL 4.0, you can also update a table based on data in other tables. This
is an extremely helpful feature, since it enables you to make changes using only
SQL statements that previously would have required a program or script (or some
very dodgy workarounds).

To demonstrate, we add another table (Table 3-2) to the example set, recording
the income brought in by the people in folks:

TABLE 3-2 THE INCOME TABLE

id Income

1 500,000

2 1,500,000

3 250

4 1,250,000

We can use a multi-table update to give the top performers a raise:

update folks, income
set folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;

As you might guess from the syntax, you can update multiple tables with a sin-
gle update statement. You might have good reasons to do that, but be careful — the
results might not be what you expect. The reason is that the order in which

56 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 57

you update columns in the query makes a difference. To illustrate, we add a salary
column to the income table, not something you’d want to do if this were a real
database, by the way:

alter table income add salary numeric(10,2);

Then we update the records in income to fill in the salary with the values from
the folks table:

update income, folks set
income.salary = folks.salary
where income.id = folks.id

;

Now the income table looks like Table 3-3:

TABLE 3-3 THE INCOME TABLE

id Income Salary

1 500,000 50,000

2 1,500,000 880,000

3 250 50,000

4 1,250,000 55,000

Next, we redo the previous query, giving a raise to people who have brought in
an income of at least $1,000,000. This time, we update the salary field in both
tables at the same time:

update folks, income set
folks.salary = folks.salary * 1.1
, income.salary = income.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;

If we run a select on the two tables now, the results (Table 3-4) look reasonable:

select f.id, f.fname, f.lname, i.income, f.salary as folks_salary,
i.salary as income_salary from folks f, income i where f.id = i.id;

TABLE 3-4 RESULTS OF THE UPDATE

id fname lname Income folks_salary income_salary

1 Don Ho 500,000 50,000 50,000

2 Vito Corleone 1,500,000 968,000 968,000

3 Don Juan 250 50,000 50,000

4 Don Johnson 1,250,000 60,500 60,500

However, if we change the query to use the value from the salary column in the
folks table to update both tables, as in the following code, the results are a bit odd
(Table 3-5).

update folks, income set
folks.salary = folks.salary * 1.1
, income.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;

TABLE 3-5 RESULTS OF THE UPDATE

id fname lname Income folks_salary income_salary

1 Don Ho 500,000 50,000 50,000

2 Vito Corleone 1,500,000 968,000 1,064,800

3 Don Juan 250 50,000 50,000

4 Don Johnson 1,250,000 60,500 66,550

What’s happening is that in the first part of the set clause, folks.salary =
folks.salary * 1.1, the salary field is being set to its current value times 1.1;
but in the second part of the set clause, income.salary = folks.salary * 1.1,
the new value of folks.salary is being used. Thus, income.salary ends up being
set to the original value of folks.salary times 1.21 (1.1 twice).

Plus, for even more fun, if we switch the order in which the tables to be updated
are listed, as in the following code, we see “reasonable” results again (Table 3-6).

58 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 59

update income, folks set
income.salary = folks.salary * 1.1
, folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;

TABLE 3-6 RESULTS OF THE UPDATE

id fname lname income folks_salary income_salary

1 Don Ho 500,000 50,000 50,000

2 Vito Corleone 1,500,000 968,000 968,000

3 Don Juan 250 50,000 50,000

4 Don Johnson 1,250,000 60,500 60,500

The tables are updated in the order in which they are listed, and the query runs
as if it were actually two updates in order:

update income, folks set
income.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;
update income, folks set

folks.salary = folks.salary * 1.1
where folks.id = income.id and income.income >= 1000000

;

When you look at it as two queries, the results make sense. We recommend that
you stick to updating a single table at a time for the sake of clarity if nothing else,
unless you have a good reason to do otherwise.

Note that this syntax is not standard ANSI SQL syntax. This matters primarily
for the portablility of your application; it’s a good reason to isolate the code that
actually performs updates.

The delete Statement
The delete statement removes a row or multiple rows from a table. The syntax is
as follows:

delete from table_where where-clause

To remove Don Ho from Table 3-1, you’d run the following statement:

delete from folks where id=1;

You can delete records from one or more tables at a time, based on the data in
those tables as well as others (this capability is as of MySQL 4.0):

delete from table1 [, table2 [, ...]] using table1 [, table2 [,
...]] [, additional_table_1 [, additional_table2 [,...]]] where
where-clause

This is just one of a few supported formats for a multi-table delete state-

ment. We’re using it because it is most similar to the single-table delete,

which means we’re a smidge less likely to get the syntax wrong.

The tables listed in the from clause are the ones from which records are deleted.
Those same tables appear again in the using clause, along with any other tables
you wish to query to determine what records you want to delete.

To illustrate, we can remove the underachievers from the folks table. Tables 3-7
and 3-8 provide the data used in the example again.

TABLE 3-7 THE FOLKS TABLE

id Fname Lname Salary

1 Don Ho 25,000

2 Don Corleone 800,000

3 Don Juan 32,000

4 Don Johnson 44,500

TABLE 3-8 THE INCOME TABLE

id Income

1 500,000

2 1,500,000

60 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 61

id Income

3 250

4 1,250,000

Now we can use the delete statement to remove records from the folks table
for people whose income is too low, as demonstrated in the following code. Table
3-9 displays the results.

delete from folks using folks, income
where folks.id = income.id and income.income < 100000

;

TABLE 3-9 THE FOLKS TABLE

id Fname lname Salary

1 Don Ho 25,000

2 Don Corleone 800,000

4 Don Johnson 44,500

The replace Statement
You won’t find MySQL’s replace statement in other database systems, and it is not
part of the SQL standard. However, it is convenient in places. The replace state-
ment works with a row for which you know what the primary key should be. When
you run the replace statement, MySQL searches for a row with the primary key
indicated in the statement. If a row with the indicated primary key exists, that row
is updated. If not, a new row is inserted. The basic syntax is as follows:

Replace into table_name (col_1, col_2, ?) values (val_1, val_2, ?)

For an example of a situation in which replace would be helpful, imagine you
have a table with two columns, email and full_name, with email as the primary
key. If you want to write a script that gives a user the opportunity to insert and edit
this information, you would have some sort of form with which the user could enter

the data. Then, when the user submits the form, the script would have to go through
some decision logic. Without replace, the logic would be something like this:

examine form data
delete record from database with the submitted primary key value

(this will run with no results if no such record exists)
run insert statement

But because MySQL has the replace statement, you can lose all of this logic and
just run replace. For example:

replace into users (email, full_name) values (‘jon@doe.com’, ‘Jon
Doe’)

Note that you don’t need to use a where clause to identify the row that you are
replacing; MySQL handles this, based on the value of the primary key. (If you use
the replace statement on a table with no defined primary key, MySQL inserts a
new record into the table.)

However, you can use a where clause to identify the source of the new data, and
that can come in very handy. Suppose you want to change the values of a field in
one table to reflect the result of an aggregate query against another table. You can’t
do this with an update statement because group by clauses are not allowed there.
But replace accepts a select statement as its source (just like insert). If the table
you are updating has a unique key (see why they’re so handy?), you’re in gravy.

To illustrate, we add a third table to the set of example tables. Table 3-10 records
donations brought in by each of the fellows:

TABLE 3-10 THE DONATIONS TABLE

Id amount date

1 5000 3/1/2003

1 5000 3/2/2003

1 5000 3/3/2003

2 25000 3/1/2003

2 3000 3/2/2003

2 4000 3/2/2003

2 10000 3/3/2003

3 1000 3/1/2003

62 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 63

Id amount date

3 3.15 3/2/2003

3 25 3/3/2003

4 10000 3/1/2003

4 20000 3/2/2003

We want to be able to update the income field of the income table to the sum of
the donations acquired by each person. As before, we can do this by deleting the
current records in the income table and then creating new ones. Or, we can just use
replace, as in the following code:

replace income (id, income)
select id, sum(amount) from donations group by id

;

Table 3-11 shows the results.

TABLE 3-11 THE INCOME TABLE

Id income salary

1 15000 NULL

2 42000 NULL

3 1028.15 NULL

4 30000 NULL

Notice that we’ve lost the data from our salary column. The trouble is that we
are not allowed to include the table we are replacing into the select statement. To
change some fields and keep others, we have to create a temporary table storing the
current values in income and join it to donations in the replace statement. How
much better that is than a delete and an insert is a matter of taste. Remember,
replace follows the same syntax as insert. There is no where in replace.

The Basic select Statement
When it comes time to take the information from your database and lay it out on
your Web pages, you’ll need to limit the information returned from your tables and
join tables together to get the proper information. So you’ll start with your data-
base, the superset of information, and return a smaller set. In the select statement
you’ll choose columns from one or more tables to assemble a result set. This result
will have columns and rows and thus can be effectively thought of as a table (or a
two-dimensional array, if your mind works that way). This table doesn’t actually
exist in the database, but it helps to think about it this way.

The basic select statement requires you to indicate the table or tables you are
selecting from and the column names you require. If you wish to select all the
columns from a given table, you can substitute an asterisk (*) for the field names.
For example:

select column_1, column_2, column_3 from table_name

or

select * from table_name

Keep in mind that with a select statement you are not actually altering the
tables involved in the query. You are simply retrieving information. From PHP, you
will send the query to MySQL from the mysql_query() function.

There are all sorts of ways you can choose to lay out the information, but at
times you’re going to want a simple HTML table with the column names put in a
header row. The simple PHP code in Listing 3-1 will lay out any SQL query in an
ultra-simple HTML table. It includes a simple form that will enable you to enter a
query. If you don’t understand this code just yet, don’t worry about it; all the PHP
functions will be covered in Chapter 6. Alter the mysql_connect() and
mysql_select_db() functions if you wish to change the database used. I wouldn’t
advise putting this script on a server that is publicly available, as it would open up
a huge security hole.

Listing 3-1: A PHP Script That Converts a SQL Query to an HTML Table

<?php
mysql_connect(“localhost”, “username”, “password”) or

die(“Could not connect to database.”);

mysql_select_db(“test”) or
die(“Cannot select database”);

64 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 65

if(!empty($_GET[“query”])){
$query = stripslashes($_GET[“query”]);

} else {
$query = “SELECT * FROM users”;

}

$result = mysql_query($query) or
die(mysql_error());

$number_cols = mysql_num_fields($result);

echo “Query: $query”,
‘<table border=”1”>’,
‘<tr align=”center”>’;

for ($i=0; $i < $number_cols; ++$i) {
echo ‘<th>’ . mysql_field_name($result, $i) . “</th>\n”;

}
echo “</tr>\n”;

while($row = mysql_fetch_row($result)){
echo “<tr>\n”;
foreach($row as $field){

echo ‘<td>’ . (is_null($field) ? ‘NULL’ : $field) . “</td>\n”;
}
echo “</tr>\n”;

}

echo ‘</table>’;
?>

<form action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>” method=”GET”>
<input type=”text” name=”query” size=”50” value=”<?php echo

$query; ?>”>

<input type=”submit”>

</form>

For the remainder of this chapter you will see how to build on the complexity of
the select statement. To show you things in action, we created a table in MySQL
against which we can run these queries. The create statement in Listing 3-2 makes
a table named users that holds basic personal information.

Listing 3-2: A create Statement for the users Table

CREATE TABLE users (
userid int(10) unsigned NOT NULL auto_increment,
fname varchar(25) NOT NULL,
lname varchar(25) NOT NULL,
addr varchar(255) NOT NULL,
addr2 varchar(255),
city varchar(40) NOT NULL,
state char(2) NOT NULL,
zip varchar(5),
lastchanged timestamp(14),
PRIMARY KEY (userid)

);

To get things started, we loaded up the database with a few rows of information.
The insert statements that load this data are shown in Listing 3-3.

Listing 3-3: insert Statements for the users Table

INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (1,’Jason’,’Greenspan’,’555 5th
St’,’apt 204’,’San Francisco’,’CA’,’94118’,20020626134625);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (2,’Brad’,’Bulger’,’666 6th St’,’apt
17’,’San Francisco’,’CA’,’94116’,20020626134704);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (3,’John’,’Doe’,’279 66th St’,NULL,’New
York’,’NY’,’11100’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (4,’Jane’,’Doe’,’987 67th
St’,NULL,’Windsor’,’MA’,’14102’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (5,’Jean’,’Banks’,’4 Elm
St’,’’,’Eugene’,’OR’,’98712’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (6,’Donny’,’Alphonse’,’25 14th
St’,NULL,’New York’,’NY’,’11104’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (7,’Meghan’,’Garcis’,’44 Maple
Dr’,NULL,’Nashville’,’TN’,’37114’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (8,’Kenny’,’Clark’,’General
Delivery’,NULL,’Washeegan’,’VT’,’10048’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (9,’Danny’,’Briggs’,’8 Palm Way’,’ste
222’,’Miami’,’FL’,NULL,20020627120644);

66 Part I: Working with MySQL

INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (10,’Luke’,’Gnome’,’8 Palm Way’,NULL,’San
Francisco’,’CA’,’94118’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (11,’Alan’,’Paine’,’27 Casa Way’,NULL,’Los
Angeles’,’CA’,’94204’,20020627120644);
INSERT INTO users (userid, fname, lname, addr, addr2, city, state,
zip, lastchanged) VALUES (12,’Jay’,’Grimes’,’718 Field
St’,NULL,’Pierre’,’ND’,’44221’,20020627120644);

When run through the PHP code above, the query select * from users will
return the results shown in Figure 3-1.

Figure 3-1: Results of query using select * from users

The where clause
The where clause limits the rows that are returned from your query. To get a single
row from a table you would a run the query against the primary key. For instance,
to get all the information on Brad you would use this query:

select * from users where userid = 2;

Figure 3-2 shows the results of this query.

Chapter 3: Inserting, Editing, and Selecting Data 67

Figure 3-2: Results of query using select * from users where userid=2;

If you’re doing a comparison to a column that stores a string (char, varchar,
and so on), you will need to surround the string used for comparison in the where
clause with single quotes.

select * from users where city = ‘San Francisco’;

MySQL has several comparison operators that can be used in the where clause.
Table 3-12 lists these operators.

Don’t be confused by the fact that the “equal to” operator is = in MySQL and

== in PHP. Be careful.

You can combine several comparisons with and or or:

select * from users
where userid = 6 or

city = ‘San Francisco’
;
select * from users

68 Part I: Working with MySQL

where state = ‘CA’ and
city = ‘San Francisco’

;

TABLE 3-12 MYSQL COMPARISON OPERATORS

Operator Definition

= Equal to

<> or != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

like Compares a string (discussed in detail later in this chapter)

<=> NULL-safe comparison

It’s important to note that fields with null values cannot be compared with any
of the operators used in Table 3-12. For instance, in the table shown in Figure 3-1,
you might think that the following statement would return every row in the table:

select * from users where zip <> ‘11111’ or state = ‘11111’;

But in fact, row 9 will not be returned by the query. Null values will test neither
true nor false to any of these operators. Instead, to deal with null values, you will
need to make use of the is null or is not null predicates.

To get the previous query to work as we had intended you’d need to augment
your original query, as follows:

select * from users
where zip <> ‘11111’ or

zip = ‘11111’ or
zip is null

;

Or if you want to find all the rows where zip contains any value (except null) you
can use the following:

select * from users where zip is not null;

Chapter 3: Inserting, Editing, and Selecting Data 69

USING distinct
At times, your query will contain duplicate data. For instance, if your goal is to see
all the cities in California, your first instinct might be to run a query like select
city, state from users where state=’CA’. But look at the result returned in
Figure 3-3.

Figure 3-3: Results of query using select city, state from users where state=’CA’

Notice that the first three rows are identical. You could use PHP to sort through
the identical results and return only unique city names in California, but that would
be a fair amount of scripting. You can get what you want directly from the data-
base by using select distinct. When you use distinct, the MySQL engine will
remove rows with identical results. So here the better query is select distinct
city, state from users where state=’CA’, which returns the data in Figure 3-4,
which is exactly what you want.

USING between
You can also choose values within a range by using the between predicate. The
between predicate works for numeric values as well as dates. In the following
query, lastchanged is a timestamp column. If you want to find the people who
signed up on June 26, 2002, you could use this query:

select * from users where lastchanged between 20020626000000 and
20020626235959;

70 Part I: Working with MySQL

Figure 3-4: Results of query using select distinct city, state from users where state=’CA’

This is a shorthand way of saying:

select * from users where lastchanged >= 20020626999999 and
lastchanged <= 20020626335959;

Remember that the default timestamp column type stores dates in the form
YYYYMMDDHHMMSS, so to get all entries for a single day you need to start your range
at midnight (00:00:00) and end it at 11:59:59 p.m. (23:59:59).

You can also use between on text strings. If you wish to list all the last names
that start with the letters A through G, the following query would work. Note that
it will not include names that start with A.

select * from users where lname between ‘a’ and ‘g’;

USING in/not in
The in predicate is helpful if a single column that can be returned has several pos-
sible values. If you want to query the users table to get all the states in New
England, you could write the query like this:

select * from users
where state = ‘RI’ or

state = ‘NH’ or
state = ‘VT’ or

Chapter 3: Inserting, Editing, and Selecting Data 71

state = ‘MA’ or
state = ‘ME’

;

Using in, you can specify a set of possible values and simplify this statement.
The following query achieves the same result:

select * from users
where state in (‘RI’, ‘NH’, ‘VT’, ‘MA’, ‘ME’);

If you want the same effect in reverse you can use the not in predicate. To get
a listing of all people in the table not living in New England, simply throw in the
word not:

select * from users where
state not in (‘RI’, ‘NH’, ‘VT’, ‘MA’, ‘ME’);

USING like
Of course there will be occasions when you are searching for a string, but aren’t
exactly sure what the string looks like. In cases like these you will need to use wild-
card characters. In order to use wildcards, you need the like predicate.

Two wildcard characters are available: the underscore (_) and the percent sign
(%). The underscore stands for a single character; the percent sign represents any
number of characters, including none.

So, for example, if you were looking for someone with the first name of Daniel
or Danny or Dan, you would use the percent sign:

select * from users where fname like ‘Dan%’;

Note that because the percent sign will match on zero characters, the preceding
query matches the name Dan.

However, if for some odd reason you need to find all of the people in your data-
base with four-letter first names beginning with the letter J, you’d construct your
query like this (note that three underscores follow the J):

select * from users where fname like ‘J___’;

The three underscores will match any characters and return names like Jean,
John, and Jack. Jay and Johnny will not be returned.

In MySQL the like comparison is not case-sensitive.This makes it quite dif-

ferent from most SQL implementations.

72 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 73

order by
There is one thing you should always keep in mind when working with relational
databases: The storage of rows in any table is completely arbitrary. In general,
you’ll have no idea of the order in which your database has decided to put the rows
you’ve inserted. When it matters, you can specify the order of rows returned in your
query by tacking order by on the end of it.

The order by command can sort by any column type: alphabetical, chronolog-
ical, or numeric. In addition, you can sort in either ascending or descending order
by placing asc or desc, respectively, after order by. If neither is included, asc is
used by default.

To alphabetize a list of the entries in the table, you probably want to make sure
that the entries were sorted by both the fname and lname columns:

select * from users order by lname, fname;

You can sort by as many columns as you wish, and you can mix the asc and
desc as necessary. The following query isn’t particularly useful, but it is possible:

select * from users order by lname asc, fname desc;

limit
The limit predicate will restrict the number of rows returned from your query. It
enables you to specify both the starting row and the number of rows you want
returned. To get the first five rows from the table, run the following query:

select * from users limit 0,5;

To find the first five rows alphabetically, you can use limit with order by:

select * from users order by lname, fname limit 0,5;

You’ll probably notice that the numbering is like arrays — the first row is row 0.
To get the second five rows of the table, you’d run the following:

select * from users limit 5,5;

The limit predicate is particularly useful in situations where you want to
restrict the display on any one page. You’ll see the use of limit throughout this
book. Even Chapter 8, which describes the first application in this book, uses limit.
It’s worth noting that LIMIT n is the same as LIMIT 0, n and that negative values
are illegal after LIMIT.

group by and aggregate functions
Remember back to when we were talking about using select with distinct and
how that removes rows you don’t need? That may have seemed pretty cool, but it’s
nothing compared to what you can get out of the group by predicate and its asso-
ciated aggregate functions.

Consider this task: You wish to know the number of entries from each state in
the database (for example, six from California, seven from New York, two from
Vermont). If you did a select distinct state from users order by state
query, you would get a listing of each state in the database, but there would be no
way to get the numbers. As MySQL goes through the table to process the query it
simply skips over rows that would return identical values.

However, with group by, MySQL creates a temporary table where it keeps all the
information on the rows and columns fitting your criteria. This allows the engine to
perform some very important tasks on the temporary table. Probably the easiest
way to show what group by can do is by showing one of the aggregate functions.
We’ll start with count().

MySQL may not actually create a temporary table for each group by; how-

ever, the actual inner workings of a group by are pretty complex, and this

is a good way to think about what MySQL is doing.

count()
Once again, the goal of your query is to find out the number of people from each
state in your users table. To do that you will use group by with count().

Remember that when the group by clause is used you can imagine MySQL cre-
ating a temporary table where it assembles like rows. The count() function then
(you guessed it) counts the number of rows in each of the groups. Check out the fol-
lowing query and the result returned in Figure 3-5:

select state, count(*) from users group by state;

Here the asterisk (*) indicates that all rows within the group should be counted. The
count(*) function is also handy for getting the total number of rows in a table.

select count(*) from users;

Within a group by, you can also indicate a specific field that is to be counted.
count will look for the number of non-null values. Take, for example, the table in
Figure 3-6.

74 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 75

Figure 3-5: Results of a query using select state, count(*) from users group by state

Figure 3-6: The users_ages table

If you’re the type that’s really into statistics, you can use this table to figure out
what percentage from each city feels comfortable indicating its age. First, you need
a count of all the entries from each specific city and state; following that you need a
count of all the non-null values in the age field.

select city, state, count(*), count(age) from user_ages
group by state, city;

From the result in Figure 3-7, you can see that Chicagoans are far more forth-
coming than those from the coasts.

Figure 3-7: Results of query using count() function

There will be times, particularly when you’re working with functions, when the
column name returned by the query isn’t what you’d like it to be. For example, in
Figure 3-7 you may wish for a table header a bit more descriptive than count(*).

You can follow any function or column name with the word as and then specify
a name you prefer. as simply designates an alias — an identifier that represents
something else. If you need a column name that is more than one word, surround
the text string with single quotes.

While on the topic of aliases, we’ll also mention that a variety of functions and
operators are available in MySQL (see Appendix J). They range from simple math

76 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 77

functions to more complex operations. The following is some math we’ve thrown in
to clarify the purpose of the query. Notice the use of as for the alias and the way it
affects the display of the query (shown in Figure 3-8).

select city, state, count(*) as ‘Total Rows’,
count(age) as ‘The Willing’,
(count(age)/count(*)*100) as ‘Percent Responding’

from user_ages
group by state, city;

Figure 3-8: Results of query using functions and aliases

You can also use aliases on tables. This will be particularly helpful when you’re
dealing with multiple tables. You can read about this in further detail in the section
“The multi-table join.”

sum()
The sum() function returns the sum of a given column and is almost always used
with a group by clause. For instance, if you are running an application for a non-
profit, you might want to know the total contributions from each state. The table
you’re working with might look like the one in Figure 3-9.

Figure 3-9: Table where using sum() would be helpful

To get the total from each state you’d run the following query:

select state, sum(contribution) from contributions group by state;

min()
The min() function pulls out the lowest value in each grouping. To find the lowest
contribution from any state just make a small change to the previous query:

select state, min(contribution) from contributions group by state;

max()
As you probably guessed, max() will return the highest value in a group:

select state, max(contribution) from contributions group by state;

avg()
avg () returns the average of the group:

select state, sum(contribution) from contributions group by state;

You can throw all these together to create a pretty useful query, as Figure 3-10
and the following query show:

78 Part I: Working with MySQL

select state, sum(contribution) as ‘Total’,
avg(contribution) as ‘Average’,
min(contribution) as ‘Minimum’,
max(contribution) as ‘Maximum’

from contributions
group by state;

Figure 3-10: Using multiple aggregate functions together

group by OPTIONS
Most relational databases require that fields listed in the select clause be used in
the group by predicate. But MySQL gives you a second option: You can group a
subset of the columns listed. For instance, if you want to find out the number of
people in one city and get a look at a sample ZIP code from that city, you could run
the following:

select city, zip, count(*) from users group by city;

The query would return a listing of cities, the number of entries for each city,
and one sample ZIP code. These results are quite different from those from the fol-
lowing query:

select city, zip, count(*) from users group by city, zip;

Chapter 3: Inserting, Editing, and Selecting Data 79

This returns a separate row for each city/ZIP combination and provides a count
for each unique combination.

having
The having predicate restricts the rows displayed by a group by. This predicate is
not the same as the where clause. The where clause actually restricts the rows that
are used in the group by, whereas the having clause only prevents their display.

If you need to find the average amount of donations from each state for all those
who contributed more than $100, you could run the following:

select avg(donations), state from contributions where donations> 100;

However, if you want to display average contributions for all the states in which
the average was over $100, you have to use the having clause. Because the having
clause does not restrict rows that go into the group by, the aggregate functions,
like avg()in this case, use all the rows in their calculations.

select avg(contribution) as avg_contrib, state
from contributions
group by state
having avg(contribution)>100;

Joining Tables
If you read Chapter 1, you know that relational databases work so well because
they segment information. Different tables hold information on different topics,
and fields are inserted into the tables to maintain relationships. After you finish the
normalization process, it’s likely that none of your tables will be usable without the
others. That is why you’ll need to join tables in your SQL select statements.

The two-table join (equi-join)
For the sake of continuity, we’re going to reprise a couple of tables first seen in
Chapter 1. Take a look at the familiar tables in Figure 3-11.

If you’re looking to do a mailing to all the people in the contacts table, you are
going to need to join the contacts table to the companies table, because the street
address is in the companies table (and that’s exactly where it should be). The
company_id column in the contacts table creates the relationship between these
tables. And if you join these tables on occasions in which the company_id field in
the contacts table is equal to the company_id field in the contacts table, all the
information will be at your fingertips.

80 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 81

Figure 3-11: Tables in need of a join

Making this join is easy enough in SQL. All the tables to be joined must be listed
in the from portion of the select statement. And the fields on which the join takes
place must be listed in the where portion:

select *
from companies, contacts
where companies.company_id = contacts.company_id;

At those times when a reference to a field name is ambiguous, you need to spec-
ify which table the column comes from by using the syntax table_name.
column_name. You can do this in the where clause in Figure 3-12. If you fail to
indicate the table from which you’re pulling the column in the SQL statements,
MySQL will return an error.

This type of join, in which tables are merged based on quality in a common field,
is extremely common. It is known as an equi-join or inner join. The name “inner
join” will make more sense when you learn about the outer join later in this chapter.

Once you begin performing joins, aliases become convenient. By specifying an
alias in the from clause you can save yourself some typing. In the following code,
t1 is an alias for companies and t2 is an alias for contacts.

select *
from companies t1, contacts t2
where t1.company_ID = t2.company_ID;

The multi-table join
An equi-join can be applied to more than one table. Many of your SQL statements
will join three, four, or more tables. All you’ll need to do is add additional columns
after select, additional tables in the from clause, and the additional join parameters
in the where clause. Take a look at the tables that need multiple joins in Figure 3-13.

companies

company_id
1
2

company_name
Big Co Company
Little Co Company

address
1121 43rd St
4444 44th St

contacts

contact_id
1
2

company_id
1
1

Name
Jay Greenspan
Brad Bulber

Title
Vice President
President

Phone
4155551212
4155552222

Email
1121 43rd St
4444 44th St

3 2 John Doe Lacky 2125556666 4444 44th St

Figure 3-12: A basic join

If you want to find the addresses for all the companies with offices in California
and that have expertise in consulting, you have to join all four of these tables. The
following query gets the job done. Here the where clause contains quite a few tests:
The first two lines of the where clause limit the rows that will be returned to those
companies that match your criteria. The remainder of the where clause takes care of
the joins.

select *
from companies, locations, expertise, companies_expertise
where state = ‘CA’ and

companies_expertise.expertise_ID = 3 and
companies.company_ID = companies_expertise.company_ID and
companies.company_ID = locations.company_ID and
companies_expertise.expertise_ID = expertise.expertise_ID

;

The outer join
The challenges presented by null values have shown themselves repeatedly in this
book. In Chapter 2, we presented Tables 2-1 and 2-2, which we’re re-presenting
here as Tables 3-13 and 3-14.

82 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 83

Figure 3-13: Tables in need of multiple joins

TABLE 3-13 THE CONTACTS TABLE

first_name last_name fantasy_spouse_id

Jay Greenspan 1

Brad Bulger NULL

TABLE 3-14 desired_spouse

fantasy_spouse_id first_name last_name

1 Nicole Kidman

company_id
1
2

name
IBM
Xerox

3 Sun

expertise_id
1
2

area
Hardware
Software

3 Consulting

company_id
1
1

expertise_id
1
2

1 3
2 1
2 3
3 1
3 2

location_id
1
2

company_id
1
2

address
4 My Way, Durham
44 Circle Dr, New York

state
NC
NY

3 1 1 Front St, San Francisco CA
4 2 Park Dr, Palo Alto CA
5 2 48 Times Square, New York NY
6 3 280 South, Sunnyvale CA

Now imagine that you need to get a list of the contacts and their desired spouses.
The equi-join shown in the previous section will not work in this case. Take the fol-
lowing query:

select *
from contacts, desired_spouse
where contacts.fantasy_spouse_id = desired_spouse.fantasy_spouse_id;

Only the first row of the contacts table will be returned. The null value in the
second row ensures that nothing can match the criterion in the where clause. In
cases like this, wherein you need to preserve one table and join the second table
when there are matching values, you can make use of the outer join (also known as
the left outer join), which looks like this:

select *
from contacts
left join desired_spouse
on contacts.fantasy_spouse_id = desired_spouse.fantasy_spouse_id;

This statement says, “I want to keep the entire contacts table, and tack on the
spouses table when these two fields are equal.” The word left in the term left outer
join refers to the fact that when you visualize your database tables, you should
visualize the first table, the one that appears in the from clause, on the left side, and
the joined table on the right.

Depending on the database package you’re using, the syntax of the outer

join may vary. Some databases support left, right, and full (both left and

right) outer joins. MySQL only has the left outer join, but in practice that’s

usually all you need. You can either use the syntax in the previous query or

use left outer join on.

Outer joins will come up frequently out of necessity. Additionally, it is often
good practice to use outer joins even when you feel an inner join will do the trick.
It’s just a matter of being safe: You’d rather not have important rows of data come
up missing because you forgot to account for null values. Throughout the book you
will see occasions when we have used outer joins because we just wanted to be
extra careful.

There may come times when you will need to do more than one outer join. Say,
for instance (and for no particularly good reason), you wanted to store information
regarding spouses’ siblings. You’d add another table listing the siblings, and add a
column to the desired_spouse table, which maintains the relationship. So if you

84 Part I: Working with MySQL

Chapter 3: Inserting, Editing, and Selecting Data 85

were to design a query that maintained everyone in the contacts table and every-
one returned from the spouses table, you’d have to throw in two outer joins:

select *
from contacts
left join desired_spouse on contacts.spouse_id =
desired_spouse.fantasy_spouse_id
left join on siblings desired_spouse.sibling_id =
siblings.sibling_id;

The self join
As bizarre as it may sound, the time will come when you’ll need to join a table to a
copy of itself. You’ll usually run into the need to do this when looking for dupli-
cates in a table. If you had a sneaking suspicion that there was a bigamist in Table
3-15, how would you search out the two people with the same spouse?

TABLE 3-15 THE CONTACTS TABLE

contact_id first_name last_name spouse_id

1 Jason Fullman 1

2 Brad Bulger

3 John James 2

4 Elliot Simms 2

You would need to discover if the value in this spouse_id field was repeated (in
this case, the number 2 appears more than once). You could do a group by, but
then there would be no way of getting the names of the people involved. Using
group by along with the count() function, you could find the occasions on which
one person appears more than once, but it would take a second query to find out
who those people were. With a self join you can do it all in one step. But it needs to
be a carefully considered step.

You might think that the following query would do the trick. Notice that we
again use an alias, so that we have two table names we can address:

select t1.first_name, t1.last_name, t2.first_name, t2.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id;

But this is going to return more rows than we need. Specifically, each name will
match itself, providing duplicates of each returned entry. Given this query, when the
row for Jason is compared to itself, it will test true and be returned in the result.
You can eliminate redundancy here by ensuring that the contact_id field from the
first table is not equal to the contact_id field in the second table:

select t1.first_name, t1.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id
and t1.contact_id != t2.contact_id;

This is good but not perfect. Take the example of Elliot and John. A row will be
returned when Elliot is in t1 and John is in t2; another will be returned when John
is in t1 and Elliot is in t2. The easiest way to address that problem here is to make
use of the numeric primary key. You know one ID will be greater than the other,
and by using that information you can get rid of all duplicates.

select t1.first_name, t1.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id
and t1.countact_id < t2.contact_id;

Unions
Unions allow queries with the same number of columns to be returned in one result
set. For instance, if you have two tables storing user names, you can have all of the
names in one query returned with a statement like this:

select first_name, last_name
from table_1
union
select first_name, last_name
from table_2;

Correlated subqueries
Subqueries are a new feature in MySQL version 4.1. Their addition is welcome, par-
ticularly for developers with Oracle or PostgreSQL familiarity, who have been able
to use them all along.

For those new to the concept, subqueries enable you to define an entire query in
the where clause. For example, if you have a table that stores students and their test
scores, you can easily find all the students with better-than-average test scores:

select first_name, last_name, score
from test_scores
where score > (select avg(score) from test_scores);

86 Part I: Working with MySQL

You can achieve the same effect by running two queries, storing the results of the
first query in program variables or a temporary table, and then using those results in
the second query. In most cases you can work around the absence of subqueries by
running additional queries. You lose some elegance, but the effect is identical.

Summary
You can get through the better part of your life without committing some portions
of SQL to memory. If you are using graphical tools you may not need to learn the
specifics of the create or alter commands. The same cannot be said of the insert,
update, delete, and select statements.

Everything covered in this chapter is really important to your life as an applica-
tions developer. The insert, update, and delete statements are what enable you
to have a database in the first place. They’re what you need to add records, change
records, and remove records. The select statement enables you to efficiently
retrieve and sort information from your databases, and if you understand the intri-
cacies of the select statement you’ll be able to write applications more efficiently
and elegantly. And if you’re able to combine all of those statements with effective
table-joining techniques, you’re well on your way to managing data in MySQL
efficiently.

Chapter 3: Inserting, Editing, and Selecting Data 87

Working with PHP
CHAPTER 4

Getting Started with PHP — Variables

CHAPTER 5
Control Structures

CHAPTER 6
PHP’s Built-in Functions

CHAPTER 7
Writing Organized and Readable Code

Part II

Chapter 4

Getting Started with
PHP — Variables
IN THIS CHAPTER

◆ Assigning variables within PHP scripts

◆ Handling data passed from HTML forms

◆ Working with PHP’s built-in variables, including Apache variables

◆ Testing for and assigning variable types

PHP MAKES WORKING with variables extremely easy. PHP is smart about under-
standing variable types and keeps the syntax to an absolute minimum. Those com-
ing to PHP from a C, Java, or Perl background may find PHP comparatively easy to
deal with, but the ease of syntax can present its own problems.

All variables in PHP start with a dollar sign ($). It doesn’t matter what kind of
variables they are, whether strings, integers, floating-point numbers, or even
arrays. They all look identical in the code. The PHP engine keeps track of the type
of information you are storing.

In general, variables will come from three places: They are either assigned within
a script, passed from an HTML page (often from form input), or are part of your
PHP environment. We’ll talk about each of these in the following sections.

Assigning Simple Variables
Within a Script
PHP does not require explicit variable declaration. All you have to do is assign a
value to a variable and it exists. And as we already mentioned, all variable types
look identical. The following code shows how to assign values of string, integer,
and floating-point (double) types to variables:

$a = “this is a string”; //this is a string
$b = 4; //this is an integer
$c = 4.837; //this is a floating-point number
$d = “2”; //this is another string

91

Notice that the = is the assignment operator. For comparison, you must use two
consecutive equals signs (= =). For example, if($x==1).

If you try to use a variable without having assigned a value to it, your code still
runs — treating the unheard-of variable as having a value of NULL— but PHP issues
a notice (an E_NOTICE level error message) warning you that the variable is unde-
fined. Since it’s best practice to make sure your variables have been initialized with
some value, even if it’s just NULL, this is a good reason to make sure your error
reporting levels are set to display or log all PHP errors, at least during development.

For more information about error reporting, see the Error Handling and

Logging Functions section of the PHP Manual (http://www.php.net/
errorfunc).

Typing is flexible, and PHP is pretty smart about handling changes in types. For
example, given the code you just saw, the following would evaluate as you’d prob-
ably hope:

$e = $b + $d;
echo $e;

PHP would recognize that you want to treat the string in $d as an integer. The
variable $e will be an integer type and will equal 6. In fact, PHP will also evaluate
the following as an integer:

$a = 2;
$b = “2 little piggies”;
$c = $a + $b;

Here, $c will equal 4. If an integer or floating-point number is at the beginning
of a string, PHP can evaluate it as such. Similarly, PHP handles automatic conver-
sion sensibly as well, as seen in the following code:

$f = 2; //$f is an integer
$g = 1.444; // $g is a double (floating-point) type
$f = $f + $g; //$f is now a double type

PHP will also do type conversions when comparing two variables. This is a good
thing, because the most common values for a script, entries submitted from an
HTML form, always come in as strings. Here’s an example:

$a = ‘1.3’;
if ($a == 1.3)
{

92 Part II: Working with PHP

echo “‘$a’ is 1.3\n”;
}
else
{

echo “‘$a’ is not 1.3\n”;
}

The result:

‘1.3’ is 1.3

If you need to make a strict comparison, where the types as well as the values
must match, you can use a triple equal sign (===) operator (or its inverse, !==). This
most commonly arises when you need to distinguish between 0, NULL, FALSE, and
an empty string, since in a normal comparison these will all be treated as equal. The
following code demonstrates:

$a = 0;
if ($a === 0)
{

echo “‘$a’ is 0\n”;
}
else
{

echo “‘$a’ is not 0\n”;
}
if ($a === FALSE)
{

echo “‘$a’ is FALSE\n”;
}
else
{

echo “‘$a’ is not FALSE\n”;
}

The result:

‘0’ is 0
‘0’ is not FALSE

This kind of flexibility is nice, but it can lead to some difficulty. There will be
times when you’re not sure what variable types you are working with. We’ll show
you how to deal with these circumstances in the section “Testing Variables” later in
this chapter.

Chapter 4: Getting Started with PHP — Variables 93

Delimiting strings
In the preceding code, all the strings were surrounded by double quotes. You can
also delimit strings in PHP in two other ways. If you surround your strings with
double quotes, variables within the string will be expanded. For instance,

$my_name = “Jay”;
$phrase = “Hello, my name is $my_name”;
echo $phrase;

will print “Hello, my name is Jay”. But if you want to include any of the follow-
ing characters within your string, they must be escaped with backslashes:

◆ Double quotes (“)

◆ Backslash (\)

◆ Dollar sign ($)

For example, to print an opening form tag using double quotes you would have
to do the following:

echo “<form action=\”mypage.php\” method=\”get\”>”;

You can also surround strings with single quotes (‘). If a string is within single
quotes, variables will not be expanded. So this code —

$my_name = “Jay”;
echo ‘Hello, my name is $my_name’;

— will print “Hello, my name is $my_name”. The only characters that need to be
escaped within single quotes are single quotes and backslashes.

The flip side of this is that variable references will not be expanded inside single
quotes. If we repeat the first example in this section with single quotes:

$my_name = ‘Jay’;
$phrase = ‘Hello, my name is $my_name’;
echo $phrase;

PHP prints out “Hello, my name is $my_name”.
Since PHP knows that it does not have to parse a single-quoted string for vari-

able references, it’s marginally faster to use single-quotes to delimit constant val-
ues in your code. In recent releases, however, the performance difference between
the two styles has shrunk to insignificance. So it’s a matter of your personal prefer-
ence, and of which style is most convenient for what you’re trying to do.

94 Part II: Working with PHP

Finally, you can also make use of heredoc syntax to delimit strings. The heredoc
syntax can be thought of as a hybrid of the single- and double-quote styles that
can be convenient in many circumstances. Heredoc text is delimited at the start of
the string with three less-than signs (<<<) and an identifier. An identifier must con-
tain only numbers, letters, and underscores and begin with either a letter or an
underscore; in the book we use the identifiers EOQ and EOT. The text is terminated
with the same identifier followed by a semicolon (;), on the left margin of the code.
This is important to remember — heredoc terminators must not be indented, and the
terminator and semicolon must be the only characters on the line, with no spaces
before or after the semicolon. In the following code, $my_string is a string prop-
erly delimited using heredoc syntax.

$my_string = <<<EOQ
My string is in here.
EOQ;

If you use heredoc syntax, variables are expanded and double quotes do not
need to be escaped. We make frequent use of the heredoc syntax when working
with form elements, as is the case here:

$element = <<<EOQ
<textarea name=”$name” cols=”$cols” rows=”$rows”
wrap=”$wrap”>$value</textarea>
EOQ;

In a case like this we don’t need to litter the string with backslashes, and we still
get the convenience of having variables expanded within the string.

Note that when using heredoc syntax your file format should match the operat-
ing system it runs on. PHP is expecting a newline character as defined by the oper-
ating system to be the last character before the beginning of the heredoc terminator,
and for the terminator and a semicolon to be the only characters on their line. It
will produce an error if it is not. Unix-based operating systems (which includes Mac
OS X) use a newline character (\n) to terminate lines, while classic Mac (OS 9 and
earlier) files use a carriage return (\r), and DOS and Windows files use both (\n\r).
Editing your files on one operating system and running them on a different one can
cause difficult-to-diagnose errors. Most text editors enable you to save as a Unix
file type, and if you are running your scripts on a Unix server, choosing that option
saves you a lot of trouble.

If you want to reference an element in an associative array, an object prop-

erty, or make any other kind of variable reference that could be interpreted

ambiguously, you should enclose the variable in curly braces, like so:

$array = array (“fname”=>”jay”, “lname”=>”greenspan”);
$fields = <<<EOQ

Chapter 4: Getting Started with PHP — Variables 95

The value in array of ‘fname’ is {$array[‘fname’]}
EOQ;
foreach ($array as $key => $value)
{

$fields .= <<<EOQ
[‘’]<input type=”text” name=”{$key}_value”
value=”$value”>
EOQ;
}

Assigning arrays within a script
Arrays are variables that contain multiple values. For example, a simple array might
store the months of the year. To assign this array, you could use the following:

$months = array(“January”, “February”, “March”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”);

This array has 12 elements, and you can address them by their order in the array,
starting with 0. So the command echo $months[0] would print “January” and
echo $months[11] would print “December”. To print out all the values within an
array, you could get the length of the array and then set up a loop, as follows:

$months = array(“January”, “February”, “March”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”);
for ($i=0, $mcount=count($months); $i<$mcount; $i++)
{
echo $months[$i] . “
\n” ;

}

The for loop is explained in Chapter 5.

You can also assign values to arrays with a simple assignment operator. The fol-
lowing would work:

$dogs = array();
$dogs[0] = “shepherd”;
$dogs[1] = “poodle”;

96 Part II: Working with PHP

If you don’t specify an index value, the value will be tacked onto the end of the
array. The following line would assign “retriever” to $dogs[2].

$dogs[] = “retriever”;

A variety of functions work with arrays. Many of these are covered in

Chapter 6.

Like many programming languages, PHP makes use of associative arrays. If you
are new to the concept, elements in associative arrays have keys that reference indi-
vidual elements. (In fact, all array values have keys. The difference with an associa-
tive array is that the keys are meaningful and can be strings as well as integers,
whereas in a simple list array, they represent only the position of the value in the
array.) Keys are particularly important when you’re dealing with databases. When
you fetch rows from your database query you will usually refer to the elements by
their keys.

You can assign an associative array by using keys. Here, first_name,
last_name, and email are the keys:

$person = array (
“first_name” => “Jay”,
“last_name” => “Greenspan”,
“email” => “jgreen_1@yahoo.com”

);

If you wanted to add to this array, you could assign another value. Notice that
the next line would add an integer to the array, so this array would then contain
four values - three strings and one integer:

$person[‘age’] = 32;

Typically, if you wanted to access both the keys and the values in an associative
array, you would use the list()=each() construct or the foreach() loop. Here are
some examples:

while (list($key, $value) = each($person))
{

echo “key: $key, value = $value
\n”;
}

Chapter 4: Getting Started with PHP — Variables 97

Chapter 5 describes the list()=each() construct in more detail. Basically,
each() pulls the key and value of a single array element; list() takes those val-
ues and assigns them to $key and $value, respectively. This process continues until
each element in the array has been accessed. If you want to go through the array a
second time, you will need to reset the array pointer with reset($person).

If you wanted to get only the value without the key, or if you were using a non-
associative array and wanted to use the list()=each() structure, you would have
to do this:

while (list(, $value) = each($person))
{

echo “value = $value
\n”;
}

Or, if you wanted to get at just the keys, you could do this:

while (list($key) = each($person))
{

echo “key = $key
\n”;
}

You can also cycle through arrays using the foreach() loop. The following will
print out the keys and values for each element of the $person array:

foreach($person as $key=>$value)
{

echo “key = $key; value = $value
\n”;
}

And the following will print out just the values of array elements:

foreach($person as $value)
{

echo “value = $value
\n”;
}

With foreach() there’s no need to reset the array pointer after looping through
the array. It is also appreciably faster than the list()=each() syntax.

Think about PHP arrays this way: All arrays are associative. A couple of pages

back you saw that you can assign a basic array without specifying associa-

tive keys. For example, $myarray= array (“pug”, “poodle”). When

this is done, PHP assigns $myarray consecutive numeric keys starting at 0.

98 Part II: Working with PHP

They behave just like associative keys. You step through them using

list()=each() or foreach(). They make use of the same array func-

tions, many of which are explained in Chapter 6.

Assigning two-dimensional arrays in a script
PHP also supports multidimensional arrays. The most commonly used multidimen-
sional array is the two-dimensional array. Two-dimensional arrays look a lot like
tables. They store information that is based on two keys. For instance, if you
wanted to store information on more than one person, a two-dimensional array
would work well. You would assign an array named $people, which would contain
individual arrays addressing each person:

$people = array (
“jay” => array (

“last_name” => “greenspan”,
“age” => 32

),
“john” => array (

“last_name” => “doe”,
“age” => 52

)
);

Here the $people array contains information on two people, Jay and John. To
access information on any single value, you would need to use both keys. To print
out John’s age, the following two commands would work:

echo $people[‘john’][‘age’]; //prints 52

You could access all of the elements in a two-dimensional array by looping
through both of the array’s dimensions:

foreach ($people as $person => $person_array)
{

echo “What I know about $person
\n”;
foreach ($person_array as $person_attribute => $value)
{

echo “$person_attribute = $value
\n”;
}

}

Chapter 4: Getting Started with PHP — Variables 99

Accessing Variables Passed
from the Browser
The whole point of using PHP, or any other middleware package for that matter, is
to deliver customized information based on user preferences and needs. Often, the
information will come via HTML forms. But information can come from other
places, including HTML anchors, cookies, and sessions.

HTML forms variables
One of the most common ways in which variable information is delivered is
through HTML forms.

Appendix B presents detailed information on creating HTML forms. Refer to

that appendix before you read this section if you are unfamiliar with this

topic.

For each of your form elements you have to assign name and value attributes
(name and value are settings defined in HTML code). When the form is submitted,
the name/value pairs are passed to PHP. They can be passed to PHP by either the
GET or POST methods, depending on what you chose in the METHOD attribute of your
<FORM> tag (the default is GET).

In older versions of PHP (prior to PHP 4.2), once a form was submitted, the form
elements automatically become global variables in PHP. (Global variables and vari-
able scope are discussed in Chapter 7). Consider the following simple HTML form:

<form action=”mypage.php” method=”POST”>
<input type=text name=email>
<input type=text name=first_name>
<input type=submit name=submit value=add>

</form>

Once the user hit the Submit button, variables named $email, $first_name, and
$submit were made available in the called PHP page. Listing 4-1 is a brief example
of how scripts were usually written for PHP versions 4.1 and lower. (Assume the
name of the page is mypage.php.)

Listing 4-1: Common Variable Use in Older Versions of PHP

<?php
if (isset($submit) && $submit==”yes”)
{

echo “thank you for submitting your form.”;

100 Part II: Working with PHP

}
else
{

?>
<form action=”mypage.php” method=”POST”>

<input type=”text” name=”email”>
<input type=”text” name=”first_name”>
<input type=”submit” name=”submit” value=”yes”>

</form>

<?php
}
?>

On his or her first visit to this page the user would be presented with a form.
Once the form was submitted and the page had recalled itself with the new variable
information, only the “thank you” message would appear. There was, however, a
major problem with the global variables that came from forms. Even the code in
Listing 4-1, which is about as simple as scripting gets, demonstrates this problem.

The user-entered variables should come to the PHP script by way of the POST
method — not by way of GET. However, if a user wanted to see the “thank you” mes-
sage without entering anything into the form elements, he or she could simply tack
some information onto the URL typed into the browser. For example:

http://localhost/mypage.php?submit=yes

In older versions of PHP, when the PHP engine encountered the submit variable in
the querystring, it would automatically register the variable as a global and thus the
test at the beginning of this script—if (isset($submit) && $submit==”yes”)—
would be true.

Many programmers wrote applications that took advantage of the global vari-
ables and unintentionally made their scripts vulnerable to attacks. We won’t get into
the details of the exploits here; it’s enough to mention that, even if you have the
opportunity, you should not be using global variables that come from form ele-
ments. Instead you should use a series of arrays that contain variables sent via HTTP.

In PHP 4.2 and higher you can opt to have GET, POST, session, and cookie

variables available as globals by altering the register_globals item in

the php.ini file. Current versions of PHP default to a setting of off, meaning

that HTTP variables will not be available as globals. In most circumstances

you should keep this setting the way it is. However, if you are running older

scripts that you don’t have time to change, you may have to alter this setting.

Chapter 4: Getting Started with PHP — Variables 101

In PHP versions 4.2 or later, you should be getting your form data via the super-
global (so called because they are globally available without ever having to be
declared as global) array variables $_POST and $_GET, depending on the method
used in your form. You can also use the $_REQUEST variable, which is a combina-
tion of GET, POST, and cookie values.

To add a bit more security to the previous listing, you could rewrite Listing 4-1
to look like Listing 4-2:

Listing 4-2: Simple Script That Does Not Use Globals

if (isset($_POST[‘submit’]) && $_POST[‘submit’]==”yes”)
{

echo “thank you for submitting your form.”;
}
else
{
?>
<form action=”test1.php” method=”POST”>

<input type=”text” name=”email”>
<input type=”text” name=”first_name”>
<input type=”submit” name=”submit” value=”yes”>

</form>

<?php
}

You can access any individual element as you would an element in any associa-
tive array ($_POST [‘email’]). Or you can loop through all the contents of an
array as follows:

foreach ($_POST as $key => $value)
{

echo “variable = $key value = $value
”;
}

Passing arrays
Sometimes passing scalar variables won’t be enough, and you’ll need to pass arrays
from your HTML page to your PHP script. This will come up when the user can
choose one or more form elements on a page. Take, for example, multiple select
boxes, which enable users to pass one or more items from a number of items. The
form element is made with the HTML in the following code example. The multiple
attribute indicates that the user can choose more than one element, as shown in
Figure 4-1. To choose more than one element on the PC, hold down the Ctrl key
while selecting additional values. On the Mac, use the Apple key. Gnome users can
select and unselect individual elements with a click.

102 Part II: Working with PHP

<form action=”mypage.php” method=”POST”>
<select name=”j_names[]” size=”4” multiple>

<option value=”2”>John
<option value=”3”>Jay
<option value=”4”>Jackie
<option value=”5”>Jordan
<option value=”6”>Julia

</select>
<input type=”submit” value=”submit”>

</form>

Figure 4-1: Multiple select boxes

Notice that in the select name attribute we’ve added opening and closing brack-
ets ([]). This tells PHP to expect an array. If we didn’t include the brackets, two val-
ues might end up fighting for the same variable name, and that’s no good at all.

Once it has been submitted you can address this array like any other two-
dimensional array:

if (is_array($_POST[‘j_names’]))
{

echo “the select values are:

”;

foreach ($_POST[‘j_names’] as $value) {

Chapter 4: Getting Started with PHP — Variables 103

echo $value . “
\n”;
}

}

Passing arrays can also be useful when you want to present a series of check-
boxes that the user may or may not check before pressing the Submit button.
Chapter 8 contains a code example for a page that enables the program’s adminis-
trator to use checkboxes to select which entries should be deleted. Figure 4-2 shows
a sample of this type of page. If you were to assign a different name to each check-
box, you would have to check each one individually. With arrays, you can write a
three-line loop to check them all.

Figure 4-2: Series of checkboxes

Arrays passed from forms can also have associative keys, which can be multidi-
mensional. The name of the form element should take the form name=
”array_name[element_name]”. Or, for a multidimensional array, name=”array_
name[element_name][subelement_name]”.

Cookies
Cookies are small pieces of information that are stored by a user’s Web browser.
Some are kept in memory and discarded after a short time, and others are written to
the user’s hard drive for long-term use. Once a Web browser has accepted a cookie

104 Part II: Working with PHP

from a server, it resends the same cookie to its owner(s) on each HTTP request until
the cookie expires or is deleted. Cookies provide the only way to keep track of users
over the course of several visits. Remember that the Web is a stateless environment.
Your Web server really has no idea who is requesting a page. Cookies help you keep
track of users as they move around your site.

When they exist, cookies become part of the HTTP request sent to the Web
server. But first you’ll need to set a cookie. The PHP developers have made this, like
everything else in PHP, exceedingly simple. Use the setcookie() function. This
function takes the following arguments:

setcookie(name [, value [, time_to_expire [, path [, domain [,
security setting]]]]]);

We will discuss this function in more detail in Chapter 6, but for now, suffice it
to say that the following statement —

setcookie(“mycookie”,
“my_id”,time()+(60*60*24*30),”/”,”.mydomain.com”, 0)

— would set a cookie with the following parameters:

◆ Stores a variable named my_cookie

◆ The value of mycookie is “my_id”.

◆ The cookie will expire 30 days from the time it is set (current time plus
the number of seconds in 30 days).

◆ The cookie will be available to every page in the domain. (You could
restrict it to a specific path within a domain by including a path.)

◆ The cookie will be available to every site with a mydomain.com address.

◆ There are no special security settings.

Once the cookie is set, you can retrieve cookie values through the $_COOKIE
superglobal array variable. The value of the cookie set with the previous
setcookie() function is available as $_COOKIE[‘mycookie’].

You can also set cookies that are accessible as arrays:

setcookie(“mycookie[first]”,
“dddd”,time()+2592000,”/”,”192.168.1.1”, 0);
setcookie(“mycookie[second]”,
“my_second_id”,time()+2592000,”/”,”192.168.1.1”, 0);

These two variables would be accessible as associative arrays within the
$_COOKIE array.

Chapter 4: Getting Started with PHP — Variables 105

The preceding code works fine on Internet Explorer 5 on the PC. However, it

might not work on other browsers. In any case, you are probably better off

avoiding situations that require arrays within cookies.

Sessions
PHP, like ASP and ColdFusion, natively supports sessions, only it does a much bet-
ter job. What’s a session? Basically, it’s another means of maintaining state between
pages. Your script declares that a session should start by accessing the $_SESSION
superglobal variable (you can also use the older-style session_start() function).
At that point PHP registers a unique session ID, and usually that ID is sent to the
user via a cookie. PHP then creates a corresponding file on the server that can then
keep track of any number of variables. The file has the same name as the session ID.

Once the session is created, you can register any number of variables. The values
of these variables are kept in the file on the server. As long as the session cookie
lives, these variables will be available to any page within the same domain that
wishes to access them. This setup is much more convenient than sending variables
from page to page through hidden form elements or bloated cookies.

Of course, it is possible that some users will not allow cookies. For this reason,
PHP enables you to track the session ID through the querystring. You can do this
manually by appending the session ID to the querystring, or by changing the
session.use_cookies value in your php.ini file to equal 1.

The constant SID is predefined as “session-name=session-ID”. To add it to the
querystring manually, use <?php echo SID; ?>. This automatically prints out a
string like this:

PHPSESSID=07d696c4fd787cd6c78b734fb4855520

Adding this value to a link will cause PHPSESSID to be passed via the query-
string. Use something like this:

<a href=”mypage.php?<?php echo SID; ?>”>click to page

The following script will register a session variable named my_var, and will
assign it a value of “hello world”.

<?
$_SESSION[‘my_var’] = “hello world”;
?>

On subsequent pages, you are able to access this by simply referring to
$_SESSION[‘my_var’].

106 Part II: Working with PHP

It can take a little work with if statements to make your session variables prop-
erly accessible. Look at the short script in Listing 4-3 for an example.

Listing 4-3: Code Using Sessions

<?php

//check to see if $_SESSION[‘your name’] contains anything
if (!empty($_SESSION[‘your_name’]))
{

//this portion will run the first time to
//this page.
echo “I already know your name,” , $_SESSION[‘your_name’];

}
else
{

if (empty($_POST[‘submit’]))
{ echo “<form name=myform method=post action=$PHP_SELF>

<input type=text name=first_name> first name

<input type=text name=last_name> last name

<input type=submit name=submit value=submit>
</form>”;

}
else
{

//if the form has been submitted, this portion will
//run and make an assignment to $_SESSION[‘your_name’].
$_SESSION[‘your_name’] = “$first_name $last_name”;
echo “Thank you, {$_SESSION[‘your_name’]}”;

}
}
?>

After running this code, hit Refresh on your browser. You will see that the script
remembers who you are.

If your script sends anything to the browser prior to setting a cookie — even

so much as a blank line at the end of an included file — you will get error

messages. So if you are setting cookies manually, or using cookies to store

your session ID, you should make sure that either that part of your code is at

the very top of your script file or use the output-buffering functions to keep

your script from sending anything to the browser until you’re ready.

Chapter 4: Getting Started with PHP — Variables 107

Using Built-In Variables
A variety of variables are set by your server and PHP environment. You can find a
complete list of these variables by running phpinfo(). If you haven’t done it yet,
go to your keyboard, run the following script:

<?php
phpinfo();
?>

This script delivers a page listing these variables.

It’s a good idea to delete this page when you’re done with it. No need to

give crackers any more information than absolutely necessary.

You can use this variety of variables in a variety of ways. We’ll take a look at
some of these variables now, and show you where and when you might use them.
Some variables come from the PHP engine, while others originate from your Web
server.

PHP variables
Many of the most useful values supplied by PHP are available as keys of the
$_SERVER superglobal.

$_SERVER[‘PHP_SELF’]
The relative path of the script being run. This is very helpful when a form is both
presented and processed in the same PHP page.

<?
if(isset($_POST[‘submit’]))
{
//do some form processing here
echo “thanks for the submission”;

} else {
?>
<form name=”myform” method=”POST” action=”<?php echo $PHP_SELF; ?>>

<input type=”text” name=”first_name”> first name

<input type=”text” name=”last_name”> last name

<input type=”submit name=”submit” value=”submit”>

</form>

108 Part II: Working with PHP

<?
}
?>

Keep in mind that PHP_SELF always refers to the name of the script being exe-
cuted in the URL. So in an include file, PHP_SELF will not refer to the file that has
been included; it will refer to the script being run.

It’s worth noting that PHP_SELF behaves strangely when PHP is run on Windows
or as a CGI module. Make sure to look at phpinfo() to see the value of $PHP_SELF
on your system.

$_SERVER[‘HTTP_HOST’]
Returns the domain of the host serving the page.

$_SERVER[‘REMOTE_ADDR’]
Returns the IP address of the host serving the domain.

$_SERVER[‘DOCUMENT_ROOT’]
Returns the path of the document being accessed, relative to the root directory of
the filesystem.

$_SERVER[‘REQUEST_URI’]
Very similar to PHP_SELF, except that querystring information is maintained in this
variable. So if you were visiting http://www.mydomain.com/info/products/
index.php?id=6, $_SERVER[‘REQUEST_URI’] would equal /info/products/
index.php?id=6.

See your phpinfo() page for a full list of PHP variables.

Apache variables
Apache keeps track of dozens of variables. We can’t include a complete list of them
here, as the variables you use will vary depending on your current setup. Here are
some of the ones you might use frequently in your scripts.

As you look at this list and phpinfo(), keep in mind that if you are not getting
what you want out of your Web server variables, you will need to make changes to
your server configuration, not PHP. PHP just passes the information along and can-
not alter these variables. There is also a fair amount of overlap between PHP and
Apache variables. These are also available as keys of the $_SERVER array variable.

Chapter 4: Getting Started with PHP — Variables 109

$_SERVER[‘DOCUMENT_ROOT’]
Returns the full path to the root of your Web server. (For most Apache users this
directory will be something like /path/to/htdocs.) We use this variable throughout
the book to make our applications portable. Take this include statement as an
example:

include(“{$_SERVER[‘DOCUMENT_ROOT’]}/book/functions/charset.php”);

By using the $_SERVER[‘DOCUMENT_ROOT’] variable instead of an absolute path,
we can move the book directory and all its sub-folders to any other Apache server
without worrying that the include statements will break. Keep in mind that if you
are using a Web server other than Apache, $_SERVER[‘DOCUMENT_ROOT’] may not
be available.

If you set the include_path directive in your php.ini file, you will not need

to worry about specifying any path in your include statement — PHP will

look through all the directories you specify and try to find the file you

indicate.

$_SERVER[‘HTTP_REFERER’]
Contains the URL of the page the user viewed prior to the one he or she is currently
viewing. Keep in mind when using $_SERVER[‘HTTP_REFERER’] that not every
page request has a referrer. If the user types the URL into a browser, or gets to your
page via bookmarks, no referrer will be sent. This variable can be used to present
customized information. If you had a relationship with another site and wished to
serve up a special, customized header for only those referred from that domain, you
might use a script like this:

//check if my user was referred from my_partners_domain.com
if(ereg (“http.*my_partners_domain.com.*” ,
$_SERVER[‘HTTP_REFERER’]))
{

include’fancy_header.php’;
}else{

include ‘normal_header.php’;
}

Keep in mind that $_SERVER[‘HTTP_REFERER’] is notoriously unreliable.
Different browsers serve up different values in certain situations. It is also easily
spoofed. So you wouldn’t want to use a script like the preceding to serve any secure
information.

110 Part II: Working with PHP

$_SERVER[‘HTTP_USER_AGENT’]
Anyone who has built a Web page knows how important browser detection is.
Some browsers will choke on fancy JavaScript, and others require very simple text.
The user_agent string is your key to serving the right content to the right people.
A typical user_agent string looks something like this:

Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)

You can then parse this string to get what you are looking for.
You may be interested in PHP’s get_browser() function. Theoretically, this

function will determine the capabilities of your user’s browser so you can find out
if your script can safely serve out, for example, frames or JavaScript. The PHP
manual has instructions for installation and use of get_browser(), but we do not
recommend using it. Why? Using get_browser() you will be told that both
Internet Explorer 5 for the PC and Netscape Navigator 4.01 for the Mac support CSS
(Cascading Style Sheets) and JavaScript. But as anyone with client-side experience
knows, writing DHTML that works on both of these browsers is a major task (and a
major pain). The information you get from get_browser() can lead to a false sense
of security. You’re better off accessing $_SERVER[‘HTTP_USER_AGENT’] and mak-
ing decisions based on the specific browser and platform.

$_SERVER[‘REMOTE_ADDR’]
The IP address of the user that sent the HTTP request. $_SERVER[‘REMOTE_ADDR’]
is easily spoofed and doesn’t necessarily provide information unique to a user. You
might want to use it for tracking, but it should not be used to enforce security. On
some servers — notably the default Apache installation shipped with Mac OS X —
this is available as $_SERVER[‘HTTP_PC_REMOTE_ADDR’] instead.

$_SERVER[‘REMOTE_HOST’]
The host machine sending the request. This has a value only if your server is
configured to do reverse DNS lookups, something that is commonly turned off for
performance reasons. When I dial it up through my ISP (att.net),
$_SERVER[‘REMOTE_HOST’] looks like this: 119.san-francisco-18-19rs.ca.
dial-access.att.net.

$_SERVER[‘SCRIPT_FILENAME’]
Contains the filesystem’s complete path to the file.

Other Web server variables
As mentioned earlier, phpinfo() is your friend. We developed applications for this
book on Unix systems running Apache Web servers. But, as PHP runs on a variety
of operating systems and Web servers and MySQL runs on Windows as well as
Unix, you should be aware of the different variables associated with whatever Web
server and operating system you’re running.

Chapter 4: Getting Started with PHP — Variables 111

You’ll see that the files imported into in our applications via include statements
make use of the DOCUMENT_ROOT Apache variable. If you were to attempt to move
the application files to a server other than Apache on Windows, you would get an
error in the include statements. The better choice when using Microsoft’s Personal
Web Server is the $APPL_PHYSICAL_PATH variable.

Testing Variables
At the start of this chapter, we showed that assigning data to a variable determines
the variable type. The appearance of the variable gives no indication as to what the
variable contains. If you see $var sitting in a script you’ll have no idea if it con-
tains a string, an integer, a floating-point number, or an array. In fact, many times
in your scripts you won’t be sure if the variable contains a value, or even if it exists
at all. For all these reasons, you need to perform tests. The following sections
describe the types of tests you can perform.

isset()
This function tests whether a variable has any value, including an empty string. It
returns a value of either TRUE or FALSE. If the variable has not been initialized or
has been set to NULL, isset() will return FALSE. In code snippets throughout this
chapter we showed the use of isset() to test whether the script was encountering
a submitted form.

If you wish to destroy a variable, use the unset() function.

empty()
The empty() function overlaps somewhat with the isset() function. It returns
TRUE if a variable is not set, is an array with no elements, or has a value of " " (an
empty string), 0, NULL, or FALSE. It is useful for, among other things, processing
form data. If you want to determine if the user has put something in a text field, for
example, you might try something like this:

if ($_POST[“first_name”] == “”)
{
echo “Please enter your first name. It is a required field”;
exit;

}

However, PHP complains that first_name is an undefined index value. That’s
because if you leave a text field on a form blank, nothing is submitted by the form
for that field. So no entry with the field’s name exists in $_POST. But the empty()
function enables you to check for things that aren’t there:

112 Part II: Working with PHP

if (empty($_POST[‘first_name’]))
{
echo “Please enter your first name. It is a required field”;
exit;

}

is_null()
Starting in version 4.2, PHP supports the NULL variable type. Most often you will be
using NULL when examining data returned from a database.

is_int()
This function tests whether a variable is an integer. It has two synonyms: is_
integer() and is_long(). You may need this function to troubleshoot a script
when you’re not sure whether a variable is an integer or a string containing numerals.

$a = “222”;
$b = 22;

Given these two variable assignments, is_int($a) would test FALSE and
is_int($b) would test TRUE.

is_double()
This function tests whether a variable is a floating-point (or double) number. It has
two synonyms: is_float() and is_real().

is_string()
This function tests whether a variable is a text string.

is_array()
This function tests whether a variable is an array. It is used frequently in the course
of this book. A good example can be found in Chapter 6, in the discussion of the
implode() function.

is_bool()
This function tests whether a variable is Boolean (contains either TRUE or FALSE).
Note that the following examples are not Boolean:

$a = “TRUE”;
$b = “FALSE”;

Chapter 4: Getting Started with PHP — Variables 113

In Chapter 6 you will see a variety of functions that return FALSE on failure. In
these, FALSE is a Boolean value.

is_object()
Returns TRUE if the variable is an object. See Chapter 7 for a discussion of objects
and object-oriented programming if you don’t know what an object is.

is_resource()
Returns TRUE if the variable is a resource. An example of a resource variable is the
connection value returned by mysql_connect().

is_scalar()
Returns TRUE if the variable is of any type other than array, object, or resource.

gettype()
This function will tell you the type of variable you have. It will return the expected
values (string, double, integer, array, boolean, or resource), and it can also
return types related to object-oriented programming (object). You can find more
information on PHP object-oriented programming in Chapter 7.

Note that gettype() returns a string. So in the following example, the condi-
tional would test as true and print “Yes”:

$str = “I am a string”;
$type = gettype($str);
if ($type == “string”)
{

echo “Yes”;
}

Changing Variable Types
You can change the type of any variable in three ways.

Type casting
You can change the variable type by placing the name of the variable type you
require in parentheses before the variable name:

$a = 1;
$b = (string) $a;

114 Part II: Working with PHP

echo gettype($a), “
\n”;
echo gettype($b), “
\n”;

This code would print

integer
string

Using this method you can cast a variable as an array, a double, an integer, or,
as in the preceding code, a string. Casting to type object is less reliable.

Using settype()
This function takes two arguments. The first is a variable name. The second speci-
fies the variable type. The advantage of using this function over casting is that
settype() will return a value of FALSE if the conversion fails, while there is no
way to detect a failed casting. This function can take the same types as listed in
type casting.

$a = 1;
settype($a, “string”);

intval(), doubleval(), and stringval()
Finally, if you don’t have enough ways to evaluate variable types, use one of these
functions. They do not actually change the type of the variable, but return a value
of the specified type. So in the following examples, you can be sure $a will be
treated like an integer:

$a = “43”;
$b = (intval($a) * 2);

Variable Variables
PHP includes variable variables, which, in the wrong hands, could be used to write
the most incomprehensible code imaginable. Variable variables enable you to take
the contents of a variable and use them as variable names. Two consecutive dollar
signs let PHP know to take the value of the variable and use it as a variable name.
The following creates a variable name $foo with a value of “bar”:

$a = ‘foo’;
$$a = ‘bar’;

Chapter 4: Getting Started with PHP — Variables 115

In the context of a database application, variable variables might be used to cre-
ate a series of variables against which you compare other variables. In the follow-
ing example, $firstrow is an associative array:

$firstrow = array (“firstname”=>”jay”, “lastname”=>”greenspan”);
foreach ($firstrow as $field => $value)
{

$field = “first_{$field}”;
$$field = $value;

}
echo $first_firstname, “ “, $first_lastname;

When your script runs through the foreach loop, the following variables would
be created and printed:

$first_firstname = “jay”
$first_lastname = “greenspan”

Summary
If you read this chapter attentively (or even if you didn’t) you should have a pretty
good idea of how to work with PHP variables.

PHP does a better job than any scripting language of making variables easy to
access and process. If you want to get a feel for how PHP variables are used, take a
look at Chapter 8, which contains the first application in the book. There, many of
the functions and concepts presented here are put to work. By flipping back and
forth between this chapter and those scripts, you will see how variables are used
and how scripts come together.

One very important point: This chapter did not discuss variable scope, which is
an important topic. See Chapter 7 where we discuss functions, for an explanation
of this topic.

116 Part II: Working with PHP

Chapter 5

Control Structures
IN THIS CHAPTER

◆ Understanding the syntax of if statements

◆ Determining true and false values with PHP

◆ Learning PHP loops

◆ Choosing loops to use in your scripts

CONTROL STRUCTURES ARE the building blocks of programming languages. PHP has
all the control structures needed to make a language work. If you’re familiar with C
or Perl, none of the features we discuss in this chapter should come as much of a
surprise. However, if you’re approaching PHP from a background in VBScript or
Visual Basic, the syntax will probably be different from what you’re used to. (If you
aren’t familiar with functions, you might want to peek ahead to the beginning of
the next chapter for a quick overview — but come right back!) If you find the syn-
tax to be a little heavy at first, stick with it. You might find that the extra brackets
and parentheses actually help you write readable code.

The if Statement
The if statement is pretty much the cornerstone of all programming languages. In
PHP, an if statement typically takes this basic form:

if (condition or set of conditions)
{

actions to perform if condition is true.
}

After the word if is a set of parentheses. Within those parentheses is the single
condition or set of conditions to be tested. If the condition is evaluated as being
true, the code within the curly braces will execute. The following will test true and
print “I’m True!” to a Web page.

117

<?php

$foo = 100;
$bar = 10;

if ($foo > $bar)
{

echo “I’m True!”;
}

?>

This is clear enough. But before we mention the complexities of the if state-
ment, you should know how PHP determines whether a condition is true or false.

Determining true or false in PHP
The next section shows the operators commonly used in if statements. These are
fairly easy to understand. In the preceding code example, 100 is greater than 10, so
($foo > $bar) will test true. No problem. But there’s a bit more to these tests in
PHP.

The words TRUE and FALSE also carry the expected meanings.

if (TRUE)
{

echo “Yup!”; //this will be printed
}
if (FALSE)
{

echo “Nothing doing.”; //this will not be printed
}

But you’re not limited to simple mathematical operators or the words TRUE and
FALSE when you’re testing for a true or false condition. As you can see in Chapter
4, you often test for the existence of a variable using isset() or empty(). These
functions, like many others in PHP, return a value of FALSE if the condition is false,
and a value of TRUE if the condition is true. If used as a simple value, FALSE con-
verts to 0 and TRUE to 1. For example, the following prints out “1”:

$myvar = “I am setting a variable”;
echo isset($myvar), “\n”;

But though FALSE and 0 are equivalent (just as 0 and an empty string are equiv-
alent) and TRUE and 1 are equivalent, they are not the same. You can see this using

118 Part II: Working with PHP

the built-in PHP function var_dump(), which shows you the internal representa-
tion of a value. If we use it with the previous example:

$myvar = “I am setting a variable”;
var_dump(isset($myvar));

the output is now “bool(true)”.
When you need to test if two values are not just equivalent, but identical, you

use the === operator (or !== to test if the values are not identical). The following
shows you what we mean:

$myvar = “I’m setting a variable again”;
if (isset($myvar) == 1)

echo “isset(\$myvar) is equivalent to 1\n”;
if (isset($myvar) === 1)

echo “isset(\$myvar) is exactly the same as 1\n”;
if (isset($myvar) == TRUE)

echo “isset(\$myvar) is equivalent to TRUE\n”;
if (isset($myvar) === TRUE)

echo “isset(\$myvar) is exactly the same as TRUE\n”;

The output of this code is:

isset($myvar) is equivalent to 1
isset($myvar) is equivalent to TRUE
isset($myvar) is exactly the same as TRUE

It’s not just 1 that is true — any non-zero, non-empty value tests as true (an array
with no elements is empty, so it tests as false). This gives you some flexibility in
your tests.

When working with Web pages, you’ll usually be doing some sort of text manip-
ulation. Often you’ll need to test whether the text string you’re working with has a
certain structure. For example, you might want to test whether a string contains
certain characters. You can use one of the regular expression functions for this, but
you can also use the strstr() function. The strstr() function takes two argu-
ments, both of them strings. It searches the first argument for the first occurrence
of the string specified in the second argument. It returns the string in the second
argument plus all of the characters following that string. However, if the string isn’t
found, the function will return a value of FALSE. In the following example
strstr() returns “text string”:

$str = “my little text string”;
strstr($str, “text”);

Chapter 5: Control Structures 119

Since the result of this function is not empty and not 0 it can be used in a test.
The following code would test TRUE and print out “Yeah!”

$str = “my little text string”;
if (strstr($str, “text”))
{

echo “Yeah!”;
}

But in the string is not found in the following example, so the function will
return a value of FALSE and nothing will print:

$str = “my little text string”;
$new_str = strstr($str, “nothing”);
if ($new_str)
{

echo “nothing to print”; //this will not be printed
}

However, you need to be careful with these kinds of simple tests. For instance,
using strstr() just to test if one string contains another is something of a waste
of resources — it’s handing you back a whole substring value that you don’t need.
So say you decide to use the strpos() function instead. This built-in function
returns the position of one string within another, or FALSE if the string is not found.
The problem is that the code we’ve used in the previous two examples can produce
some odd results:

$str = “my little text string”;
if (strpos($str, “text”))
{

echo “Found ‘text’\n”;
}
else
{

echo “Did not find ‘text’\n”;
}
if (strpos($str, “my”))
{

echo “Found ‘my’\n”;
}
else
{

echo “Did not find ‘my’\n”;
}

120 Part II: Working with PHP

This produces the following output:

Found ‘text’
Did not find ‘my’

But we can see that ‘my’ clearly is inside ‘my little text string’. What
gives?

The problem is that in PHP, string positions start with 0. The string ‘my’ is at the
beginning of ‘my little text string’, and so its position is 0, which is what
strpos() returns. Just testing for zero or non-zero values isn’t good enough. We
need to check explicitly for a return value of FALSE:

if (strpos($str, “my”) !== FALSE)
{

echo “Found ‘my’\n”;
}
else
{

echo “Did not find ‘my’\n”;
}

This produces the correct result:

Found ‘my’

You have to be careful to match your tests to the values you might be testing.
Usually, that’s just a matter of — surprise! — checking the documentation.

This is a good place to note that the functions you create in the course of your
programming will often need to return a value indicating success or failure. You
can make your functions do this by returning TRUE or FALSE.

Take a look at this example that looks for http:// at the beginning of a string
(a common task and one that illustrates the technique):

//tests whether a variable starts with “http://”
function url_test ($url)
{

if (strtolower(substr($url,0,7)) == “http://”)
{

return TRUE; }
else
{

return FALSE; }
}

Chapter 5: Control Structures 121

$myurl = “http://www.theonion.com”;
if (url_test ($myurl))
{

echo “Thanks for entering a valid URL.”;
}

Comparison operators
Table 5-1 lists the relatively few comparison operators in PHP.

TABLE 5-1 PHP’S COMPARISON OPERATORS

Symbol Operator Description

== (2 equals signs) Equal to Determines if two quantities are
equivalent.

=== (3 equals signs) Identical to Determines if two values have
equivalent values and are of the same
variable type.

!= Not equal Determines if two values are not
equivalent.

!== Not identical to Determines if two values are not
equivalent, or not of the same variable
type.

> Greater than Determines if the value to the left of
the symbol is greater than the one to
the right.

< Less than Determines if the value to the left of the
symbol is less than the one to the right.

>= Greater than or equal to Determines if the value to the left of
the symbol is greater than or equal to
the one on the right.

<= Less than or equal to Determines if the value to the left of
the symbol is less than or equal to the
one on the right.

122 Part II: Working with PHP

Logical operators
In addition to comparison operators, you will be using logical operators in your
scripts. Table 5-2 lists PHP’s logical operators.

TABLE 5-2 PHP’S LOGICAL OPERATORS

Symbol Example Description

and if ($a ==0 and $b==1) Checks both conditions.

&& if ($a ==0 && $b==1) Same as the previous symbol, but has a
higher precedence (see Note below).

or if ($a ==0 or $b ==1) Determines if one or the other operand
meets the condition.

|| if ($a ==0 || $b ==1) Same as the previous symbol, but has a
higher precedence (see Note below).

xor if ($a ==0 xor $b==1) This is known as exclusive or. It determines
if one of the two operands is true but not
both. If both of these conditions are true,
the overall test will be false.

! if (!empty($a)) Determines if something is not the case.
In this example the condition will be true if
$a is not empty.

The difference between && and and, and between || and or, is the order of

precedence. PHP must determine which operators to compare first. It does

this according to the list found at http://php.net/operators. Don’t

forget, though, that parentheses override the order of precedence. The con-

tents of inner parentheses get evaluated before those of outer parentheses.

Complex if statements
Using the operators in Table 5-1 and 5-2, you can create if statements that are a
bit more complex than the basic one at the beginning of this chapter.

Chapter 5: Control Structures 123

Here are a few quick examples:

if ($var == 1 && $var2 <= 5 && !empty($var3))
{

//do some stuff
}

Since this is a book dealing with MySQL databases, we’ll show some examples of
if statements you can use when playing with database queries.

To test if a select query returned any rows, you can use either of the following:

$query = “select * from my_table”;
$result = mysql_query($query)or

die(mysql_error());
if (mysql_num_rows($result) > 0)
{

//do something here.
}

//this would also work
$query = “select * from test.foo”;
$result=mysql_query($query);
if (!($row = mysql_fetch_assoc($result)))
{

echo “there were no rows to fetch, so the query must have
returned no rows.”;
}

The following tests if an update query actually changed anything. A similar con-
struct would work for delete statements.

$query = “update mytable set col1=’my text’ where id = 1”;
mysql_query($query) or

die(mysql_error());
if (mysql_affected_rows() == 0)
{

echo “query did nothing”;
}

As is noted in Chapter 3, be careful to remember that the “equal to” operator is =
in MySQL, but == in PHP. A common typo is to write if ($a = $b) ... in PHP.
This assigns the value of $b to $a, and always tests as true, so it can be easy to miss.

124 Part II: Working with PHP

if ... else statements
If you’re clear on the previous sections, nothing here will surprise you. The else por-
tion of an if ... else statement enables you to specify code that will be executed
if the condition specified is false. The following code prints “it is not equal”:

$a = 2;
if ($a == 1)
{

echo “it’s equal”;
}
else
{

echo “it is not equal”;
}

if ... elseif statements
You will often have to check a variable against more than one set of conditions. For
instance, you might have a single page that will insert, edit, and delete records in a
database. It is fairly typical to indicate which portion of the script you wish to run
by assigning different values to a submit button in an HTML form. When the form
is submitted, the value of the submit button can be checked against several elseif
statements, as follows:

if ($_POST[‘submit’] == “edit”)
{

// code for editing database
}
elseif ($_POST[‘submit’] == “update”)
{

//code for updating records
}
elseif ($_POST[‘submit’] == “delete”)
{

//code for deleting records
}
else
{

echo “I have no idea what I should be doing.”;
}

Chapter 5: Control Structures 125

elseif is technically not the same as else if. If you put that space

between the words you will not get an error, but you could conceivably get

different behavior. In practice, the two variations are equivalent.

switch ... case
The switch structure is an alternative to multiple if ... elses. It won’t work for
everything, but in some situations switch will help you remove some ugly syntax.

Choose a variable against which you wish to run a comparison. Continuing the
example given in the discussion of if ... else, you may wish to execute differ-
ent parts of a script based on the value passed by a submit button:

switch ($_POST[‘submit’])
{

case “insert”:
// code to insert to database
break;

case “update”:
//code to update database
break;

case “display”:
//code to display
break;

default:
echo “Unexpected value {$_POST[‘submit’]} for ‘submit’\n”;

}

Here the code tests against the value in $_POST[‘submit’]. If the variable is
equal to “insert”, that portion of code is run.

Note the use of break in the preceding code. If break is not included, the code
will continue to run. For example, if $_POST[‘submit’] was equal to “update”,
the following would run the code for both the update and display portions:

switch ($_POST[‘submit’])
{

case “insert”:
// code to insert to database
break;

case “update”:
//code to update database

case “display”:

126 Part II: Working with PHP

//code to display
break;

}

Loops
No matter what programming language you’ve used in the past, you know that
loops are an essential part of programming. PHP has a rich set of loops that should
satisfy your every programming need.

while ...
This is probably the most common loop, so we’ll discuss it first. You give the while
loop a condition to validate. As long as that condition is true, the code within the
curly braces will be executed.

while (condition)
{

//code to execute here;
}

As a very basic example, the following code prints all the numbers between 0
and 10:

$a = 0;
while ($a<=10)
{

echo “$a
 \n”;
$a++;

}

For something a bit more practical, you will use a while loop to iterate through
every row returned by a database query. Since mysql_fetch_assoc() will return
false if there’s no row to be fetched, it works quite nicely with a while loop.

$query = “select fname, lname from people”;
$result = mysql_query($query) or

die(mysql_error());
while ($row = mysql_fetch_assoc($result))
{

echo $row[“fname”] , “ “ , $row[“lname”] , “
 \n”;
}

Chapter 5: Control Structures 127

USING while WITH list() = each()
Another place while ... often comes into play is with arrays, when you are using
the list() = each() structure. This structure assigns elements in an array to
named variables. It will iterate through the array, and when no more elements are
left to pull from, it will test false and the while loop will stop. When pulling from
an array, list() is expecting an associative array and will take two variables: the
first for the key and the second for the value, as illustrated in the following code:

$knicks = array (center => “Ewing”, point => “Childs”,
shooting_guard => “Houston”,
forward => “Sprewell”, strong_forward => “Johnson”

);
echo “<h2>The Knicks 1999 Starting Five Were</h2>”;
while (list($key,$value) = each ($knicks))
{

echo “$key: $value
\n”;
}

After you run the preceding code the array pointer will be at the end of the

array. If you wish to loop through it again, you will have to move the pointer

to the beginning of the array with reset. In the preceding example,

reset($knicks) would work.

Note that if you don’t have an associative array and you wish to grab array val-
ues, you will need to account for it in your list(). Do this by including a comma
within the list parentheses, as follows:

$names = array(“John”, “Jacob”, “Jason”, “Josh”);
while (list (, $value) = each ($names))
{

echo “$value
 \n”;
}

If no comma preceded $value in the preceding code, the ordinal placement of
each element would be assigned to $value and the code would print “0, 1, 2, 3”.

If you want to get only the keys out of an associative array, your list statement
should contain something like list($key,).

Though we’re stressing list’s use with the each() statement, it can generally be
thought of as an “array destructor.” — that is, it pulls elements out of an array.
Similarly, each() is an “array iterator,” meaning that it walks through all the ele-
ments in an array. It doesn’t need to be used with list(), though that is by far the
most common usage.

128 Part II: Working with PHP

USING MULTIPLE while LOOPS
Continuing with the subject of while loops and MySQL queries, you probably need
a quick piece of code that prints out the results of any query. For this, you can use
a nested set of while loops. The outer loop fetches each individual record from the
database, and the inner one prints out the contents of each individual record:

while($row = mysql_fetch_assoc($result))
{

while (list($key, $value) = each ($row))
{

echo “$key: $value
\n”;
}

}

do ... while
The do ... while loop is nearly identical to the while loop. The only difference is
that the condition is tested after the code in question has been run once, as follows:

do
{

//code to be used here.
} while (condition);

The preceding structure may be useful to you. It may even be vital to scripts you
need to write. But in the course of writing the large applications for this book, we
didn’t need to use it once.

for
The for loop takes three expressions.

◆ The first is evaluated once before the second expression is tested.

◆ The second argument is a condition that is evaluated each time through
the loop; if the condition in the second argument tests false, the loop ends
(or never begins if it tests false right away).

◆ The third expression is executed after the body of the loop is run.

As an example, the following code iterates through every value in an array and
prints the value for each element:

$myarray = array (‘jay’, ‘brad’, ‘john’, ‘kristin’);
for ($i = 0; $i < count($myarray); $i++)
{

Chapter 5: Control Structures 129

echo $myarray[$i] . “
\n”;
}

The first time through, $i is assigned the value of 0, so the first element in the
array will be printed. The next time and each subsequent time through, $i will be
incremented by one. The loop will end as soon as $i is equal to the length of the
array (which is 4). Remember that the elements in the array start at 0, so the last
element in the above array is $myarray[3].

You can also leave any of the three expressions in the for loop empty. If you
leave the second expression empty, the if condition will evaluate to true, and you
will need to make sure that your loop will eventually hit a break statement (we dis-
cuss break in the section “break” later in this chapter).

Running the following code would be very bad: It would run indefinitely,

using up your memory and CPU.You’d have to kill the Web server to get this

script to stop. It could bring your entire machine down.

for ($i = 0;; $i++)
{

echo “$I
\n”;
}

foreach
The foreach structure is used exclusively with arrays. You can use it in place of
list() = each() on most occasions. This structure will work from the beginning
to the end of an array, assigning each element to a scalar variable (a variable that
has only one value, such as an integer or a Boolean value, as opposed to a multi-
element array or complex object) that you indicate with the word as. The following
prints all the values in the array $names_array:

$names_array = array(“jay”, “brad”, “ernie”, “bert”);
foreach ($names_array as $first_name)
{

echo $first_name;
}

If you are working with an associative array, you will likely need to access both
the key and the value of every array element. The following syntax will enable you
to do this:

$jay_info = array (“fname” => “jay”, “lname” => “greenspan”, “hobby”
=>”juggling”);

130 Part II: Working with PHP

foreach ($jay_info as $key => $value)
{

echo “$key: $value
\n”;
}

Unlike list() = each(), foreach() does not require you to reset the array
afterwards. It works with a temporary copy of the array. Since it is also generally
faster than list() = each(), it’s preferable.

continue and break
Within loops you may need to either break out of the loop entirely or skip to the
next item to be addressed in the loop. For these situations, you can use continue
and break, respectively. Both continue and break can accept a numeric argument.
The argument specifies how many levels of loop to break out of. This capability is
rarely used.

continue
Consider a situation in which you’re reading from the file system and would like
your script to address each file in a specific directory, but have no need to address
any subdirectories. When PHP reads names from the directory, you don’t know if
the item is a file or directory, so you need to run a test using the is_dir() func-
tion. You want to skip over listings that are directories. The script looks something
like this:

$directory=opendir(‘/home/jay/’);
echo “Files are:
\n”;
while ($file = readdir($directory))
{

if (is_dir($file)){continue;}

echo “$file
\n”;
//process files here;

}
closedir($directory);

Note that continue isn’t necessary here. You can also code this script as in the
following example, and some feel this a better way of going about it:

$directory=opendir(‘/home/jay/’);
echo “Files are:
\n”;
while ($file = readdir($directory))
{

if (!is_dir($file)){

Chapter 5: Control Structures 131

echo “$file
\n”;
}

}
closedir($directory);

break
break will release the script from a control structure without stopping the execu-
tion of a script. It is almost always best to avoid using break. if statements can
usually accomplish the same thing and make for cleaner code.

A situation in which you might want to use break would be in response to an
error inside your loop. In the following example, we loop through the rows returned
by a MySQL query, calling one function to do some initial processing and then call-
ing a second function to do something with the first function’s results. If either of
those two functions fail, we want to stop the process right there and not continue
with the rest of the rows.

while ($row = mysql_fetch_assoc($result))
{

$setup_result = setup($row);
if ($setup_result === FALSE)
{

print “Error in calling ‘setup()’\n”;
break;

}
$process_result = process($setup_result);
if ($process_result === FALSE)
{

print “Error in calling ‘process()’\n”;
break;

}
}

Summary
In this chapter you saw the building blocks of the PHP language. You saw how to
make use of loops and if blocks. If you read Chapter 4, where variables were dis-
cussed, you now know all the basics you need for programming with PHP.

Coding is all about working with variables, loops, and if blocks. The various
combinations of these will take care of everything you will need to accomplish in
your applications. However, one major portion remains to be learned: functions.
Chapter 6 shows how PHP’s built-in functions operate on your scripts.

132 Part II: Working with PHP

Chapter 6

PHP’s Built-in Functions
IN THIS CHAPTER

◆ Using PHP’s built-in functions

◆ Function syntax

◆ Working with functions

PHP HAS AN AMAZING NUMBER of built-in functions and extensions (An ‘extension’
is a related collection of functions that are not part of the core PHP code). Many are
available to you only if PHP is compiled with certain options. If, for example, you
need to do some Extensible Markup Language (XML) parsing, PHP has two exten-
sions that can help you. (One uses an event-based approach, the other a document
approach.) If you need Lightweight Directory Access Protocol (LDAP), Internet Mail
Access Protocol (IMAP), or Portable Document Format (PDF) functions, an exten-
sion is there for you. Additionally, PHP has an application program interface (API)
for just about every relational database on the planet. But there’s no need to cover
most of these functions in this book.

Another thing to keep in mind is that the function set is changing almost daily.
PHP is internally structured in a way that makes it extremely easy for programmers
to add additional functions. In fact, if you know your way around C, you can prob-
ably add a new function to PHP in a few hours. So you can expect regular additions
to the core function set.

Your best friend, as always, is the online PHP manual: http://www.php.net/
manual. It’s the only source of which you can be sure that the list of functions will
be more or less up to date. If you want to go directly to the explanation of a func-
tion, all you need to do is point your browser to http://www.php.net/
function_name.

We want to point out one more thing before we get started here. The final two
portions of this book contain a number of applications. In the course of creating
these applications, we made use of a little over 150 of PHP’s built-in functions. So
while thousands of built-in functions exist, you will probably make regular use of
only a relatively small number.

133

A pretty neat resource is the function table at http://www.
zugeschaut-und-mitgebaut.de/php/.

Function Basics
Functions all take the same basic form:

return_type function_name (argument1, argument2, argument3)

First, return_type is the type of output that the function returns when called:
integer, Boolean, array, string, and so forth. These are called return values. Next is
the function’s name; note that the name of the function is not case-sensitive.

Finally, following the function name is a set of parentheses. Inside the parenthe-
ses are any arguments required by the function, separated by commas. While hav-
ing any arguments at all is optional, the parentheses themselves are not. We will
discuss arguments first, followed by return values, because that’s the order in which
the function deals with them.

Arguments
An argument is simply a value (or a reference to a value) that the function is
expecting. A function might expect zero, one, two, three, or more arguments, and
any of the arguments can be of any variable type — it may be a string, an integer,
an array, or something else. To give you a better idea of what arguments are, here’s
an example: a function that does string handling.

The str_replace() function is extremely helpful. Suppose you have the follow-
ing string:

$str = “My name is Jay.”;

Say that in the $str variable you need to search for Jay and replace it with
John. The function that does the replacement takes three arguments: the string to
be searched through, the string to be searched for, and the replacement string. It so
happens that in PHP, the arguments come in this order:

str_replace(string to search for, replacement string, string to be
searched through);

Or, to put it in practice:

$str = “My name is Jay.”;
$new_str = str_replace(“Jay”, “John”, $str);

134 Part II: Working with PHP

Keep in mind that certain functions will have optional arguments and that a few
will take no arguments at all. Take the substr() function, for example. This func-
tion takes a large string and extracts a smaller string from it by using index num-
bers that are provided as arguments. The letters in the original (larger) string are
numbered (starting with 0 at the leftmost end), and the arguments refer to these
numbers. To get everything from the second character in a string on, you would use
the following code:

$str = substr ($str_var,1);

However, the substr() function also has an optional third argument, which you
can use to limit the size of the string that it returns. A positive value counts forward
from the position given in the second argument. A negative value counts back-
wards from the end of the string. So to get everything from the second character to
the next-to-last character in a string, you would use the following code:

$new_str = substr ($str_var,1,-1);

We’ll point out optional arguments as we move through the functions. The
details of working with substr() will be covered later in the chapter.

On a few occasions a function will take no arguments at all. A good example is
time(), which returns the current Unix timestamp. When this is the case, in the
description of the function in the documentation, the keyword void will be used to
explicitly tell you that the function takes no arguments:

int time (void)

Return values
When using a function, you should always be aware of what the function will
return — specifically, what variable type. In the previous case, str_replace()
returns a string. What you do with this string is your business. You could assign it
to a variable or print it out, or do whatever else seems appropriate. The following
code echoes its output string:

//assign to variable
$new_str = str_replace(“Jay”, “John”, $str);
//print directly
echo str_replace(“Jay”, “John”, $str);

Note that functions can return arrays, integers, doubles (floating-point num-
bers), objects, floats (long floating-point values), or (sometimes) Boolean values. In
Chapter 5 you saw a good example of a function that returns a Boolean value (that
is, TRUE or FALSE). If you want to determine whether a variable is an array you can
use the is_array() function, as in the following.

Chapter 6: PHP’s Built-in Functions 135

if (is_array($var))
{

//process array
}

Some functions will return a value if there is a value to be returned, and will
return FALSE if there is no value to be returned. A good example of this is the
mysql_fetch_array() function. This function will grab rows from a result set
returned by a query, as long as there are results to grab. When no more rows are to
be had it returns FALSE. As you saw in Chapter 5, this is very helpful for looping
through all rows returned by a query.

$result = mysql_query(“select * from my_table”) or
die (mysql_error());

while($row = mysql_fetch_array($result))
{
//process row
}

Finally, a function will occasionally return no value at all. This is rare, as most
functions at least return TRUE on success and FALSE on failure. If a function does
not return any value, the keyword ‘void’ again is used in the documentation to
tell you so:

void function_name(arg1, arg2, ...)

Function Documentation
As we say repeatedly throughout this book, the PHP online manual is your friend.
The documentation team is amazing, and we really believe that the quality of the
online manual is one of the reasons for the success of the language. As we cannot
realistically cover every PHP function in this book, you will need to consult the
online manual or one of the excellent PHP encyclopedias that exist (try PHP
Functions: Essential Reference by Zak Greant and others). For that reason, we want
to take a minute to go over the way in which it presents the functions.

A typical manual reference will look something like this:

int mysql_affected_rows ([int link_identifier])

This function returns the number of rows affected by an update, insert, or
delete query. Looking at this, you can see that the first portion (int) indicates the
variable type that will be returned. This can be any of the variable types or void
(meaning that the function will return nothing). Then comes a list of arguments in

136 Part II: Working with PHP

parentheses. The type of argument is listed as well as what it represents. Note that
optional arguments are placed in brackets. In the preceding code sample, therefore,
the function requires no arguments but has one optional argument: the connection
identifier grabbed from mysql_connect().

In the preceding example, if you pass an argument, it had better be an integer. If
you were to use an array, for example, you would get an error.

Important PHP Functions
In this section we will attempt to break down PHP functions into logical groupings.
Along the way we will cover the functions used in the applications presented in this
book.

String handling functions
In creating Web-based applications, string handling and manipulation are among
the most critical tasks of the language you work with. Text cleanup and validation
are extremely important, and good Web middleware will make working with text
relatively easy. PHP excels in this department: It contains built-in functions that
cover most anything you’d want to do to text.

In fact, far more string handling functions exist than we could cover here. At the
time this book was written, 88 string handling functions were listed on http://
www.php.net/manual/en/ref.strings.php. In this book we can cover only a
portion of these. We will cover all the string handling functions we used in the
course of creating the applications in Parts III and IV, and we will cover some other
notable functions that we didn’t have the opportunity to use.

STRING FUNCTIONS USED IN THIS BOOK
We thought it would be nice to start with a function that clearly demonstrates why
PHP is so cool.

STRIP_TAGS() This function removes HTML and PHP tags.

string strip_tags (string str [, string allowable_tags])

One of the most important things you will need to do with every Web-based
application you write is make sure that the users of your Web pages haven’t passed
you malicious text. As we discuss in Chapter 8, if you’re not careful, you might find
your pages filled with HTML tags (, <div>, and the like) or JavaScript code
that you don’t want. You could also find yourself in real trouble if some cracker
decides to litter your form fields with something like <script> alert(“you
stink”);</script>.

Chapter 6: PHP’s Built-in Functions 137

The strip_tags() function will remove all HTML and PHP tags, except for
those explicitly allowed in the second argument. If you want to allow and <i>
tags, you can use this:

strip_tags($str, “<i>”)

ADDSLASHES() This function is intended to work with your database insert and
update queries.

string addslashes (string str)

If you take a look at a typical insert query you can see a potential problem:

insert into table_name(char_field, numeric_field)
values (‘$str’, $num);

What if the value in $str contains a contraction such as “ain’t”? You could get
an error because the apostrophe is going to confuse MySQL. You need to escape all
occurrences of single quotes (‘), double quotes (“), and NULLs in the string. For
example:

$str1 = “let’s see”;
$str2 = “you know”;
$str1 = addslashes($str1);
$result = mysql_query(“insert into show_stuff

(stuff_desc, stuff_stuff) values(‘$str1’, ‘$str2’)”);
echo mysql_affected_rows();

So, given this potential problem, do you need to put all of your form-input
information through addslashes()? Not necessarily. It depends on the
magic_quotes_gpc setting in your php.ini file. If it is set to on, data that comes
from HTTP GET, HTTP POST, or cookies is automatically escaped, so you don’t need
to worry about putting the information through addslashes().

Make sure to check your magic_quotes settings in your php.ini file. Note

that if set to yes, magic_quotes_runtime will automatically add slashes

to data returned from queries and files. See Appendix Cfor more discussion

on magic_quotes settings.

STRIPSLASHES() This function reverses the operation of addslashes(). It returns
an unescaped string from which all backslashes have been removed.

string stripslashes (string str)

138 Part II: Working with PHP

If you are writing code for distribution, where you won’t be able to know how
your user’s PHP installation is configured, you might want to use stripslashes()
and addslashes() in combination:

$var1 = $_GET[‘var1’];
$stripped_var = stripslashes($var1);
$slashed_var = addslashes($stripped_var);
$result = mysql_query(“insert into mytable (mycol) values
(‘$slashed_var’)”);

This code runs regardless of the setting of magic_quotes_gpc.
The following sections contain some more PHP string functions that are used in

this book.

HTMLENTITIES() AND HTMLSPECIALCHARS()

string htmlentities (string string [, int quote_style [, string charset]])

string htmlspecialchars (string string [, int quote_style [, string charset]])

These two functions translate characters into their HTML escape codes. html
specialchars() translates only the characters that might be interpreted as markup
on an output page (namely &, <, >, ‘, and “), whereas htmlentities() translates
every character that has an HTML equivalent.

CRYPT()

string crypt (string str [, string salt])

Given a string, this function returns a one-way hash of the string, using either
the optionally provided salt or a randomly generated one. Providing your own salt
allows reproducibility in testing and also allows you to specify the hashing algo-
rithm that’s used.

TRIM()

string trim (string str [, string charlist])

This function returns a string with all white space trimmed from the beginning
and end. With the second argument, you can specify an additional list of characters
to be trimmed off.

STR_REPEAT()

string str_repeat (string input, int multiplier)

Chapter 6: PHP’s Built-in Functions 139

This function returns a string consisting of the input string concatenated to itself
the specified number of times.

STR_REPLACE()

mixed str_replace (mixed search, mixed replace, mixed subject)

Given three arguments as input, this function returns a string consisting of a
modified version of the third argument with every instance of the first argument
replaced by the second argument. This is a lightweight alternative to the regular
expression functions and should be used when the power of regular expressions is
not required.

STRCHR() AND STRSTR()

string strchr (string subject, string search)

string strstr (string subject, string search)

string stristr (string subject, string search)

These functions behave identically, except that strchr() and strstr() are
case-sensitive and stristr() is case-insensitive. They search for the second argu-
ment in the first, and return the part of subject following the first instance of
search.

STRLEN()

int strlen (string str)

Given a string, this function returns a character count.

STRPOS()

int strpos (string haystack, string needle [, int offset])

This function returns the position of the first occurrence of the string needle in
the string haystack, starting at the position in haystack specified by offset, or at 0
(the beginning of the string) if offset is not specified. If needle is not found, the
function returns FALSE.

STRRPOS()

int strrpos (string haystack, char needle)

140 Part II: Working with PHP

This function behaves similarly to strpos(), but it returns the position of the
last occurrence of the search character. Note that with this function the string to be
found can only be a single character.

STRREV()

string strrev (string string)

This function reverses a string.

SUBSTR()

string substr (string string, int start [, int length])

This function returns a substring of the input string, delineated by the start and
length arguments. If length is absent, the substring will go to the end of the string.

STRTOLOWER(), STRTOUPPER(), UCFIRST(), AND UCWORDS()

string strtolower (string str)

string strtoupper (string str)

string ucfirst (string str)

string ucwords (string str)

These functions change the capitalization of alphabetic strings. strtolower()
and strtoupper() change the case of the entire string to lower or upper case,
respectively; ucfirst() capitalizes only the first character of the input string; and
ucwords() capitalizes the first character of each white space–delineated word in
the string — to lower or upper case, respectively.

HELPFUL STRING FUNCTIONS NOT USED IN THIS BOOK
Just because we didn’t use them doesn’t mean you won’t. And again, it’s entirely
possible that something we didn’t cover will suit your needs perfectly. Please look
over the PHP manual for a complete list.

NL2BR() This function adds an HTML break (
) after each newline (\n) in a
string.

string nl2br (string string)

Chapter 6: PHP’s Built-in Functions 141

Note that the newline characters will remain after going through this function.
For example, this code

$str = “jay
john
bob
stan”;

echo nl2br($str);

will print the following (note that this is the HTML source of the resulting page):

jay

john

bob

stan

MD5() md5() is a one-way algorithm that encrypts information.

string md5 (string str)

This function is often used for passwords. If you were to put a password in a text
file, it is possible that someone who had (legitimate) access to your system could
view the passwords. However, if you pass it through md5(), the correct password is
unknowable. For example, md5(“jay”) is baba327d241746ee0829e7e88117d4d5.
If this is what is entered in the text file, those who have rights to view the database
will not know what the clear text password is.

A safe password will be a lot more complex than jay. A cracker can (and

will) run an entire dictionary through md5() to see if something allows

entry to the system.

Regular expression functions
Regular expressions offer a method for complex pattern matching. If you’re new to
the concept of regular expressions, consider this: Given the string handling func-
tions you have seen so far, how can you insert a newline and a break (\n
) after
every 45 characters? Or, how can you find out if a string contains at least one
uppercase letter? You may be able to pull it off, but it won’t be pretty.

142 Part II: Working with PHP

The following code will solve the problems posed by the previous two questions.

//insert \n
 after each 45 characters
$new_str = ereg_replace(“(.{45})”, “\\1\n
”, $str);

//check if string contains uppercase letter
if (ereg(“[A-Z]”, $str))
{

echo “yes it does.”;
}

Statements like these may seem a bit opaque at first, but after working with
them for a while, you will grow to love the convenience they offer.

See Appendix G for a rundown on how regular expressions work.

Note that regular expressions are a good deal slower than string handling func-
tions. So if you have, for example, a simple replace that doesn’t require regular
expressions, use str_replace() and not ereg_replace().

REGULAR EXPRESSION FUNCTIONS USED IN THIS BOOK
The following regular-expression functions are used in the applications in this book.

EREG() ereg() tests whether a string contains a match for a regular expression.

int ereg (string pattern, string string [, array regs])

You can use this function in two ways. First, you can place a regular expression in
the first argument and search for its existence in the second argument. The function
will return TRUE or FALSE, depending on the outcome of the search. For example:

if (ereg(“^http://.*”, $str))
{

echo “This is a URL”;
}

Alternatively, the optional third argument is an array that is created from the
regular expression. The portions of the regular expression that will become ele-
ments in the array are indicated by parentheses in the regular expression.

ereg(“(....)-(..)-(..)”, $publish_date, $date_array);

Chapter 6: PHP’s Built-in Functions 143

This example, which was taken from the content-management application in
Chapter 11, creates an array named $date_array, wherein the first element will be
the complete string matched by the regular expression. The next three elements in
the array will be the portions indicated by the parentheses. So $date_array[1]
will contain four characters, and $date_array[2] and date_array[3] will contain
two characters each.

So, after running this code

$publish_date = “2000-10-02”;
ereg(“(....)-(..)-(..)”, $publish_date, $date_array);

$date_array will contain the following:

[0] => 2000-10-02
[1] => 2000
[2] => 10
[3] => 02

Note that ereg() performs a case-sensitive match.

EREGI() This function is a case-insensitive version of ereg().

int eregi (string pattern, string string [, array regs])

EREG_REPLACE() You can use this function for string replacement based on com-
plex string patterns.

string ereg_replace (string pattern, string replacement, string
string)

For example, if you want to delete the querystring from a URL, you can use this:

$url= “http://www.mysqlphpapps.com/index.php?var=hello”;
$parsed_url = ereg_replace(“\?.*\$”, “”,$url);
echo $parsed_url;

The preceding code prints http://www.mysqlphpapps.com/index.php. This
regular expression matches a question mark and all characters that occur after it
until the end of the line. The question mark must be escaped with a backslash
because it has a specific meaning to the regular expression (regular expressions are
covered at http://www.php.net/manual/en/ref.pcre.php). Following the ques-
tion mark the regular expression matches any number of characters until the dollar
sign, which is the endline character. It needs to be escaped with a backslash because
otherwise PHP will think it represents a variable.

144 Part II: Working with PHP

Often you will need a bit more functionality than this. What if you want to pre-
serve the string you are searching for in the replacement string? Or what if your
search contains distinct portions offset by sets of parentheses? Here’s a simple
example. We want to replace the current querystring by placing an additional
name=value pair between the two name=value pairs currently in the string. That is,
we want to put newvar=here after var=hello and before var2=yup, as follows:

$url= “http://www.mysqlphpapps.com/index.php?var=hello&var2=yup”;
$parsed_url = ereg_replace(“(\?.*&)”, “\\1newvar=here&”,$url);
echo $parsed_url;

This creates the following string:

http://www.mysqlphpapps.com/index.php?var=hello&newvar=here&var2=yup

Here the single set of parentheses indicates portion 1. Then, by using the nota-
tion \\1, we can include that portion in the newly created string. If more than one
portion is indicated by additional parentheses, you can echo the others back into
the result by noting which portion you need.

$url= “this is a test “;
$parsed_url = ereg_replace(“(this.*a).*(test)”, “\\1 regular
expression \\2”,$url);
echo $parsed_url;

The result of these commands is the phrase this is a regular expression
test.

The regular expression matches everything between this and test. You can use
parentheses to indicate a substring that starts with this and ends with the letter a.
The next .* portion matches any number of characters. Finally, test is another
substring. These substrings are echoed back in the second argument, with \\1
echoing the first substring and \\2 echoing the second substring.

The regular expression match is case-sensitive.

EREGI_REPLACE() This function is the same as ereg_replace(), except that the
match is case-insensitive.

REGULAR EXPRESSION FUNCTION NOT USED
IN THIS BOOK — sql_regcase()
This regular expression function, while not used in the examples in this book, is
still useful to know.

sql_regcase() alters strings so that you can use them in case-insensitive regu-
lar expressions.

string sql_regcase (string string)

Chapter 6: PHP’s Built-in Functions 145

This might be of use if you are doing a regular-expression search in a database
server that doesn’t support case-insensitive regular expressions. It will save you
from having to type in every character in a string as both an uppercase and a low-
ercase letter. For example:

echo sql_regcase(“this string”);

produces:

[Tt][Hh][Ii][Ss] [Ss][Tt][Rr][Ii][Nn][Gg]

PERL-COMPATIBLE REGULAR EXPRESSIONS (PCRE)
For years, the Perl programmers of the world have had regular expressions unlike
any others. If you have some experience with Perl, it’s likely that you’ve come to
love the additional power these regular expressions give you. If you don’t come
from a Perl background, you might enjoy learning a bit about the features.

PCREs are, however, a fairly large topic, one that Appendix G explains only
briefly. However, if you’re looking to get a good jump on learning about Perl’s reg-
ular expressions and how they can work for you, the information at http://
www.perldoc.com/perl5.8.0/pod/perlre.html is a good read. You’ll also find a
decent description of Perl regular expressions in the PHP manual, at http://
www.php.net/manual/en/ref.pcre.php.

The major reason for using PCRE functions is that they give you a choice
between “greedy” and “non-greedy” matching. For a quick example, take the fol-
lowing string:

$str = “I want to match to here. But end up matching to here”

Using ereg() or ereg_replace() you have no way to match from I to the first
occurrence of here. The following will not work as you might expect:

$str = “I want to match to here. But end up matching to here”;
$new_str = ereg_replace(“I.*here”, “Where”, $str);
echo $new_str;

This will print Where and nothing else. The entire string will be replaced. Using
ereg_replace() you cannot indicate that you want to match to the first occur-
rence of here. However, using preg_replace(), you can do the following:

$str = “I want to match to here. But end up matching to here”;
$new_str = preg_replace(“/I.*?here/”, “Where”, $str);
echo $new_str;

In this instance, .*? means “match all characters until the first occurrence.”

146 Part II: Working with PHP

PCRE FUNCTIONS USED IN THIS BOOK
The following PCRE functions are used in the applications created in this book.

PREG_MATCH() This function is similar to the ereg() function in that you can
assign the optional third argument an array of matched subpatterns, if any are
found in the regular expression. preg_match returns the number of pattern
matches found, or FALSE if no match is found.

int preg_match (string pattern, string subject [, array matches])

PREG_REPLACE() This function makes replacements based on Perl regular
expressions.

mixed preg_replace (mixed pattern, mixed replacement, mixed subject
[, int limit])

preg_replace() is similar to ereg_replace(), though the pattern here must be
a Perl regular expression. It can also make use of \\digit to echo the matched sub-
string into the result. The optional fourth argument limits the number of replaces
that preg_replace makes.

Consider the following example:

preg_replace(“/(
| |[\s])*$/i”,””,$body);

Note that \s denotes all whitespace characters. This example will remove all occur-
rences of breaks (
), non-breaking spaces ($nbsp;), or white space (spaces, tabs,
new lines) at the end of the string in $body. This replacement is not case-sensitive
(the i flag determines that) to ensure that both
 and
 are matched.

The parentheses indicate that you are specifying a pattern made up of several
parts. The | character means or here; you want to match
 or or any
whitespace characters. The asterisk after the closing parenthesis indicates that you
want to match any number of repeated occurrences of this pattern (for example, in

, the pattern occurs three times, and this expression would match
all of them). The final dollar sign character represents the end of the string. By
using it, you are saying that you want to match only occurrences of this pattern
that are at the string’s end, and not globally remove every whitespace character
from $body, which would likely be a bad thing.

PREG_GREP()

array preg_grep (string pattern, array input)

Given a regular expression string and an array, this function returns an array
containing only those elements of the input array that match the regular-expression
pattern.

Chapter 6: PHP’s Built-in Functions 147

PREG_MATCH_ALL()

int preg_match_all (string pattern, string subject, array matches [,
int flags])

This function searches a string for matches to a regular-expression pattern. It
places the matches it finds in the matches array.

Variable functions
PHP has a number of functions that deal directly with variables and constants.
Some of these functions deal with the types of variables: These are covered in the
next section.

is_array(), is_numeric(), and is_string()

bool is_array (mixed var)

bool is_numeric (mixed var)

bool is_string (mixed var)

These three Boolean functions test whether the given variable is of a particular
type.

isset()
bool isset (mixed var [, mixed var [, ...]])

This useful function returns TRUE if every argument is an existing variable con-
taining a non-null value, and FALSE otherwise.

unset()

void unset (mixed var [, mixed var [, ...]])

This function unsets the specified variable(s).

empty()

boolean empty (mixed var)

If a variable is undefined, an empty array, or equivalent to 0 (0.00, FALSE, an
empty string, and so on); empty() returns TRUE. This code summarizes the behav-
ior of the function:

148 Part II: Working with PHP

$a = 0 ; print empty($a) ? “TRUE” : “FALSE”; //TRUE
$b = “0” ; print empty($b) ? “TRUE” : “FALSE”; //TRUE
$c = “” ; print empty($c) ? “TRUE” : “FALSE”; //TRUE
$d = 1 ; print empty($d) ? “TRUE” : “FALSE”; //FALSE
print empty($e) ? “TRUE” : “FALSE”; //TRUE
$f= TRUE ; print empty($f) ? “TRUE” : “FALSE”; //FALSE
$g= FALSE; print empty($g) ? “TRUE” : “FALSE”; //TRUE
$h=array();print empty($h) ? “TRUE” : “FALSE”; //TRUE

floor()

float floor (float value)

Given a floating-point variable, floor() rounds down any fractional amount
and returns the highest integer value less than or equal to the value of the variable.

constant()

mixed constant (string constantname)

This function simply returns the value of a defined constant.

define()

bool define (string name, mixed value [, bool case_insensitive])

This function defines a constant with a specified name and value. If the third
argument is set to TRUE the constant will be defined as case-insensitive.

get_defined_constants()

array get_defined_constants (void)

This function returns an array containing the names and values of all the cur-
rently defined constants.

Type-conversion functions
This is a category of our own making. In the manual, these functions will fall under
other headings. However, we feel that the specialized nature of these functions
demands a unique category.

Chapter 4 discusses PHP variables in detail, including PHP’s flexible variable
typing. If you recall, if you need to evaluate a string as if it were an integer, you can
make use of the intval() function. (See Chapter 4 for similar variable-conversion
functions.)

Chapter 6: PHP’s Built-in Functions 149

But at times the variable conversion will be a bit more extreme, turning strings
into arrays and arrays into strings. Why, you ask, might you want to do this?
Consider a string like the following:

24,16,9,54,21,88,17

So you have this string of integers, maybe retrieved from a text file. How would
you go about sorting it in ascending order? If you have to deal with it as a string
the code is going to get very nasty. However, if you can make use of PHP’s myriad
of array functions, life gets quite a bit easier. You can simply use the sort() func-
tion. Take a look:

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$array = explode(“,”, $str);
//sort the array in ascending order
sort($array, SORT_NUMERIC);
//turn the array back into a string and print
$new_str = implode(“,”, $array);
echo $new_str;

This will print the following:

9,16,17,21,24,54,88

More on the sort() function a bit later in the chapter.

TYPE CONVERSION FUNCTIONS USED IN THIS BOOK
The following type conversion functions are used in the examples in this book.

EXPLODE() This function transforms a string into an array.

array explode (string separator, string string [, int limit])

The first argument is the character or characters that separate the different ele-
ments. In the preceding example the string is separated by a comma. The second
argument is the string you wish to break into an array.

The third argument limits the number of elements in the resulting array. If you
use the following code

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$my_array = explode(“,”, $str, 3);

150 Part II: Working with PHP

$my_array will have three elements: $my_array[0] => 24 $my_array[1] =>
16 $my_array[2] => 9,54,21,88,17. You can see that the last element contains
what’s left of the original string. If you want to sort only the first three elements in
a string and discard the rest you might do this:

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$array = explode(“,”, $str, 4);
unset($array[3]);
sort($array, SORT_NUMERIC);
echo implode(“,”, $array);

If the string separator does not exist, the entire string will be placed in array ele-
ment zero. If the string does not exist, an empty string will be placed in the first
element.

IMPLODE() As you might expect, implode() is the opposite of explode(): It
turns an array into a string.

string implode (string glue, array pieces)

The first argument is the string that will separate the string elements. The second
is the array to be separated.

A good example of where you might use implode() is a page that runs a SQL
delete command. Suppose you have presented a series of checkboxes to indicate
the rows you wish to delete from the database. You are probably going to want to
pass the elements you wish to delete within an array. In the script that does the
deletes, you can then run something like this:

//say $delete_items from an HTML page and
//contains (1,3,7)
if(is_array($delete_items))
{

$str = implode(“,” , $delete_items);
$query = “delete from table where item_id in ($str)”;
mysql_query($query);

}

SPLIT() The split() function does the same thing as explode(), but it enables
you to specify a regular expression as the separation string.

array split (string pattern, string string [, int limit])

Chapter 6: PHP’s Built-in Functions 151

The split() function can come into play if you want to separate a string based
on more than one element. Say you have a string you need as an array, the elements
of which can be separated by either a newline (\n) or a tab (\t). The following will
do the trick:

//note there is a tab between 524 and 879
//and a tab between 879 and 321
$items = “524 879 321
444
221”;
$array = split(“[\n\t]”, “$items”);

split() is more flexible than explode(), but it’s also slower.

PREG_SPLIT()

array preg_split (string pattern, string subject [, int limit [, int flags]])

This function works like split(), only it uses a Perl regular expression as the
pattern.

Note that if the flag is PREG_SPLIT_NO_EMPTY, empty items will not be placed in
the array.

Again, if explode() can do the same task, make sure to use it instead of

preg_split() because preg_split() is slower.

To divide a sentence into its component words (splitting by white space), you
can do the following:

$sentence = “Soup is good food.”
$words = preg_split(“\s”, $sentence);

The content of $words will be as follows:

[0] => Soup
[1] => is

152 Part II: Working with PHP

[2] => good
[3] => food.

gettype() and settype() can be used to directly change the type of variables.

GETTYPE()

string gettype (mixed var)

This function returns the type of a variable as a string: Boolean, string, array,
integer, and so forth.

SETTYPE()

bool settype (mixed var, string type)

Given a variable as argument, this function sets the variable to the specified
type: Boolean, integer, float, string, array, object, or null.

INTVAL() AND FLOATVAL()

int intval (mixed var [, int base])

float floatval (mixed var)

These two functions take any scalar variable and return an integer or a floating-
point variable, respectively.

COMPACT() compact() and extract() are used to convert array elements into
variables and vice versa, respectively.

array compact (mixed varname [, mixed ...])

Given a list of variable names (passed either as individual arguments or as an
array), compact() outputs an array whose keys are the variable names and whose
values are the respective values of those variables. Only variables whose values are
set will be included in the output array.

EXTRACT()

int extract (array assoc_array [, int extract_type_constant [, string prefix]])

To pull key/value pairs from an array and make them into standalone variables,
use extract(). The element key will become the name of the variable, and the ele-
ment value will become the value of the variable. Therefore, this code

Chapter 6: PHP’s Built-in Functions 153

$array = array(“name” => “Jay”,
“brand” => “Cohiba”);

extract($array, “name”);
echo $name;

will output this:

Jay

The extract_type_constant argument controls how namespace collisions are
handled. The constant takes any of eight predefined values (see the PHP manual
page on this at http://php.net/extract) such as EXTR_OVERWRITE and
EXTR_SKIP. These dictate what the parser should do when it encounters collisions.

NUMBER_FORMAT()

string number_format (float number [, int decimals [, string dec_point , string
thousands_sep]])

Given a floating-point number, this function returns a string formatted for
human consumption, containing the number with thousands separators and a dec-
imal separator. By default these are a comma and a dot, respectively, but other sym-
bols can be specified.

JOIN()

string join (string glue, array pieces)

Given an array and a string, join() returns a string comprised of the elements
of the array concatenated in order, with the glue string between each two elements.

join() is identical to the implode() function.

RANGE()

array range (mixed from, mixed to [, int increment])

This function creates an array and automatically populates it with elements
ranging from from to to. If a step increment is specified in the third argument, that
will be the increment between elements; otherwise the increment will be one.

154 Part II: Working with PHP

TYPE CONVERSION FUNCTIONS NOT USED IN THIS BOOK
In addition to the functions in the previous section, you can make use of spliti(),
which uses a case-insensitive pattern match. Other than the case-insensitivity with
respect to alphabetic characters, spliti() works just like split(). Consider these:

$audienceResponse1 = “oooooAAAooooh”;
$audienceResponse2 = “oooooaaaooooh”;
list ($part1, $part2) = split(‘[AAA]’, $audienceResponse1);
list ($part3, $part4) = spliti(‘[aaa]’, $audienceResponse2);

As a result of that, $part1 and $part3 contain ooooo, while $part2 and $part4
contain ooooh.

Array functions
We are big fans of the array functions available in PHP. Just about anything you’d
like to do to an array you can do with a built-in function. The developers of PHP
have done a good job of making sure you don’t have to loop though arrays very
frequently, if ever.

The PHP manual lists exactly 60 array functions as of this writing. It’s likely that
by the time you read this chapter, there will be several more. So make sure you scan
the manual to see the full range of available array functions.

See Chapter 5 for a discussion of how to create, add to, and walk through an

array.

ARRAY FUNCTIONS USED IN THIS BOOK
Here’s a rundown of the array functions we use in this book.

ARRAY_FLIP() This function, which is useful with associative arrays, exchanges
keys and values. That is, the keys become the values and the values become the keys.

array array_flip (array trans)

We use this function once in the course of the book, in the following code:

$trans = array_flip(get_html_translation_table(HTML_ENTITIES));
$title = strtr($title, $trans);

Chapter 6: PHP’s Built-in Functions 155

Before the array_flip() function, the array holds many elements. Here are a
couple of examples:

[(c)] => ©
[(r)] => ®

Once the array is flipped, these entries will look like this:

[$copy] => (c)
[®] => (r)

Then strtr() replaces each value with its key. So in the end this code will make
sure that any character that needs to be represented by an HTML entity will be.

Note that if an array has two keys with identical values before being flipped,
only one can survive in the flipped array. You can’t have two array elements with
same key. If conflict arises, the element in the position with the highest index value
will be maintained.

ARRAY_MERGE() As you can probably guess, this function merges, or concate-
nates, two or more arrays.

array array_merge (array array1, array array2 [, array ...])

If two or more of the arrays contain the same associative keys, the elements with
the highest index values will be preserved.

ARRAY_SPLICE() This function takes the array indicated in the first argument and
removes all elements following the offset specified in the second argument. It can
then insert additional elements.

array array_splice (array input, int offset [, int length [, array
replacement]])

If the offset is a positive number, the elements will be counted from the left; if
the offset is a negative number, all items to the left of the indicated number will be
deleted. The optional third argument can indicate how many elements after the off-
set you wish to delete. For example, this code

$knicks_array = array (“Childs”, “Sprewell”, “Ewing”,
“Johnson”,”Houston”);
array_splice($knicks_array, 2,1);

will remove elements starting at offset 2 and remove only one element. So Ewing
will be deleted from this array. array_splice() also gives you the ability to replace
the deleted portion with another array. So, to account for trades, you can do this:

156 Part II: Working with PHP

$knicks_array = array(“Childs”, “Sprewell”, “Ewing”,
“Johnson”,”Houston”);
$new_knicks = array(“Longley”,”Rice”);

array_splice($knicks_array, 2,1,$new_knicks);

Following this code, $knicks_array will contain six elements: Childs,
Sprewell, Longley, Rice, Johnson, Houston.

Note that the value returned by this function is an array of the deleted items. In
the code that follows, $traded_knicks will be an array with one element, Ewing:

$knicks_array = array(“Childs”, “Sprewell”, “Ewing”,
“Johnson”,”Houston”);
$traded_knicks = array_splice($knicks_array, 2,1);

COUNT() This function returns the number of elements in an array, and is fre-
quently used with loops.

int count (mixed var)

For example:

$array = array(1,2,3,4,5);
$len = count($array);
for ($i=0; $i < $len; $i++)
{

echo $array[$i] . “
\n”;
}

Note that sizeof() is a synonym for count().

ARRAY_FILTER()

array array_filter (array input, callback function)

This function returns a new array consisting of only those elements of the input
array that pass through a filtering function.

Here is a simple code snippet illustrating how the function can be used:

function test_score($var) {
global $score;
return ($var > $score);

}
$winners = array_filter($players, “test_score”);

Chapter 6: PHP’s Built-in Functions 157

To illustrate the behavior of that function, imagine that $players initially con-
tained this list:

45, 35, 21, 8, 17, 12, 10

Further imagine that the global variable $score held 10. At the end of the code
snippet just illustrated, $winners would contain this:

45, 35, 21, 17, 12

ARRAY_KEY_EXISTS()

bool array_key_exists (mixed key, array search)

This function takes a key name and an array as arguments, and returns a
Boolean value indicating whether the key exists in the array.

ARRAY_KEYS()

array array_keys (array input [, mixed value])

With only one argument, this function returns all the keys of an array. If it is
given a value as a second argument, it returns all keys with that value.

ARRAY_MAP()

array array_map (mixed function, array array1 [, array array2...])

This function takes an array and a function as arguments, and passes each ele-
ment of the array to the function. It returns an array consisting of the return values
generated by the called function for each element, in the original order. So, given

function halve($var) {
return $var / 2 ;

}
$half = array_map(“halve”, array(16, 8772, 566, 100));

now $half contains:

Array
(

[0] => 8
[1] => 4386
[2] => 283
[3] => 50

)

158 Part II: Working with PHP

Note that the called function must not modify the array itself.

ARRAY_DIFF() If given two arrays, this function will return all the elements that
are in the first array but not in the second array.

array array_diff (array array1, array array2 [, array ...])

For example:

$knicks = array(“sprewell”, “houston”, “ewing”, “childs”);
$all_stars = array(“mourning”, “houston”, “carter”, “davis”,
“miller”);
$non_knick_allstars = array_diff($all_stars, $knicks);

Note that in the returned array, the elements maintain the keys they had in the
array from which they were taken. So, after this code is run, $non_knick_allstars
will contain the following:

[0] => mourning, [2] => carter, [3] => davis, [4] => miller

Additional arrays can be added to the function. For example:

$knicks = array(“sprewell”, “houston”, “ewing”, “childs”);
$all_stars = array(“mourning”, “houston”, “carter”, “davis”,
“miller”);
$non_knick_allstars = array_diff($all_stars, $knicks,
array(“carter”));

Given this, carter will also be removed from the returned array.

ARRAY_INTERSECT() This function returns the array elements that two (or more)
arrays have in common.

array array_intersect (array array1, array array2 [, array ...])

IN_ARRAY() This very convenient function will search all the values of an array
and return TRUE if the value in the first argument is found in the array in the sec-
ond argument.

bool in_array (mixed needle, array haystack)

ARRAY_KEY_EXISTS()

bool array_key_exists (mixed key, array search)

Chapter 6: PHP’s Built-in Functions 159

This function returns TRUE if the key value key exists in the array search.
The difference between this function and isset($array[‘key’]) is that if
$array[‘key’] has a value of NULL, isset($array[‘key’]) returns FALSE, while
array_key_exists() returns TRUE.

ARRAY_POP() The array_pop() function returns the last element in an array, and
removes that element from the original array.

mixed array_pop (array array)

For example:

$array = array(1,2,3,4,5);
$int = array_pop($array);

After this runs, $array will contain (1,2,3,4) and $int will contain 5.

ARRAY_PUSH() This function adds elements to the end of the array indicated in
the first argument.

array_push (array array, mixed var [, mixed ...])

The additional arguments will be values you wish to tack onto the array:

$array = array (1,2,3);
array_push($array,4,5,6);

The resulting array will contain 1,2,3,4,5,6.

ARRAY_SHIFT()

mixed array_shift (array array)

This function works identically to array_pop(), except that it takes the first ele-
ment instead of the last.

ARRAY_UNSHIFT()

array_unshift(array array, mixed var [, mixed ...])

This function works identically to array_push(), except that it adds new ele-
ments to the beginning instead of the end of the array.

160 Part II: Working with PHP

ARRAY_VALUES()

array array_values(array input)

Given an input array, array_values() returns all the values from the array.
Note that it does not return key names; instead, it outputs numbered values. The
following is an example output:

Array
(

[0] => Jay
[1] => 5.4
[2] => blue

)

ARRAY_WALK()

array array_walk (array array, callback function, [mixed data])

This function takes an array and a function as arguments and passes each ele-
ment of the array through the function. It returns an array containing all trans-
formed elements, in the original order.

So if you have defined a function altupper, which modifies the case of strings
in an annoying way, then, given

$alternating_uppercase = array_walk(array(‘blue’, ‘red’, ‘pink’,
‘yellow’), “altupper”);

$alternating_uppercase will contain the following:

[0] => bLuE
[1] => rEd
[2] => pInK
[3] => yElLoW

Note that the called function must not modify the array itself.

EACH()

array each (array array)

This function returns the key/value pair at the current location of the array cur-
sor (the logical pointer that indicates which element of the array is being examined)
and advances the cursor one element.

Chapter 6: PHP’s Built-in Functions 161

RESET()

mixed reset (array array)

This function resets the cursor of an array to the beginning, and returns the
value of the array’s first element.

ARRAY FUNCTIONS NOT USED IN THIS BOOK
Again, PHP contains many great array functions. Here are some of the highlights
(from our point of view, anyway).

ARRAY_COUNT_VALUES() This nifty function will return an associative array, the
keys of which will be all of the unique values within the array.

array array_count_values (array input)

The values of the resulting array will be an integer representing the number of
times the value appears within the array:

$array = array(“yes”,”no”,”no”,”yes”,”why”);
$result = array_count_values($array);

After this $result will contain:

[yes] =>, 2, [no] => 2, [why] => 1

ARRAY_RAND() This function will pick one or more random elements from an
array.

mixed array_rand (array input [, int num_req])

Note that array_rand() does not pick the value; rather, it picks the key of the
chosen elements. For example:

srand ((double) microtime() * 1000000);
$names = array(“jay”, “brad”, “john”, “Jeff”);
$rand_keys = array_rand ($names, 2);

In this example, $rand_keys will contain an array with two numbers. To get the
values from the $names array, you will first need to get to the key value extracted
by array_rand(), and so you will need to use something like this:

echo $names[$rand_keys[0]];

162 Part II: Working with PHP

Seed the random number generator only once per script. You might even

want to think about using a shared variable so that you can seed the gener-

ator only once, period, to deal with a problem that’s beginning to appear

more frequently as processors get faster. If processor speed continues to

increase and transaction volume increases, there is a ceiling to reach at

which point the random numbers stop being random because your micro
time() value is the same in two consecutive calls.

SHUFFLE() This function randomizes the elements in an array.

void shuffle (array array)

You will need to seed the random number generator before using it. For
instance:

srand ((double) microtime() * 1000000)
shuffle ($array);

SORT() If no second argument is given, this function will sort an array in ascend-
ing or alphabetical order.

void sort (array array [, int sort_flags])

The flags can be of two kinds:

◆ SORT_NUMERIC— Compare items numerically

◆ SORT_STRING— Compare items as strings

If the array you wish to sort contains only numbers, PHP will sort it numerically;
if the array contains only strings, it will be sorted alphabetically. If the array con-
tains both strings and numbers, it defaults to sorting by a string.

PHP offers many other ways to sort arrays. Please look at the manual entries

for arsort(),ksort(),rsort(), and usort().

Object/class functions
PHP has a number of functions concerned with classes (which are templates from
which objects are created) and objects themselves. The examples in this book use a

Chapter 6: PHP’s Built-in Functions 163

few functions that retrieve information about the defined objects, classes, and
methods. Here they are.

is_a()
Use this function to determine whether a given object is an instance of a given class
or an instance of a class descended from the given class. Specify the object in the
first argument and the class name in the second; the function will return TRUE if the
one is an instance of the other.

bool is_a (object object, string class_name)

is_object()
This function, much like the other is_ functions, returns TRUE if the argument is an
object, and FALSE otherwise.

bool is_object (mixed var)

get_class()
Given an object, this function returns the name of the class of which the object is
an instance.

string get_class (object obj)

get_object_vars()
Given an object, this function returns an associative array containing the object’s
current properties.

array get_object_vars (object obj)

method_exists()
Given an object and a method name, this function returns TRUE if the method
(function) is defined for the object.

bool method_exists (object object, string method_name)

Print functions
Several functions enable you to print information to the screen. Only two pop up in
this book, but you should be aware of all the functions listed in this section.

PRINT FUNCTIONS USED IN THIS BOOK
In this case the word “functions” may be something of a misnomer. For instance,
print() is probably better described as a language construct. (The useful difference

164 Part II: Working with PHP

is that you are not required to use parentheses around the arguments.) In any case,
you will use all of these very much as you will use functions; thus, they are included
here.

PRINT() As you would expect, this prints what you specify.

void print (string str)

ECHO() This also isn’t a function, but a language construct. We use it constantly
throughout this book, so at this point you probably know what it does.

void echo (string str1 [, string strN ...])

Keep in mind that you can mix variables and literal strings within double quotes:

$var = “this string”;
echo “Please print $var”;

This will print Please print this string.
However, within single quotes the string will be treated literally:

$var = “this string”;
echo ‘Please print $var’;

The preceding code will print Please print $var. The concept of mixing vari-
able names and string literals is discussed in greater detail in Chapter 4.

print versus echo. Which should you use? This is very much a matter of

personal preference: Use whichever you think looks better in your script.

There’s only one major difference between the two, and this may influence

your decision. echo can take multiple arguments. That is, with echo, differ-

ent portions can be separated by commas.This will work:

echo “this is part 1”, “this is part 2”;

But this will not:

print “this is part 1”, “this is part 2”;

PRINT FUNCTIONS NOT USED IN THIS BOOK
They didn’t come up here, but these are really important to know about.

Chapter 6: PHP’s Built-in Functions 165

SPRINTF()

string sprintf (string format [, mixed args])

This function can be used to output a string formatted according to a specified
C-style pattern. The parameters of the pattern are covered in detail in the online
PHP documentation (http://www.php.net/sprintf).

PRINT_R() This function is great for putting to productive use the time you’d oth-
erwise spend pulling your hair out. It prints the entire contents of any variable —
most notably arrays and objects — to the screen.

void print_r (mixed expression)

It is invaluable for debugging. We use it frequently when we’re not getting the
results we expect from arrays or objects.

Do not do print_r($GLOBALS).You will create a very large output.

VAR_DUMP() This function behaves like print_r, but gives you a bit more
information.

void var_dump (mixed expression)

In addition to printing out the contents of a variable, it includes the data type —
including the data type for each element in an array or object. The same caution
given for print_r() applies to var_dump().

Date/time functions
Dealing with PHP and MySQL as a team, you will have to get to know two sets of
date/time functions — and they are quite different. See Appendix J for detailed cov-
erage of MySQL’s time and date functions.

DATE/TIME FUNCTIONS USED IN THIS BOOK
The following are some date/time functions used in the applications in this book.

DATE() You can use this function and the indicators outlined next to return the
date and time.

string date (string format [, int timestamp])

166 Part II: Working with PHP

If you include a second argument, that time/date value will be formatted as you
prescribe. Otherwise, the current time and date will be used.

The time and date the functions return are based on the time on the server.

You will need to make use of JavaScript to get an idea of the time on the

client’s computer.

Often the second argument will be a product of the mktime() function,

which we discuss next.

You can format the date using any of the indicators in Table 6-1.

TABLE 6-1 INDICATORS FOR THE date() FUNCTION

Indicator Meaning

a am or pm

A AM or PM

B Swatch Internet time

d Day of the month, two digits with leading zeros; 01 to 31

D Day of the week, textual, three letters; for example, Fri

F Month, textual, long; for example, January

g Hour, 12-hour format without leading zeros; 1 to 12

G Hour, 24-hour format without leading zeros; 0 to 23

h Hour, 12-hour format; 01 to 12

H Hour, 24-hour format; 00 to 23

i Minutes; 00 to 59

I [capital i] 1 if Daylight Savings Time, 0 otherwise

j Day of the month without leading zeros; 1 to 31

Continued

Chapter 6: PHP’s Built-in Functions 167

TABLE 6-1 INDICATORS FOR THE date() FUNCTION (Continued)

Indicator Meaning

l (lowercase l) Day of the week, textual, long; for example, Friday

L Boolean for whether it is a leap year; 0 or 1

m Month; 01 to 12

M Month, textual, three letters; for example, Jan

n Month without leading zeros; 1 to 12

s Seconds; 00 to 59

S English ordinal suffix, textual, two characters; for example, th, nd

t Number of days in the given month; 28 to 31

T Time-zone setting of this machine; for example, MDT

U Seconds since the epoch (midnight, January 1, 1970)

w Day of the week, numeric; 0 (Sunday) to 6 (Saturday)

Y Year, four digits; for example, 1999

y Year, two digits; for example, 99

z Day of the year; 0 to 365

Z Time-zone offset in seconds; -43200 to 43200

For example, if you want to print the date in the format, June 5, 2003 4:22 pm,
this would do the trick:

echo date(“F d, Y g:i a”);

MKTIME() This function is most useful for calculating valid dates.

int mktime (int hour, int minute, int second, int month, int day,
int year [, int is_dst])

For example, say you have a form that collects a date — maybe the current month,
day, and year. You want to calculate and set a due date exactly 30 days from the
date submitted.

168 Part II: Working with PHP

$year = 2003;
$month = 5;
$day = 24;
echo date(“l F d, Y”, mktime(0,0,0,$month,$day+30, $year));

This will output 30 days from May 24, 2000, and will print out Friday June
23, 2000.

Keep in mind that this function enables you to add or subtract dates without
worrying that PHP will return a fictitious result. In the previous example, you could
subtract six from the month value of 5, and PHP would return a meaningful date.
You can add or subtract any number of years, months, or days without worrying
that PHP will return a bad result. For instance, the following is a perfectly accept-
able way to get date information about the last day of 1999:

$year = 2000;
$month = 1;
$day = 1;
echo date(“l F d, Y”, mktime(0,0,0,$month,$day-1, $year));

This code will let you know that December 31, 1999 was a Friday.
Notice that the preceding code first calculates the timestamp of the date indi-

cated by mktime() and then prints that out using the date function.
If you exclude arguments from the right, those parameters will be retrieved from

the current timestamp. So, to print what the date and time will be in five hours, this
will do the trick:

echo date(“l F d, Y g:i a”, mktime(date(‘H’)+5));

Note the nesting of functions here. Starting at the innermost function,
date(‘H’) returns the current hour, in 24-hour format. Then five is added to that,
and the timestamp is calculated for five hours in the future. The timestamp is then
formatted using the string indicated.

TIME() This function returns the current time measured in the number of seconds
since the Unix Epoch. The Unix Epoch is the beginning of time in Unix terms — the
time with timestamp 0. It’s arbitrarily defined as January 1 1970 00:00:00 GMT.

int time(void);

MICROTIME() This function returns the string msec sec where sec is the current
time measured in the number of seconds since the Unix Epoch (0:00:00 January 1,
1970 GMT), and msec is the microseconds part.

string microtime(void);

Chapter 6: PHP’s Built-in Functions 169

This function is only available on operating systems that support the gettime
ofday() system call.

The returned string will look something like 0.12082400 969034581. You can
be reasonably sure that this function will never return the same number twice. It is
often used to seed the random number generator.

DATE/TIME FUNCTIONS NOT USED IN THIS BOOK
A few other time/date functions may prove useful to you. They include several for
printing the current date and time. If you need to know about something specific
that isn’t discussed here, take a look at the manual: http://www.php.net/manual/
ref.datetime.html.

File-system functions
PHP has a whole range of functions that enable you to manipulate files and direc-
tories on the host computer. In the course of creating applications for this book, we
encountered only one instance in which files needed to be written to or taken from
the file system: in the Catalog and Shopping Cart applications, when we needed to
provide the user with the ability to store images that have been uploaded. But if
you work with PHP frequently there’s little doubt that you will need to become
familiar with these functions. By way of introduction, we will say that the directory
and file-system functions in PHP are simply terrific. The PHP developers have
really done a great job of making working with files, either on the local system or
elsewhere on the Internet, a piece of cake. Just to give a quick example, it took
about two minutes to write the following script, which will grab a stock quote from
a site we will not specify for legal reasons.

$farray = file(“http://domain.com/stockquote?symbols=ORCL”, “r”);
foreach ($farray as $value)
{

if(ereg(“last:.*$”, $value))
{

$value = strip_tags($value);
break;

}

}

This brief script slurps up an entire page and assigns each line to an element in
the $farray. We then loop through the array looking for the string last. On the
site we played with, the word “last” indicates the most recent quote. All we had to
do was strip the HTML tags, and we had all the information we needed. If we had
wanted to, we could have done some more string processing to format the informa-
tion in a way we liked.

170 Part II: Working with PHP

FILE SYSTEM FUNCTIONS USED IN THIS BOOK
If you would like to see these in use, check out Chapters 12 and 14.

FOPEN() This function opens a file pointer to the indicated file or URL in the first
argument. (The pointer is very much like the result identifier returned by
mysql_connect().)

int fopen (string filename, string mode [, int use_include_path])

The mode determines what you can do with the file. Table 6-2 shows the avail-
able modes.

TABLE 6-2 MODES FOR THE fopen() FUNCTION

Mode Meaning

r Open for reading only; place the file pointer at the beginning of the file.

r+ Open for reading and writing; place the file pointer at the beginning of the file.

w Open for writing only; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file does not exist, attempt to create it.

w+ Open for reading and writing; place the file pointer at the beginning of the file
and truncate the file to zero length. If the file does not exist, attempt to create it.

a Open for writing only; place the file pointer at the end of the file. If the file does
not exist, attempt to create it.

a+ Open for reading and writing; place the file pointer at the end of the file. If the
file does not exist, attempt to create it.

Note that this function returns a resource identifier. If you wish to read from or
write to a file you will need to do something like this:

//open a file and read contents into a variable
$filename=”test99.txt”;
$fp = fopen($filename, “r+”) or

die(“could not open $filename”);
$contents = fread ($fp, filesize($filename));
//replace all occurrences of Jayson
$new_contents = str_replace(“Jayson”, “Jay”, $contents);
//write out new file contents.

Chapter 6: PHP’s Built-in Functions 171

rewind($fp);
fwrite($fp, $new_contents);
//ftruncate assures there won’t be extra
//characters if the resulting file is shorter
//than the original.
ftruncate($fp,ftell($fp));
fclose($fp);

FCLOSE() This function closes the pointer to a file.

int fclose (int fp)

It is good form to use it when you are done with a file. If you don’t, PHP will do
it for you, just like mysql_close().

FWRITE()

int fwrite (int fp, string string [, int length])

fwrite() writes the value of the string argument to the file indicated by the file
pointer. The function returns a value of -1 if an error is encountered; otherwise it
returns the number of bytes it wrote successfully.

FREAD()

string fread (int fp, int length)

fread() reads from the file pointer given in the first argument the number of
bytes given in the second argument, or until the end of the file, whichever comes
first.

FEOF() This function tests whether a file pointer has reached the end of a file.

bool feof (int fp)

See the fgets() function for an example of feof().

FGETS() This function returns a single line from the file indicated by the file
pointer (usually taken from fopen()). If you are working with a large file, it’s easier
on the system to load files into memory one line at a time, rather than in one big
chunk as is done with fread().

string fgets (int fp, int length)

172 Part II: Working with PHP

This function will read a line up until a newline character. Optionally, you can
specify the maximum number of bytes to read within a line in the second argument.
The number 2048 is traditionally used in the second argument because on many old
file systems that was the maximum line length. These days, you’re safe using some-
thing larger. You shouldn’t use this function with binary files.

$fp = fopen(“/path/to/file”,”r”);
while ($fp && !feof($fp))
{

print fgets($fp,2048);
}
fclose($fp);

FILE() This function reads a file line by line, each line becoming an element in an
array.

array file (string filename [, int use_include_path])

UMASK() This function sets the umask value (see your Solaris man page — man
umask— if you don’t know what this is).

int umask (int mask)

umask() sets PHP’s umask to mask & 0777 and returns the old umask.

FILE_EXISTS()

bool file_exists (string filename)

If the local file specified in the argument exists, this function returns TRUE.

file_get_contents()

string file_get_contents (string filename [, int use_include_path])

The contents of the file specified in this function’s argument are returned in a
string. If the optional second argument is set to 1, the function looks for the file in
the include path specified in the configuration.

COPY() This function makes a copy of the file in argument one and copies it to
the location in argument two.

bool copy (string source, string dest)

Chapter 6: PHP’s Built-in Functions 173

If the copy works, the function returns TRUE. If not, it returns FALSE. This func-
tion is used in Chapter 12.

TEMPNAM() This function creates a unique file name in the directory indicated in
the first argument.

string tempnam (string dir, string prefix)

The string prefix in argument two will be placed before each file name. This can
help you keep track of what files belong to what scripts.

DIRNAME() This function will return the directory name of the supplied string.

string dirname (string path)

For example,

echo dirname(“/www/htdocs/testfile.txt”);

will return

/www/htdocs

MKDIR()

int mkdir (string pathname, int mode)

This function creates in the local file system a directory with the name pathname
and the permissions given by the octal integer mode. Permissions in this form are
governed by standard Unix rules, nicely explained by Linux vendor Slackware
here: http://www.slackware.com/book/index.php?source=x2163.html.

IS_DIR()

bool is_dir (string pathname)

If the argument is an existing directory, this function returns TRUE.

IS_UPLOADED_FILE()

bool is_uploaded_file (string filename)

If the specified file was uploaded via HTTP by the user, this function returns
TRUE. It is useful for determining that the files a script is operating on are not
native system files.

174 Part II: Working with PHP

MOVE_UPLOADED_FILE()

bool move_uploaded_file (string filename, string destination)

This function incorporates the functionality of is_uploaded_file(). It first
checks whether the argument file name was uploaded via HTTP POST, and, if so,
moves it to the destination location. If it is not an uploaded file, the function
returns FALSE.

BASENAME()

string basename (string path [, string suffix])

Given a file path, this function will cut off all elements of the path except the
base file name. If a suffix is given as an optional argument, that suffix will also be
cut off of the file name. For example:

$path = “/www/htdocs/testfile.txt”;
echo basename($path, “.txt”);

will output

testfile

REALPATH()

string realpath (string path)

Given a pathname containing symbolic links or ../ shortcuts, realpath() will
return an absolute pathname with none of these components.

FILE SYSTEM FUNCTIONS NOT USED IN THIS BOOK
File system functions are an important topic, and one you should spend some time
learning about. Most of the more popular file system commands are available
through PHP, and many commands are available for opening, reading, writing, and
displaying files. But, as this book deals with a relational database for data storage,
we will not cover them here.

Script Control functions
This is a group of functions and language constructs that can be used to control the
execution of PHP scripts.

Chapter 6: PHP’s Built-in Functions 175

call_user_func()

mixed call_user_func (callback function [, mixed parameter [, mixed ...]])

This function takes a user-defined function as its argument and calls the func-
tion, passing it any parameters given.

call_user_func_array()

mixed call_user_func_array (callback function [, array parameters])

This function is fundamentally the same as call_user_func(), with the differ-
ence that, instead of passing a single parameter or list of parameters, it passes an
array to the called function.

die()

void die ([string status])

This function outputs the argument string and then terminates the script. It is
used very commonly to abort a function when an error is encountered.

Note that this function is equivalent to exit().

eval()

mixed eval (string code)

This function is used to execute code stored in a variable. The function evaluates
and executes the code string contained in the argument, and returns the return
value of the code.

Using eval() with poorly escaped or terminated code will result in parse

errors that can be tricky to debug.

func_get_arg(), func_get_args(), and func_num_args()

mixed func_get_arg (int arg_num)

array func_get_args (void)

int func_num_args (void)

176 Part II: Working with PHP

When called within a function, these three functions give information about the
function’s arguments:

◆ func_get_args() returns an array consisting of the function’s argument
list.

◆ func_get_arg() returns argument number arg_num in the function’s
argument list.

◆ func_num_args() returns the number of arguments passed to the function.

Each of these functions generates a warning if it is not called from within a
user-defined function.

function_exists()

bool function_exists (string functionname)

If the function specified in the argument exists, this function returns TRUE. This
function can be useful for testing the runtime environment, although some func-
tions that exist may not be usable in the current configuration.

include(), include_once(), require(), and require_once()
These are special language constructs used to control the execution of scripts. Each
takes a PHP file name as an argument, and includes and evaluates the file in the
course of execution. require() and include() behave identically, with the differ-
ence that require() will generate a fatal error if the file to be included is missing,
whereas include() merely generates a warning.

include_once() and require_once(), as their names imply, will only include
the specified file if it has not already been included.

The format is simple:

include(remote_file);
include_once(remote_file);
require(remote_file);
require_once(remote_file);

Random number generator functions
Every now and then you will need to pick something at random. It may be an indi-
vidual element, or it may be something that has to do with randomizing an array
with shuffle() or getting a random element from an array with array_rand(). In
any case you will need to make use of PHP’s random number generator functions.

Note that the random number generator needs to be seeded before use. That is, it
has to be given a number that is reasonably unique to begin with. For this, as you
will see, the microtime() function will be of great use.

Chapter 6: PHP’s Built-in Functions 177

Keep in mind that really two sets of random number generators exist. There are
the standard rand(), which doesn’t take a seed, and srand(), which does and
which you need in order to seed the generator for shuffle() and array_rand().
However, if you just want to get a random number and not use it with any other
functions, use the mt functions described below — they’re faster and more random.

Now we examine some important random number generator functions used in
the applications in this book.

mt_srand()
This function seeds your random number generator.

void mt_srand (int seed)

Use the following line and you can be sure your numbers will be plenty random:

mt_srand ((double) microtime() * 1000000);

Seed the random number generator only once per script.

mt_rand()
This function returns a random number. You can specify a minimum value and/or
a maximum value.

int mt_rand ([int min [, int max]])

So to get a random number between 1 and 100, do the following:

mt_srand((double)microtime() * 1000000);
$number = mt_rand(1,100);
echo $number;

rand()

int rand ([int min, int max])

rand() generates a (pseudo)random number between min and max.

mt_rand() returns better, faster results than rand().

178 Part II: Working with PHP

Session functions
These are explained in detail in Chapter 14. Sessions are means by which state is
maintained between pages. Remember that HTTP, the language of the Web, does not
allow servers to remember much of anything between requests for pages from a
specific user. Sessions allow the server to keep track of activities by a single user.

MySQL functions
These functions are explained in detail in Appendix J.

A total of 48 MySQL functions are available in the library. Only about a third of
these are used in the applications in this book. You may find uses for some of the
other MySQL functions in your applications, but you probably won’t use all of them.

HTTP header functions
Three vital HTTP header functions exist, both of which you will need to get to know.

header()
If you are going to be communicating with the browser or with other HTTP servers,
this is the function to use.

int header (string string)

Essentially, you can send any header that would be expected under RFC 2616
(ftp://ftp.isi.edu/in-notes/rfc2616.txt), which defines HTTP. The RFC itself
is a handful (and perhaps the sleepiest reading you’ll do all year). Here is a common
header you are likely to send:

header(“Location: http://www.php.net”);

This is nothing more than a redirect: It sends the browser to a page you specify.
If you have been working with straight HTML and JavaScript or the <META
type=refresh> tag to do your redirects, you should switch to this type of header
whenever possible. It will work for all browsers and the redirection will be totally
transparent to the user.

IMPORTANT — no, make that VERY IMPORTANT — you cannot send a header

after anything — ANYTHING — has been sent to the browser. If you send a

header after even a hard return, you will get an error. If you send a hard

return before your opening <?php tag, you will get an error. If there is a hard

return in an included file that precedes your header() function, you will

Chapter 6: PHP’s Built-in Functions 179

get an error. This should not be a problem you encounter frequently; your

pages should be designed so that most of the logic is handled prior to the

display. However, if you have a situation you just can’t work around, take a

look at the output buffering functions.

setcookie()
This is basically a specialized header function, because a cookie is set by nothing
more than a specific HTTP header.

int setcookie (string name [, string value [, int expire [, string
path [, string domain [, int secure]]]]])

The first argument will be the name of the cookie. The second will be the value.
The expire value should be set with the time function. The following is a pretty
typical use of setcookie():

setcookie(“id”,$id_val,time()+(24*60*60),”/”,”.domain.com”,0);

This will set a cookie that will expire in 24 hours (24 × 60 × 60). The cookie will
be available to every directory within domain.com. If you want to restrict it to a
specific directory, you can change the / to a directory name.

You can find more on cookies in Chapter 4 in the discussion on variables.

In some versions of Internet Explorer, you must either give both time and

path values or neither.

header_sent()
This function can keep you from sending headers after some text has been sent to
the browser.

bool header_sent(void)

180 Part II: Working with PHP

If you are relying heavily on this function, you are probably not coding your

pages properly.

Image functions
PHP provides very powerful functions for generating and manipulating images.

IMAGE FUNCTIONS USED IN THIS BOOK
Here is a rundown of the image functions used in this book.

GETIMAGESIZE()

array getimagesize (string filename [, array imageinfo])

Given an image file as argument, this function returns an array containing the
width of the image in pixels, the height of the image in pixels, a numeric flag con-
taining the type of the image, and a text string containing the dimensions that can
be used directly in an HTML IMG tag. Valid numeric flags include 1 for GIF, 2 for
JPEG, and 6 for BMP.

So, given a JPEG of 468 × 60 pixels, getimagesize() would return the following:

Array
(
[0] => 468
[1] => 60
[2] => 2
[3] => height=”60” width=”468”
)

IMAGECOPYRESIZED()

int imagecopyresized (resource dest_im, resource src_im, int destX,
int destY, int srcX, int srcY, int destW, int destH, int srcW, int
srcH)

This function is used to copy part of one image (referred to above as a
resource), delineated by rectangular X and Y coordinates and offset, to another
image. The arguments it takes are as follows:

◆ The destination image identifier

◆ The source image identifier

Chapter 6: PHP’s Built-in Functions 181

◆ The starting X coordinate on the destination image

◆ The starting Y coordinate on the destination image

◆ The starting X coordinate on the source image

◆ The starting Y coordinate on the source image

◆ The width in pixels of the destination image

◆ The height in pixels of the destination image

◆ The offset width to take from the source image

◆ The offset height to take from the source image

IMAGECREATE()

resource imagecreate (int x_size, int y_size)

This function creates a new image with the given dimensions, and returns its
identifier.

IMAGECREATEFROMSTRING()

resource imagecreatefromstring (string image)

This function creates a new image from the image stream given in the argument
string, and returns its identifier.

IMAGEPNG()
int imagepng (resource image [, string filename])

Given an image identifier, imagepng() outputs an image stream, in PNG format,
to either the user’s browser or, if it is given a file name as a second argument, to the
specified file.

IMAGESX(), IMAGESY()

int imagesx (resource image)

int imagesy (resource image)

These two functions return the dimensions of the referenced image: imagesx()
returns the width, and imagesy() returns the height.

182 Part II: Working with PHP

IMAGETYPES()

int imagetypes (void)

This function checks the configuration of the GD library that PHP is using to see
which image types are supported. It returns a bitmask containing a value that cor-
responds to the AND sum of the constants that represent each image type. You can
test for PNG support, therefore, with code like the following:

if (imagetypes() & IMG_PNG)
echo “PNG support is enabled.”;

}

EXIF_IMAGETYPE()

int exif_imagetype (string filename)

exif_imagetype() examines an image file and determines the type of image it
is, returning a numeric code, or FALSE if it is not a recognizable image type. PHP
must be compiled with — enable-exif.

Refer to the online PHP manual (http://www.php.net/manual/en/ref.image.
php) for a list of image types and their codes.

EXIF_THUMBNAIL()

string exif_thumbnail (string filename [, int width [, int height [,
int imagetype]]])

If an image contains an embedded thumbnail, this function will retrieve the
thumbnail as a data stream. For example:

<?php
$thumb= exif_thumbnail($imagefile, 40, 50);
echo $thumb;
?>

If the preceding code is stored as a file called thumbnail.php, a subsequent HTML
call to this file as an image will display the thumbnail:

Mail function
If you have Sendmail or another suitable email program installed on your system,
this function will take all the fuss out of sending email from your PHP pages.

Chapter 6: PHP’s Built-in Functions 183

Sendmail is the program most commonly used with PHP’s mail function,but

qmail with Sendmail wrappers will work, and Pegasus (http://pegasus.
usa.com/) can apparently work on Windows (though we haven’t tested it).

The mail() function sends an email from your PHP script.

bool mail (string to, string subject, string message [, string
additional_parameters])

Your basic email will look like this:

mail(“name@domain.com”,”Subject Text”, “The complete message goes here”);

And if you want to get a little fancier and include a From and a Cc:, use the
following:

mail(“jay@trans-city.com”,”Test Message”, “Here I am”,
“From: Jay G\r\nCc: webmonkey@trans-city.com\r\nReply-to:
myname@mydomain.com”);

Additional parameters have been added in the fourth argument, and the differ-
ent parameters are separated by line feeds and newlines (\r\n).

If you want to set up a large email system, don’t use PHP. Better tools are out

there. This function is intended for sending an occasional email from within

PHP scripts.

If you’d like to send attachments in your PHP email, check out this excellent

article at phpbuilder.com: http://phpbuilder.com/columns/
kartic20000807.php3.

URL functions
If you’ve ever looked at a query string, you may have noticed that the text you
entered into your form fields has been changed. For examples, spaces are turned
into plus signs (+) and each ampersand (&) becomes %26. Many other characters are
encoded. (All non-alphanumeric characters other than the hyphen (-), underscore
(_), and dot (.) are replaced by a percent sign (%) and two characters).

184 Part II: Working with PHP

On occasion you will need to encode or decode text. For that you will use the
functions below.

urlencode()
This function encodes a string so that it’s URL-ready. Most often you will use this
function if you want to send variable information to another page.

string urlencode(string str)

For example:

$myvar=”this string with weird &* stuff”;
$encoded = urlencode($myvar);
header(“Location: http://www.mydomain.com?var=$encoded”);

Notice that this code snippet has only encoded the values of a querystring ele-
ment. If you were to urlencode the entire URL, you would not be happy with the
results. The result of this code

urlencode(“http://www.mydomain.com”);

is http%3A%2F%2Fwww.mydomain.com.

urldecode()
This function undoes the encoding process. It’s usually unnecessary because the
variable created from your GET or POST data is decoded in your variables.

string urldecode(string str)

rawurlencode()
This function returns a string in which all non-alphanumeric characters except the
hyphen, underscore, and dot have been replaced with a percent (%) sign followed by
two characters.

string rawurlencode(string str)

This is the encoding described in RFC 1738 for protecting literal characters from
being interpreted as special URL delimiters, and for protecting URLs from being
mangled by transmission media with character conversions (like some email sys-
tems). For historical reasons, spaces are encoded as plus (+) signs.

rawurldecode()
This function unencodes according to the same provisions as rawurlencode().

string rawurldecode(string str)

Chapter 6: PHP’s Built-in Functions 185

base64_encode()
This function encodes a specified string in such a way as to eliminate all possible
control characters, meaning the string can be sent over any transmission medium
without the need to worry that the string could be interpreted as a command.

string base64_encode(string str)

base64_decode()
This function undoes what base64_encode() does. That is, it converts the encoded
string back into its original form.

string base64_decode(string str)

Error functions
PHP gives you a high level of control over how errors are handled and reported to
the user. Here is an overview of some of the important error-handling functions that
are offered.

error_reporting()
This function sets the level of error reporting.

int error_reporting ([int level])

Possible levels of reporting are:

◆ 0— No reporting

◆ 1— Errors

◆ 2— Warnings

◆ 4— Parse errors

◆ 8— Notices

You are encouraged to use the predefined named constants instead of raw num-
bers: E_ERROR, E_WARNING, E_PARSE, E_NOTICE, E_ALL, and so on. See the online PHP
documentation (http://www.php.net/manual/en/function.error-reporting.
php) for more details about levels of error reporting.

If you want a particular expression to cast no errors, you can prefix it with the @
operator.

error_log()

int error_log (string message [, int message_type [, string
destination [, string extra_headers]]])

186 Part II: Working with PHP

If you want to log a custom error message, this is the function to use. It can send
a message to the server’s logger (as specified in the error_log directive), to an
email address, or to a file.

set_error_handler()

string set_error_handler (callback error_handler)

In scripts in which errors must be handled by a custom function,
set_error_handler() enables you to specify that function. All error messages (as
controlled by error_reporting()) are sent to the specified function.

trigger_error() and user_error()

void trigger_error (string error_msg [, int error_type])
void user_error (string error_msg [, int error_type])

These two functions are synonymous. Both send a user-level error message.

Output buffering
Output buffering is the process of writing the results of your script to a temporary
buffer. Instead of being sent out over the Web the results will gather in a buffer,
where you can manipulate them if you wish.

Probably the most common use of output buffering is to ensure that you don’t
get errors caused by sending headers after text has been sent to the browser. To pre-
vent this from happening you can start a buffer, write some of an HTML page to the
buffer, and then, given a specific condition, write a header (maybe a cookie), and
then output the rest of the page. When you flush the buffer, the contents will be
written to the browser without error.

If you are frequently using buffering to prevent headers from causing

errors, rethink your page logic. Decisions first, output second.

People have also been playing with using output buffering to gzip page con-
tents. In browsers that are capable of unzipping, the page can be downloaded a lot
faster this way. However, given browser craziness, we don’t recommend this.

BUFFERING FUNCTIONS USED IN THIS BOOK
Object buffering allows you to cache instances of object in a region of memory,
making them easily accessible across multiple sessions. Quite a few object-buffering
functions exist. We used very few of them.

Chapter 6: PHP’s Built-in Functions 187

OB_START() This function starts the buffer.

void ob_start(void)

FLUSH() This function clears the buffer.

void flush(void)

OB_END_CLEAN(), OB_END_FLUSH()

void ob_end_clean (void)

void ob_end_flush (void)

These two functions both turn off output buffering, but ob_end_flush() sends
the contents of the buffer to output first, whereas ob_end_clean() deletes the con-
tents of the buffer without sending them.

BUFFERING FUNCTIONS NOT USED IN THIS BOOK
Check the online manual for some more sophisticated buffering functions.

Information functions
These functions will give you information about the environment in which you are
working.

phpinfo()

int phpinfo ([int option])

This is your guide to all that is available in your PHP environment. Use it. Use it.
Use it. And then take it off your system. There’s no point in letting crackers get a
look at the specifics of your system.

The option argument specifies what you want information about, such as
installed modules. Have a look at the manual page (http://php.net/phpinfo) for
a list of legal option values.

phpversion()

string phpversion (void)

This function returns only the version of PHP you are using.

188 Part II: Working with PHP

php_sapi_name()

string php_sapi_name (void)

This function returns a string indicating the type of Server Application
Programming Interface (SAPI) interface that exists in the current configuration. For
example, if the CGI version of PHP is running, the string will be cgi.

extension_loaded()

bool extension_loaded (string extensionname)

This function returns TRUE if the input PHP extension is loaded, and FALSE if it
is not.

ini_get()

string ini_get (string varname)

This function returns the value of a PHP configuration option.

ini_set()

string ini_set (string varname, string newvalue)

This function assigns a new value to a PHP configuration option. Refer to the
PHP online documentation for information on which options can be controlled by
this function.

Summary
As you’ve seen, PHP has more functions than you will be able to commit to mem-
ory anytime soon. It can seem intimidating, but the quantity and quality of these
functions are what make PHP such a great language. Most anything you need to do
can be done quickly and painlessly.

At first you may need to study and play with the functions in order to get them
to work. But in time it will get a lot easier. You’ll be making use of more and more
functions, and keeping your scripts more compact and easier to read.

Chapter 6: PHP’s Built-in Functions 189

Chapter 7

Writing Organized and
Readable Code
IN THIS CHAPTER

◆ Keeping your code tidy

◆ Understanding the power and convenience of functions

◆ Using object-oriented code

◆ Learning the importance of comments

THIS CHAPTER PRESENTS a run-through of the preferred ways to present and orga-
nize code. Along the way you will see how to construct functions and classes in
PHP. By the end of this chapter you should have a good idea of how write efficient,
readable applications in PHP, and you should be ready to dive into the applications
in Parts III and IV of this book.

Indenting
If you have done coding in any language, this point should be pretty obvious. But
it is an important point and, therefore, deserves some mention. In the type of cod-
ing needed for Web applications, following a few indenting rules can help make
your life a little easier.

How far should you indent? Some feel that each level of code should be

indented by three spaces. Others, like us, think a single tab is the way to go. If

you use spaces, it is possible that your code will look terrible in a different

text editor (maybe the one used by your co-worker). We believe tabs are a

better choice anyway, but some people have the opposite opinion with the

same motivation. So really, what’s important is consistency.

191

Code blocks
The most obvious use of indenting comes in differentiating blocks of code. For
instance, it is fairly typical to have an if block within a while loop:

$i = 0;
while ($i < 100)
{

$i++;
if ($i < 50)
{

echo “Within the first 49.”;
}
else
{

echo “Between 50 and 99.”;
}

}

As you can see in this PHP code, each block is delimited by curly braces ({});
this goes for both while loops and if blocks. When a block is entered with an
opening curly brace, the next line should be indented. Each line following at the
same level of execution should be indented at the same level. Additional nested
blocks should be indented another level.

Looking at the preceding brief snippet of code, it is easy enough to see that it
contains three distinct blocks. This might not seem like such a big deal with a small
bit of code like this, but as scripts get longer, and levels of nesting get deeper, you
will see how important it can become. We’re not going to belabor this point because
it should be pretty clear. But, for a quick example, we present the previous code
without indents. Note that it works just fine — PHP doesn’t care if you don’t write
your code neatly. But imagine coming back to this a month after you wrote it and
having to troubleshoot or add code. Life is a lot easier if you can easily find the
block that needs work.

$i=0;
while ($i < 100)
{
$i++;
if ($i < 50)
{
echo “Within the first 49.”;
}
else
{

192 Part II: Working with PHP

echo “Between 50 and 99.”;
}
}

If you like, you can even run everything together, like this:

$i=0; while ($i < 100) {$i++; if ($i < 50) { echo “Within the
first 49.”; } else { echo “Between 50 and 99.”; } }

The interpreter truly does not care. Indeed, you’ll sometimes see code generated
by other programs that looks that way. Such organization is obviously a nightmare
to analyze and maintain.

You can also omit some of the braces, like so:

$i = 0;
while ($i < 100)
{

$i++;
if ($i < 50)

echo “Within the first 49.”;
else

echo “Between 50 and 99.”;
}

This is an easy way make your code a little more compact, and in some ways
easier to read, if — and let’s stress that if — you’re writing simple if-else statements
like this one. Remember, though, indenting alone does not a code block make. This
code:

$i = 0;
while ($i < 100)
{

$i++;
if ($i < 50)

echo “Within the first 49.”;
else

echo “Between 50 and 99.”;
echo “ (which is getting up there)”;

}

will not treat those last two echo statements the same, even though it looks like
it might. In fact, the preceding code is equivalent to the following:

$i = 0;
while ($i < 100)

Chapter 7: Writing Organized and Readable Code 193

{
$i++;
if ($i < 50)
{

echo “Within the first 49.”;
}
else
{

echo “Between 50 and 99.”;
}
echo “ (which is getting up there)”;

}

When in doubt, use braces.

Are you getting a parse error you can’t identify? Make sure you have an iden-

tical number of opening and closing curly braces and parentheses. If you

have, for example, five closing curly braces in a page and only three opening

ones, you haven’t opened at least two of your code blocks. Most code

editors — which are really just text editors with a few extra features for

programming — enable you to park your cursor on a single brace and either

use a hotkey combination to find its match or highlight the block of code it

marks. If the matching brace or marked region isn’t what you expect, you

know how to advance further down the road to bug-free code.

Function calls
Indenting code should not stop at code blocks. Often you need to use nested func-
tion calls or complex variables that take up several lines. You will be much happier
in your coding life if you use indents in these situations. Take a look at the follow-
ing, which is borrowed from the Catalog application:

$file_ext = strtolower(
substr(

$file
, strrpos($file,”.”)

)
);

The purpose of this code is pretty simple: It takes the name of a file and assigns
its extension (the characters following the final dot (.)) to $file_ext. It takes three
separate built-in PHP functions to get this done. PHP executes the innermost level

194 Part II: Working with PHP

first. There, strrpos() finds the numeric position of the final dot. For example, for
the string myfile.jpg it would return 6. Then the substr() function returns only
the characters following the dot. Finally, that string is set in lowercase characters.

This code can be written on one line, but as you can see, it becomes rather diffi-
cult to read:

$file_ext = strtolower(substr($file, strrpos($file,”.”)));

Or maybe you find this easier to read. A lot of things we talk about in this

chapter are matters of personal preference. The important thing is that you

spend a lot of time considering how to make your code as readable as possi-

ble. On the other hand, if you plan to share your code with others (especially

via public repositories like SourceForge), you should adhere to style conven-

tions. There doesn’t appear to be an official (or generally recognized) docu-

ment that describes PHP-coding style conventions. The PEAR folks have a

style guide you might want to peruse, at http://pear.php.net/
manual/en/standards.php.

In the first example of this code, it’s much easier to see what each of the closing
parentheses relates to, and you can more quickly get an idea of what the code
accomplishes and how.

You might be tempted to write the preceding code using temporary assign-

ments to variables.That would look something like this:

$file_ext = strrpos($file, “.”);
$ext_letters = substr($file, $file_ext);
$lower_ext_letters = strtolower($ext_letters);

But this code is slower at execution time (not to mention at coding time),

though a code optimizer could reduce the problem. Variable assignments

do take time, and in a short piece of code where they aren’t necessary, stay

away from temporary-variable assignment.That said, you should avoid sacri-

ficing readability. In some places temporary variables can help make code

much easier to read. And there are circumstances when using a temporary

variable speeds up your code — by avoiding repetition of a function call

whose results aren’t going to change, for example:

$len = count($array);
for ($i = 0; $i < $len; $i++)
{

Chapter 7: Writing Organized and Readable Code 195

...
}

In neither case is the speed difference phenomenal. So, as usual, it ends up

being a question of what makes the most sense for you.

SQL statements
In Web-database applications, SQL statements are interspersed throughout PHP
code. Usually PHP variables are included within SQL statements to get specific
results based on variable data. Indenting SQL statements helps keep the code read-
able and maintainable. In the following example we show you a few examples of
SQL statements of various types. You can see many examples of these in the appli-
cations in Parts III and IV of this book.

//2 table select
$query = “select n.fname, n.lname

, c.co_name, c. co_address, c.co_zip
from names n, companies c
where n.name_id = $name_id

and n.co_id = $c.co_id
“;

//update query in heredoc style
$query = <<<EOQ
update products
set product = ‘$product’

, description = ‘$cleandsc’
, price = $nullprice
, image_src = $nullimage_src

where product_id = $product_id
EOQ;

//insert query
$query = “insert into products (category_id, product)

values ($category_id, ‘$product’)
“;

We’ve heard stories of database engines refusing to process queries that,

like the ones preceding, have newlines in them. This issue is not a problem

with MySQL and won’t be a problem with most database engines. However,

196 Part II: Working with PHP

there are other perfectly acceptable ways to write queries that do not put

newlines in the queries, yet show indenting to the reader. Here are a couple

of examples using the concatenation operators:

$query = “select col_1, col2 “;
$query .= “ from table_1, table_2 “;
$query .= “ where col_1 = $var”;

or

$query = “select col_1, col_2 “
. “ from table_1, table_2 “
. “ where col_1 = $var”

;

Choose whichever you like best.

Includes
Every language has a facility for including external files. PHP has four commands
that enable you to do this. Before we get to those, we briefly discuss why includes
are so critical for writing organized and readable code. And we start with a very
common example.

In most Web sites, header information varies little from page to page. There are
opening tags (<HTML>, <HEAD>, and so on) and perhaps some navigation informa-
tion. The following is a typical HTML-page header:

<HTML>
<HEAD>

<TITLE>My Page Name</TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8E0402” vlink=”#20297C”>

It is an absolute waste to type this text into every file within a Web site.
Moreover, it can be a real pain. Suppose you want to change the bgcolor attribute
of the <body> tag throughout the site. If this information were hard-coded in every
file, you would have no choice but to either go into each file individually and make
the change or write a script to do it for you.

You are far better off keeping all of this information in a single file (maybe
called header.php) and then using a command that spits the contents of that file
into the file being accessed. For this, you can use one of the PHP functions dis-
cussed in the next section. For this example we use include().

Chapter 7: Writing Organized and Readable Code 197

You might want to give your include files a distinct extension — .inc is a typ-

ical choice. One advantage of this approach is that the files can’t be run

directly from a browser, since the Web server is (usually) not configured to

recognize .inc as a PHP file. You can also store your include files outside of

your Web server’s document path for even more security (since some

servers respond to unknown extensions by printing out the file — oops,

there’s your source code.)

Suppose you have two files, header.php and index.php. (Notice that we have
made an important change in header.php: The <TITLE> tags now contain a PHP
variable.)

<HTML>
<HEAD>

<TITLE> <?php echo $page_title; ?> </TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8E0402” vlink=”#20297C”>

You may have seen code like the above written like this:

<TITLE> <?= $page_title ?> </TITLE>

These “short tags” involve less typing, it’s true, but whether or not they work

is dependent on how PHP is configured. They’re likely to be disabled by

default, now or in future releases, so you should avoid using them.

Now for the index.php file:

<?php

$page_title = “Welcome to My Site”;
include(‘header.php’);

echo “Here are the contents of my PHP pages. Anything could be
here.”;

?>

Notice that the variable $page_title is visible to the file pulled in by the
include statement. When index.php is served, the resulting HTML page will be as
follows:

198 Part II: Working with PHP

<HTML>
<HEAD>

<TITLE> Welcome to My Site </TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8E0402” vlink=”#20297C”>

Keep any code, whether HMTL or PHP, that is needed in a variety of pages within
include files. Header and footer information, database-connection code, and pages
that contain functions or classes are all good candidates for includes.

At the start of an included file PHP reverts to HTML mode. If code within the

file needs to be parsed as PHP, you must first indicate that with the <?php
marker.

PHP contain a variety of commands that do slightly different things with
included files. We look at these commands in the following sections.

include() and require()
These commands are very similar and can usually be used interchangeably.
However, you should know what distinguishes the two, because at times using the
wrong one can cause problems.

The primary difference is indicated by the names. The require() command fails
with a fatal error if it can’t find the file it is trying to import; the file is “required”
to continue. The include() command, on the other hand, issues a non-fatal error
(which you can block with the @ operator) only if it can’t find the file, and PHP
continues processing your script.

include_once() and require_once()
In addition to include() and require(), PHP provides include_once() and
require_once(). These are provided to keep you, the developer, from stepping on
your own toes. As you might expect, they keep you from including the same file
twice, which, were it possible, could cause some problems when it comes to calling
user-defined functions.

For example, suppose you have a file that contains a function, but that the func-
tion relies on another function from an outside file. Your file would contain lines
like these:

require ‘helpful_file.php’;
function short_function()
{

Chapter 7: Writing Organized and Readable Code 199

[...]
the_function_from_helpful_file();

}

Suppose you give the name short_function.php to the file containing the preced-
ing lines. Later, if you try to include both short_function.php and helpful_file.php in
a third file, you’ll have a problem. The second time that helpful_file.php gets
included, it will try to redeclare functions that have already been declared once.
PHP will not let you do this and will spit out an error. So in cases like this use
include_once() or require_once(). Note that if files are included more than
once you might also have a problem dealing with variables that inadvertently over-
write each other.

User-Defined Functions
Chapter 6 shows many of the functions built into the PHP processing engine. If you
are a humble person and look at Appendix F or visit the online PHP manual, you
should be duly impressed by the quantity and power of PHP’s built-in functions.
But it isn’t enough — and no matter how much work the able developers put into the
language, it never will be enough. That is because every developer on the planet
has unique needs. You need to accomplish specific tasks, and you need to do it in
ways that fit your own styles and predilections.

User-defined functions enable you to create blocks of code that achieve specific
tasks. The great thing about user-defined functions is that the code becomes
reusable. Any piece of code that you find yourself writing over and over should be
committed to a function. This saves you time in the long run.

In the applications presented in this book nearly all of the code is within

functions.The files that you see in your browser typically result from a num-

ber of function calls.This approach helps to keep things readable.

Function basics
You can start by writing a simple function that writes out the start of an HTML
table.

function start_table()
{

echo “<table border=1>\n”;
}

200 Part II: Working with PHP

To call this function within your PHP page, you access it just like a built-in PHP
function:

start_table();

That’s easy enough. But what if you want the border to vary in given situations?
You can make the border a variable, and then in the function call specify the value
for border:

function start_table($border)
{

echo “<table border=$border>\n”;
}

start_table(1);

Now suppose that most of the time you want the border to be 1, but that you
want to be able to change the border within the function call. The following does
the trick:

function start_table($border=1)
{

echo “<table border=$border>\n”;
}

Here $border has been given a default value of 1. But you can overwrite that
value by specifying a different value when calling the function. For example, if you
call the function with the following command, the table has a border of 2:

start_table(2);

Once again, 1 is the default value, so if this function is called with the following
code the table border is 1:

start_table();

If you know your HTML, you know that the table tag can have multiple attrib-
utes: cellspacing and cellpadding are two others. You can add those to the
function, along with default values:

function start_table($border=1, $cellspacing=2, $cellpadding=2)
{
echo “<table border=$border cellspacing=$cellspacing
cellpadding=$cellpadding>\n”;
}

Chapter 7: Writing Organized and Readable Code 201

Then, in the call to this function you can alter any of these:

start_table(4,5,5);

The table created with this command has a border of 4, cellspacing of 2, and
cellpadding of 5.

The values that the function accepts are known as arguments. So the

start_table function shown here takes three arguments. The more

pedantic members of the audience might point out that the values sent to

the function are arguments, while the values received by and used within

the function are parameters. Practically speaking, they’re the same thing,

and you see the words used interchangeably all the time.

When constructing functions, be aware that if you wish to change one of the
default values in your function call, you must specify all the arguments that pre-
cede it (that is, that occur to the left of it). For instance, the first command in the
following code produces an error. However, the second one works and creates a
table tag with a border of 4, cellspacing of 3, and cellpadding of 2.

//this will cause an error
start_table(,5,5);
//this will work
start_table(4,3);

Also, if you don’t specify a default value for an argument in your function defi-
nition, then you must supply a value for it when you call it. If you had written the
start_table() function like this:

function start_table($border=1, $cellspacing=2, $cellpadding)

Then this call . . .

start_table(4,3);

would fail. You need to supply a value for $cellpadding, like this:

start_table(4,3,2);

Functions can accept more than simple variables; you can pass any of the scalar
types (string, integer, double), any array (numeric, associative, or multidimensional),
resources (like a MySQL connection handle), or objects. You might want to make

202 Part II: Working with PHP

use of a function that turns a PHP array (in other words, a list of stuff) into an
HTML unordered list (a visible list of stuff).

function create_ul($array)
{

echo “\n”;
foreach ($array as $value)
{

echo “$value\n”;
}
echo “\n”;

}

Returning values
Of course, your functions do more than print HTML. Functions can perform data-
base calls or mathematical computations or do some string handling. They can do
just about anything, and often you want to make the rest of the script aware of the
results of your function. You can do this by using the keyword return. When a
function hits the word return it leaves the function, and it returns whatever value
you specify — a variable, a Boolean value (TRUE or FALSE), or nothing at all, if that’s
what you prefer. (Note: a plain ‘return;’ statement is equivalent to ‘return NULL;’.)

function basic_math($val_1, $val_2)
{

$added = $val_1 + $val_2;
return $added;

}

You can then call this function and print the results:

$added_value = basic_math(5,4);
echo $added_value;

If fact, the following works equally well:

echo basic_math(5,4);

Functions can return any variable type (strings, object, arrays, and the like), or,
in the case of database calls, they can return result identifiers. Additionally, func-
tions can return FALSE. If you read Chapter 5, you might remember that in PHP any
non-zero, non-false value is evaluated in an if statement as TRUE. So you might
want to improve the previous function by making sure the values passed can be
added.

Chapter 7: Writing Organized and Readable Code 203

function basic_math($val_1, $val_2)
{

if (!is_int($val_1) || !is_int($val_2))
{

return FALSE;
}
$added = $val_1 + $val_2;
return $added;

}

If either of the arguments in the call to this function is not an integer, the func-
tion returns FALSE and stops. A call to this improved function might look like this:

if (($added_value = basic_math(7, 5)) === FALSE)
{

echo “What exactly are you doing?”;
}
else
{

echo $added_value;
}

If the function returns a value (any value), that value is added. If not, a special
message is printed. Notice how this mimics the behavior of many of the PHP built-
in functions. Its purpose is to perform a task, and if it fails to do so, it returns FALSE.

Take a quick look at the following function. It’s a good example of how func-
tions can really save you time, headaches, and keystrokes. The mysql_query func-
tion is fine; it sends a query from PHP to MySQL and, if it succeeds, returns a result
identifier. If it fails, however, it does not automatically return any error informa-
tion. Unless you do a bit of digging, you won’t know what the problem was with
the query. So for every query in your applications (and there will be plenty), you
tack on an or die phrase:

mysql_query(“select * from table_name”) or die
(“Query failed:” . mysql_error());

But life gets quite a bit easier if you create a function like the following and then
send all of your queries through that function:

function safe_query ($query = “”)
{

if (empty($query)) { return FALSE; }
$result = mysql_query($query)

or die(“ack! query failed: “
.”errorno=”.mysql_errno()

204 Part II: Working with PHP

.”error=”.mysql_error()

.”query=”.$query
);

return $result;
}

So your applications might include a file with this function on every page, and
then you can use safe_query() in place of mysql_query().

Using a variable number of arguments
One nice feature of PHP is that you can pass an indefinite number of arguments to
a function and then assign the list of arguments to an array. Consider the following
code:

function print_input_fields()
{

$fields = func_get_args();
foreach ($fields as $field)
{

if (isset($GLOBALS[$field]))
{

$value = $GLOBALS[$field];
}
else
{

$value = ‘’;
}
print “ <tr>\n”;
print “ <td valign=top

align=right>”.ucfirst($field).”:</td>\n”;
print “ <td valign=top align=left><input type=text

name=$field size=40 value=\”$value\”></td>\n”;
print “ </tr>\n\n”;

}
}
start_table();
print_input_fields(“name”,”location”,”email”,”url”);
end_table();

The $GLOBALS array is discussed later in this chapter in the “Variable

scope” section.

Chapter 7: Writing Organized and Readable Code 205

This function prints out form fields within a table. First, func_get_args() cre-
ates an associative array, with the name of the argument as the key. Then each form
field is printed out. This strategy is pretty convenient because you can call a func-
tion in a number of situations and vary the output by including as many arguments
as needed.

If you’re wondering how this might work if your function contains some
required parameters prior to the set of arguments that might vary, good for you.
That’s an excellent question.

Two other PHP functions work in such situations: func_num_args(), which
returns the number of arguments sent to a function, and func_get_arg(), which
returns a specific argument based on its numeric index, starting at 0. So, for exam-
ple, you might have a function that prints an HTML form with a variable number of
input fields, like the following:

function print_form($action=””, $method=”POST”)
{

if (empty($action)){return FALSE;}
echo “<form action=$action method=$method>”;
$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{

echo “<input type=text name=” . func_get_arg($i). “>”;
}
echo “</form>”;

}

print_form(“myurl.php”, “”, “myfield1”, “myfiels2”);

Be aware that empty() might behave differently than you expect. It returns true
if the evaluated variable is not defined, or if it contains “”, 0, “0”, NULL, FALSE, or
an array with no elements.

Variable scope
To work with functions you need to understand how PHP handles variable scope.
Scope is an important topic in any programming language, and PHP is no different.

In PHP, variables assigned outside of functions are known as global variables.
These can be variables that you create, they can come from HTML form elements
through either GET or POST, or they can be any of the variables inherited from the
Apache environment. All globals are accessible from an array known as $GLOBALS.
You can add to and delete from this array.

206 Part II: Working with PHP

We’ve said it before, and we’ll say it again: Use phpinfo() to get informa-

tion about variables in your environment or your configuration.

In PHP a global variable is not automatically available within a function. If you
want to use a global within a function you must indicate within the function that
the variable you are accessing is a global.

Here is an example of using a global within a function:

function add_numbers($val_2)
{

global $number;
echo $number + $val_2;

}
$number = 10;
add_numbers(5);

This code prints 15. Here $number is a global because it is assigned outside of a
function. Using the keyword global tells PHP that you want to fetch the specified
number from the $GLOBALS array. The preceding code can also be written like this:

function add_numbers($val_2)
{

echo $GLOBALS[“number”] + $val_2;;
}
$number = 10;
add_numbers(5);

In the applications in this book we use the technique shown in the first example
because it seems a little cleaner, and because directly manipulating the $GLOBALS
array is not really encouraged. It’s nice to see where your variable is coming from
at the top of the function.

Within your functions, you might want to make variables available as globals.
That way they are available in the body of your script and in other functions. You
can create a global variable the same way you access a previously defined one, with
the global keyword. Here’s a quick example:

function assign_to_global($val_1, $val_2)
{

global $sum;

Chapter 7: Writing Organized and Readable Code 207

$sum = $val_1 + $val_2;
}

assign_to_global(5,6);
echo $sum;

This script prints 11. For something a bit more complicated, we borrow the fol-
lowing function from the applications section of the book:

function set_result_variables ($result)
{

if (!$result) { return; }
$row = mysql_fetch_array($result,MYSQL_ASSOC);
while (list($key,$value) = each($row))
{

global $$key;
$$key = $value;

}
}

This function expects a result identifier gathered by mysql_query() in an ear-
lier function. Assume that the query run prior to this function call returns a single
row. That row is then assigned to an associative array named $row. Then each col-
umn taken from the query (which is now the key in the associative array) and its
value are available as a global. This availability can be useful if the values retrieved
from the query are needed in many other functions. However, beware of having
columns with the same names as PHP variables — particularly global variables. You
should try to not let that happen, lest conflicts occur.

Global variables are used sparingly within functions throughout the applications
in this book. This is because it is easier to keep track of your variables if you are
passing them through arguments and retrieving them through return values. If you
start using globals extensively you might find that your variables are returning
unexpected values in different places — and finding the functions that are causing
the error can be a major pain.

Here’s another reason to avoid globals when possible: You will be using the
same variable names over and over and over again. We don’t know how many
times in these applications the variable names $query, $result, $row, or $i are
used, but trust us when we say that they are used frequently. All kinds of hassle are
introduced if you have to keep track of each time you use a variable name.

At times you have little choice but to use global variables, but before you do,
make sure that you can’t accomplish what you’re trying to do using variables of
local scope.

208 Part II: Working with PHP

Object-Oriented Programming
A few years back there was a large move toward object-oriented programming.
Some people thought that the procedural approach — that is, coding strictly with
functions — just wasn’t enough. Therefore, the folks working on languages like C++
and Java popularized an approach that enables a developer to think about code in
a different way.

The idea behind object-oriented programming is to think of portions of your
application as objects. What is an object? Well, it’s an amorphous thing, a kind of
black box — a superstructure of variables and functions. But if you are new to the
concept, this description may not be so clear.

To make things clearer conceptually, we provide a few examples. In our exam-
ples, our objects are things that can be displayed as part of a Web page. For each of
the different kinds of elements of a page, you might want to know different things.
If you’re displaying an image, for example, you might want to know how wide it is.
For an HTML table, you might want to know if it has a color. By treating the ele-
ments as objects, you can effectively ask them how wide they are or what color
they are without having to dig inside them to find out yourself. You can also tell
the elements to do things, like draw themselves on the page.

Now all you need is the correct nomenclature. Descriptions of the object (such as
width and color) are called properties, and descriptions of the actions an object can
take (such as draw) are known as methods. Some methods are a bit of both, and you
can think of them as descriptions of the questions you can ask the object — a
width() method might tell you how wide the object is and whether it has one
property named width or a dozen different properties that it has to add together
first. And as it happens, in the actual code of a class, you use the word function
just as you would in a regular user-defined function, so you might hear both terms
used interchangeably. Here’s an example of what a PHP class looks like:

class TextBox
{

var $_text;

function TextBox($text)
{

$this->_text = $text;
}
function style()
{

return “font-family:’Helvetica Neue’,Helvetica,sans-serif;”;
}
function text()
{

Chapter 7: Writing Organized and Readable Code 209

return <<<EOT
style()}”>{$this->_text}
EOT;

}
}

Before you get to using objects, however, we want to explain a couple of the
advantages of this object-oriented approach. Suppose some programmer has cre-
ated an object and tells you about its methods and properties. You don’t really need
to know how any of it works; you just need to know that it does. You can make use
of the methods and properties of the object in your scripts with little effort.

Of course, the same could be said of a well-designed procedural approach. A
well-documented collection of functions can work equally well. Time was when
objects in PHP weren’t much more than collections of function libraries and arrays
that used little arrows instead of square brackets. That has changed dramatically
with PHP 5, and the language is now much closer to other object-oriented languages
like Java. However you look at it, you should be able to write good procedural code
before you move on to objects.

By using objects, not only can you make use of methods and properties in the
heart of your scripts, but also you can extend the functionality of a class in a num-
ber of different ways, with one of the most basic being the use of a concept called
inheritance. Going back to the previous example, for example, an image and a table
both might have a height and a width. We can create a class called a Rectangle
that knows about heights and widths and then have our Image class and Table
class inherit Rectangle, automatically being able to make use of all its properties
and methods. (In object terminology, we call Rectangle the parent class, and
Image and Table are both children.)

There’s a lot more to object-oriented programming (or OOP for short — not to be
confused with OOPS, which is the kind of programming we’re trying to avoid) than
just inheritance, though. We can’t do full justice to the topic here, but we’ll try to
cover some of the basics.

Classes, Continued
In object-oriented programming, you work with classes and objects. A class is a
definition describing properties and methods, while an object is a variable that has
those properties and can use those methods. You could think of the blueprints for
the chair you’re sitting in now as a kind of Chair class. That would make your
actual chair an object, or instance, of the Chair class. If your chair came from a
factory, there might be thousands of Chair instances out there in the world, but
still only one Chair class.

You can use a few different kinds of classes. Let’s start out our small example
with one of the most minimal kinds of classes, an interface.

210 Part II: Working with PHP

INTERFACES

interface Color
{

public function color();
}
interface Drawable
{

public function draw($return=false);
}
interface Rectangle
{

public function height();
public function width();

}

Not much code there. But then that’s the point — an interface isn’t about how
you will do something, so much as what you will be able to do. An interface is like
a promise: Any class that builds on the Color interface, for example, swears that it
will have a method named color with no arguments that you will be able to call.
In this case, we’re not promising anything about what that method will do (or what
it will return to you, for that matter). But if you’re dealing with an object that has
Color in its background, you know that you’ll be able to call $object->color()
and get some kind of response.

So what does that get you besides a new buzzword? Well, without claiming to
describe all of the benefits, here are a couple of basic ones.

In PHP, normal classes are inherited, while interfaces are implemented, like so:

class AlertBox extends TextBox implements Color, Rectangle

Here, extends means that the AlertBox class is inheriting the properties and
methods of the TextBox class. You can inherit only from a single class in PHP, but
you can implement as many interfaces as you like. The benefit comes from the fact
that you can tell if a particular object implements the interface in which you’re
interested, using the instanceof operator. Say that you’ve got a section of code
that doesn’t care about anything but rectangles. Circles, triangles, lines of text — let
somebody else deal with those; we just want rectangles. You can make that work
like this:

if ($object instanceof Rectangle)
{

$width = $object->width();
$height = $object->height();

}

Chapter 7: Writing Organized and Readable Code 211

To write the same code without the concept of an interface, you’d have to do
something like this:

$methods = get_class_methods($object);
if (in_array(‘width’, $methods) and in_array(‘height’, $methods))
{

$width = $object->width();
$height = $object->height();

}

Even then, you don’t know if that object’s width() method is going to require
an argument that you can’t supply. Plus, clearly, this is going to be a lot slower to
run. The Rectangle interface tells you very simply that this is a proper Rectangle
that knows how to respond to a decent width() call, regardless of what other kinds
of foolishness it might get up to somewhere else.

Another benefit of using interfaces can come when you have multiple people
working on different parts of the same project. By laying out a set of interfaces as
the first step, each person can write code that will call on the other classes being
built by other people, whether or not those other classes have actually been written
yet, and without worrying about how they’re going to work when they are written.

We can take that approach one step further, to specific properties and methods,
by moving on to inheritance and abstract classes.

ABSTRACT CLASSES
An abstract class is sort of a blueprint’s blueprint. It looks just like a regular class,
because that’s what it is, except for one difference: You can’t make an object out of it.
To add another $5 word to our pile, we can say that an abstract class cannot be
instantiated — meaning that you can’t create an instance of one, at least not directly.

Instead, abstract classes are there solely to be inherited. One way you can use
them is as a place to put utility code — code that all of your classes will use, but that
doesn’t really have a purpose outside of the specific context of one of those classes.
Maybe your abstract class has a method that does some complex mathematical cal-
culations or one that picks one string at random from an array of strings.

PHP considers a class to be abstract if you explicitly declare the class that way —
abstract class MyClass { ... }— or if one of the class’s methods is declared to
be abstract — abstract function some_function();. Another, indirect way of
making a class abstract is by declaring that it implements an interface without sup-
plying one or more of the methods that the interface defines. The effect is to shift
the burden of supplying those required methods onto the class’s children.

Here’s another step in our example that shows what we mean: an abstract class
that implements one of the interfaces we declared previously — except not really:

abstract class TextBox implements Drawable
{

212 Part II: Working with PHP

private $_text;

public function __construct($text)
{

$this->_text = $text;
}
private function style()
{

return “font-family:’Helvetica Neue’,Helvetica,sans-serif;”;
}
final protected function text()
{

return <<<EOT
style()}”>{$this->_text}
EOT;

}
}

This is a class that defines the way text will be displayed by later, non-abstract
classes. A couple of new keywords pop up here that need some explanation.

Public, protected, and private define who has access to a property or a
method. In this class, you can see that the $_text property is private. That means
that only the methods of the TextBox class can read or change the contents of that
property, not even classes that inherit from TextBox. The same applies to the
style() method.

The __construct() method, on the other hand, is public. That means anyone
can call it. This is a special method that gets called automatically when you create
an object, using the keyword new, like so:

$object = new MyClass;

In prior versions of PHP, the constructor method had to have the same name as
the class. In our first example of what a class looks like, for instance, the
TextBox() is the constructor method. Now we can use the generic name __con-
struct() instead. This not only makes maintenance easier, but also solves some
issues with inheritance in earlier versions.

In between private and public is protected. A protected property or method
can be used directly by the class in which it’s declared and any child of that class,
but not by the general public (that is, code outside of the classes). So, in our exam-
ple here, a class that extends TextBox can’t call the style() method, but it can call
text().

What it can’t do is declare its own version of text(), though. That’s because of
the other keyword we use in its declaration, final. Final means what it sounds

Chapter 7: Writing Organized and Readable Code 213

like it means: the end of the road for this method name. For protected or public
methods that aren’t declared to be final, you can do things like this:

class ParentClass
{

public function sayHello()
{

print $this->Hello();
}
protected function Hello()
{

return “Hello!\n”;
}

}
class ChildClass extends ParentClass
{

protected function Hello()
{

return “Howdy!\n”;
}

}
$p = new ParentClass;
$p->sayHello(); // prints out “Hello!\n”
$c = new ChildClass;
$c->sayHello(); // prints out “Howdy!\n”

However, if we declare the Hello() method of the ParentClass class to be
final, instead of printing out Howdy!, you get:

PHP Fatal error: Cannot override final method parentclass::hello()
in /my/pathname/test.php on line 13

So in our example, TextBox is reserving to itself the definition of text(). This
means that we have some degree of confidence that we can change, say, the style
definitions used to format text and have it be reflected in all the classes that are
descended from TextBox.

The other thing to note about TextBox (which is a busy little class for something
that isn’t even real) is this:

abstract class TextBox implements Drawable

But doesn’t the Drawable interface require a draw() method? No draw()
method in TextBox? Typo?

Nope. Instead, by declaring that it implements Drawable without doing anything
about it, TextBox is forcing any class that inherits it to supply its own draw()

214 Part II: Working with PHP

method, doing whatever is appropriate for that particular class, like the TitleBox
does in the next section:

INHERITANCE

class TitleBox extends TextBox
{

public function draw($return=false)
{

$output = “<h3>{$this->text()}</h3>”;
if ($return)

return $output;
else

print $output;
}

}

Okay, so we’ve actually talked about inheritance before this. But now you can
see it in action. TitleBox is a regular old class that you can use to create regular
old objects. And as you can see in Figure 7-1, it doesn’t have to do very much — just
define the draw() method required by the Drawable interface, which TitleBox
gets from its parent class, TextBox. If we put all of the pieces together, and add one
last step — the creation of an object that we can use — we can even make words
appear on a Web page (see Figure 7-1):

$title = new TitleBox(“Greetings!”);
$title->draw();

Figure 7-1: A TitleBox example

And here’s a slightly fancier example, again building on the code we’ve seen up
until now, only this time in color!

Chapter 7: Writing Organized and Readable Code 215

class AlertBox extends TextBox implements Color, Rectangle
{

protected $_color;

public function __construct($text=’oops’,$color = ‘yellow’)
{

// notice that we could be setting height and width
// in the constructor, but instead
// this class has them hard-coded
// (i.e. all alert boxes are the same size)

$this->_color = $color;
parent::__construct($text);

}

public function height()
{

return 100;
}

public function width()
{

return 200;
}

public function color()
{

return $this->_color;
}

public function draw($return=false)
{

$output = <<<EOT
<table height=”{$this->height()}” width=”{$this->width()}”
border=”1”>
<tr>
<td bgcolor=”{$this->color()}” align=”center”>{$this->text()}</td>
</tr>
</table>
EOT;

if ($return)
return $output;

else
print $output;

}

216 Part II: Working with PHP

}
$alert = new AlertBox(“Warning! Object Alert!”);
$alert->draw();

Notice the height() and width() methods. These are good examples of meth-
ods that answer questions, rather than perform actions. An AlertBox doesn’t even
have a width or height property; instead, the methods return hard-coded values.
But code that uses an AlertBox object doesn’t have to care at all about any of that.
It knows that it can call $object->height() to find out how tall it is and
$object->width() to find out how wide, and that’s all it needs.

Figure 7-2 shows you what it looks like in action.

Figure 7-2: An AlertBox example

Where this all gets good is in the combination of features, of course. On the CD,
there’s a more complete example using the code we’ve seen in this chapter, in the
/oop directory. One part of what you’ll find in there is a Page class that draws an
entire HTML page built up out of smaller components that are themselves instances
of the kinds of classes we’ve been looking at. You just line them up when you cre-
ate your Page object and tell the Page to draw:

$page = new Page($title,$logo,$alert,$ad,$biglogo);
$page->draw();

The Page class takes care of making sure that everything you hand it can be
drawn:

class Page implements Drawable
{

protected $_things = array();

public function __construct()

Chapter 7: Writing Organized and Readable Code 217

{
$args = func_get_args();
foreach ($args as $i => $arg)
{

if ($arg instanceof Drawable)
$this->_things[] = $arg;

else
error_log(“Rejecting Page item #{$i} - not drawable:

“.var_export($arg,TRUE));
}

}

Then it calls its own draw() method to display them. You can even create a new
subclass of Page, something like SubPage or BoxSet that arranges its objects in a
particular way, and then hand an instance of that subclass to your Page object like
any other Drawable object. You can see the possibilities that might have.

Object cloning
In prior versions of PHP, making a copy of an object was nothing special:

$a = new MyClass();
$b = $a;

Voila, $b was a copy of $a. But returning a reference to a particular object was
more of a chore:

function &returnObject()
{

$a =& new MyClass();
return $a;

}
$b =& $a;

Now, it’s the other way around. All object variables are references. If you create
a new instance of MyClass in $a and assign $a to $b, you still have only one
MyClass object out there. You’ve just got two different variables referencing it.
Normally, that’s what you want — it makes it a lot easier to pass objects in and out
of methods and function calls, for one thing. But sometimes you need the old
behavior — you want to end up with two different instances of MyClass, one in $a
and the other in $b. For that, you have the __clone() method.

$a = new MyClass();
$b = $a->__clone();

218 Part II: Working with PHP

Every class can just leave cloning to the built-in __clone() method, available
with every object at no extra cost. Or you can write your own __clone() method
to do things like create new separate database connections, erase temporary storage
variables, reset counters, and so on.

Destructors
PHP now lets you declare not only generic constructor methods, using the name
__construct(), but also destructor methods as well, named __destruct(). A
destructor function gets called when you destroy an object — at the end of a script,
for instance. Or say you create an object inside of a procedural function. When a
function ends, all of its local variables go out of scope, so in a general sense the
memory assigned to them is released and the variables are destroyed. If you’ve
written a __destruct() function for your object, it would be called at that point.

You can use destructor functions to do any clean-up work that’s necessary: roll
back any open transactions, close database connections or logging files, and so on.

Exceptions
PHP 5 includes an exception scheme similar to that of the Java programming lan-
guage. In other words, it supports try/catch blocks, which were not supported in
earlier versions of the language.

You can, for example, define an exception class for later invocation, as in the
following example:

class DemoException
{

function __construct($exception)
{

$this->exception = $exception;
}

function Display()
{

print “DemoException: $this->exception\n”;
}

}

class DemoExceptionTosser extends DemoException
{

function __construct($exception)
{

$this->exception = $exception;
}

Chapter 7: Writing Organized and Readable Code 219

function Display()
{

print “DemoExceptionTosser: $this->exception\n”;
}

}

try
{

throw new DemoExceptionTosser(‘Hello’);
}
catch (DemoException $exception)
{

$exception->Display();
}

This code works by attempting to execute what’s in the try block. When that
code uses the throw keyword to indirectly construct a DemoException object, the
exception is caught by the code in the catch block and subsequently printed out by
the Display() function.

Object-Oriented Code versus
Procedural Code
Here’s the million-dollar question: In your applications, should you use object-
oriented code or procedural code? This question can inspire heated debate. But
really such heated debate is unnecessary because there is a correct answer: It
depends upon the situation. If a given application can be designed to take advan-
tage of object orientation (in other words, if the problem at hand can be modeled as
a series of elements that interact), object orientation may be the way to go. And
since it’s possible to think of the entire world as a bunch of objects interacting with
each other, that’s a pretty strong possibility.

Object-oriented code comes with advantages and disadvantages. Weigh them
and decide for yourself if you should use classes or just functions.

The following are the advantages of object-oriented programming:

◆ In the long run (that is, across several projects), you can save time using
the object-oriented approach.

◆ You can make easily reusable pieces of code.

◆ You can make use of extensive class libraries available for free on the Web.

220 Part II: Working with PHP

The following are the disadvantages of object-oriented programming:

◆ It’s slower than the procedural approach in the short term.

◆ The syntax can be confusing at first.

◆ Web programming does not make use of many of the advantages of
object-oriented code.

◆ If you’re using very large class libraries, you might experience a perfor-
mance reduction.

Comments
In any programming language, comments are essential — not only to you as you’re
writing the code, but to those who come to the code after you. What may be crystal-
clear to you may be absolutely unreadable to others. Or, if you’ve had to do some-
thing particularly complex, you might find that you don’t even understand what you
were thinking if you come back to the code a couple of months after you wrote it.

In PHP you can indicate comments with two slashes (//), with a hash (#), or by
bracketing commented code with /* and */. This last method is particularly helpful
for multi-line comments.

Comment all of your functions, what they do, what they are expecting, and what
they return. Make sure to note any variables that might be tough to track.

As you look through the functions directory of the CD, you will see that every
function has an initial comment that mimics the style used in the PHP manual. For
example:

int fetch_record (string table_name [, mixed key [, mixed value]])

Then you provide some description as to what these arguments mean and the
significance of the return value. When writing the body of the function, you should
comment on anything that is not going to be intuitive to someone coming to the
script at a later date. If you have a series of functions that perform some complex
string handling or use lengthy regular expressions, make sure to note exactly what
those functions are intended to accomplish. For example, consider this line of code:

$file_ext = strtolower(substr($file, strrpos($file,”.”)));

It isn’t especially difficult to figure out, but you can sure help the next person
coming to this line with a simple comment:

//get characters following the final dot
//and make lowercase
$file_ext = strtolower(substr($file, strrpos($file,”.”)));

Chapter 7: Writing Organized and Readable Code 221

The other important thing to comment is the overall logic of pages, especially
long pages. Often a script behaves differently under different circumstances.
Variables passed from forms, errors, and other factors affect what portions of the
script run. At the top of the page, you can indicate what factors affect the page’s
logic and then, as you reach different if blocks, explain where the conditions are
coming from and what they mean.

For a brief example, take the confirm_delete.php page from Chapter 8, which
makes advantageous use of comments

/*
/*
**
*** This script from MySQL/PHP Database Applications ***
*** by Jay Greenspan and Brad Bulger ***
*** ***
*** You are free to reuse the material in this ***
*** script in any manner you see fit. There is ***
*** no need to ask for permission or provide ***
*** credit. ***
**
*/

/*
Application: Guestbook2k
Described in: Chapter 8
Name: confirm_delete.php
Purpose: Confirm, then perform, deletion of entries from the guestbook.

This script will be accessed in two circumstances:

- The ‘Delete Entries’ button on the edit.php page was pressed.
This should be the first time that the script is called. The ids
of the records to be deleted should be passed in via the entry_id[]
array.

- The ‘Confirm Delete’ button on this page was pressed. This confirms
the deletions and will run the delete queries against the database.

The $offset variable is preserved to allow navigation to other entriesin the
guestbook after or instead of confirming the deletion.

This script must be run by an authenticated user - i.e., only guestbook
administrators.

*/

222 Part II: Working with PHP

// turn on PHP output buffering - only HTTP headers will be sent
// to the browser while this is on. it will prevent an accidental
// blank line or some such from breaking HTTP authentication.

ob_start();

require_once(‘header.php’);
guestbook_authenticate();

// turn off output buffering and send the accumulated output
// to the browser

ob_end_flush();

guestbook_start_page(‘Confirm Changes’);

$submit = (string)array_key_value($_POST,’submit’);

// if $entry_id hasn’t been passed in - because the user
// hit the ‘Delete’ button without checking off any
// entries, say - initialize it to an empty array.

$entry_id = (array)array_key_value($_POST,’entry_id’,array());

if ($submit == ‘Delete Entries’ && !empty($entry_id))
{

// presumably coming from edit.php. print out id values to be
// deleted and the ‘Confirm Delete’ submit button

// because the <form> tag contains no action attribute, it
// will submit back to this script

print “<form method=post>\n\n”;

foreach ((array)$entry_id as $value)
{

print <<<EOQ
Delete entry #$value?
<input type=hidden name=”entry_id[]” value=”$value”>
EOQ;

}

print <<<EOQ

Chapter 7: Writing Organized and Readable Code 223

<input type=submit name=submit value=”Confirm Delete”>
<input type=hidden name=offset value=”$offset”>
</form>
EOQ;

}
else
{

// just in case this script is called directly or in some other
// unanticipated manner
print “<h4>No action to confirm</h4>\n”;

}

// display navigational links and end the page
nav($offset, ‘edit.php’);
guestbook_end_page();

We end this section on a word of caution: don’t over-comment. Commenting
every single line, or making the obvious even more obvious, is annoying. For
example, the following comments are completely unnecessary and only make a
script difficult to read:

//make string lowercase
$str = strtolower($str);
//increase $i by 1
$i++

Commenting calls for good judgment. You don’t want to comment too much;
you don’t want to comment too little. Our best advice is to take a look at how other
programmers comment their code and to pick a style that you like. We use one
method for the applications in this book; others have different styles.

The PEAR directory of your PHP installation is a great place to look for tips on
good coding style. PEAR stands for PHP Extension and Application Repository. It is
a growing set of scripts that contains a series of best practices for programming
with PHP. The folks working on PEAR are real pros who write terrific code. We rec-
ommend looking through the scripts in that directory to glean some tips on writing
quality code.

Summary
In this chapter, we have presented some ways to write clean and organized code.
When you look at your scripts, you should ask yourself a few questions.

224 Part II: Working with PHP

◆ Are there blocks of code that are common to every page? Maybe those
blocks can be moved into an include.

◆ Are there chunks of code that I’m writing over and over again? Perhaps
writing a function or class might save time.

◆ Is the next person who comes to this script going to be able to figure
out what I’ve been doing? If not, make sure that you add enough com-
ments to make things clear.

You need to decide if an object-oriented approach is good for you and the appli-
cation you’re writing. Our advice: make sure you are comfortable writing clean
procedural code before you jump into object-oriented programming.

Chapter 7: Writing Organized and Readable Code 225

Simple Applications
CHAPTER 8

Guestbook 2003, the (Semi-)Bulletproof Guestbook

CHAPTER 9
Survey

Part III

Chapter 8

Guestbook 2003, the
(Semi-)Bulletproof
Guestbook
IN THIS CHAPTER

◆ Learning the power of Guestbook 2003

◆ Organizing your code in a reasonable way

◆ Writing good, reusable functions

IN THIS CHAPTER WE DEVELOP the first of our applications — a guestbook. Guestbooks
aren’t complex and they aren’t very exciting. However, this application does give
us the chance to introduce some concepts, such as validation, and put many of the
practices discussed earlier in this book to work.

In the introduction of this book we provided some code that could be used for
the most basic guestbook possible. However, using that code for your guestbook is
not a good idea: It’s got all kinds of holes that will allow malicious people out there
to mess with your pages. The ultra-basic guestbook has another problem: Given the
way the code is just dumped into one page, there’s not a line that’s reusable. One of
the main goals of developing any application is to create chunks of reusable code.

Determining the Scope and Goals
of the Application
The easiest way to get yourself into trouble when coming at an application is not to
know exactly what you are trying to achieve. A vital part of the developer’s job is
to figure out exactly what is needed in the application. Usually doing this will
involve extensive discussion with the people for whom the application is being
developed. During these discussions, it is important to think a step ahead and ask
questions that may not have been asked before. What if the scope increases in a
certain way? What if additional but related information needs to be tracked?

229

Considering these and similar scenarios will affect the way you design your data-
base and your scripts, and that is why it is best to know the exact scope and goals
of your application. Depending on whom you’re working with, you may want to
get some sketches of pages that need to be developed.

The scope of this application is small and the goals are minimal. The guestbook
stores names, addresses, and the like. (To tell the truth, the purpose of this chapter
is not so much to show you how to write a guestbook as it to show you how to
write good, reusable, organized code for your applications.) In any case, you should
know what Guestbook 2003 looks like before you proceed.

In this chapter we’re not going to take the notion of creating good functions

as far as it can go. In Chapter 9 we present a more extensive set of functions

that we’ll use throughout the rest of the book.

Necessary pages
This guestbook has three basic pages: one for signing, one for viewing, and one for
administering.

Figure 8-1 shows the page that gives the user the opportunity to sign the guest-
book. It’s pretty simple, a form with four text fields and one text area field.
Additionally, there are a submit button and a reset button.

Figure 8-1: Page for signing the guestbook

230 Part III: Simple Applications

Next, there must be a way to see who has signed the guestbook. For the sake of
having readable Web pages, we created a standard style, shown in Figure 8-2, in
which only two entries are printed on each page. At the bottom of the page are
navigational elements that indicate whether previous or additional entries exist.
These should be conditional and should disappear appropriately when you are at
the beginning or end of the guestbook.

Figure 8-2: Page for viewing the guestbook

Finally, we need a page that enables us to delete entries we don’t want. The page
in Figure 8-3 seems to do the trick. Access to this page needs to be limited to autho-
rized users: We don’t want any old schmo going in and cleaning out our guestbook.

What do we need to prevent?
The major problem that we need to tackle in the guestbook application is one that
is common to any application with form input: It is possible for vandals to input
nasty code into your forms that will screw up the pages for everyone else who
comes along. If you used the guestbook application in the introduction you could
be in serious trouble. Consider what would happen if someone inserted the follow-
ing code into a text field:

<script>alert(“boo”);</script>

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 231

Figure 8-3: Page for administering the guestbook

The next time the page loaded, the viewer would be greeted with a little treat seen
in Figure 8-4.

If some jerk felt like it, he or she could screw up your page with all sorts of tags,
as follows:

Additionally, this application requires some validation. When the user enters
information, the application is going to see that it makes sense. The application will
check for the following:

◆ Email addresses should contain an at symbol (@), one or more characters
before the @, and a dot somewhere after the @. Email validation can get
more complex (and will in later chapters).

◆ URLs should look like URLs, complete with an http:// prefix and at least
one dot.

◆ Some text must be entered in the name field. There’s little point to a
guestbook entry without a name.

◆ No email address should appear more than once in the database.

Once the application has checked all of this, the user will need to be made aware
of any errors. Figures 8-5 and 8-6 show how we will indicate these errors.

232 Part III: Simple Applications

Figure 8-4: Results of a problem entry

Figure 8-5: Reporting bad information

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 233

Figure 8-6: Reporting a duplicate entry

Designing the Database
We covered the normalization process in Chapter 1, and before long we’ll put these
normalization skills to work. For this application the set of information is pretty
simple. So simple, in fact, that a single table will do the job. Actually, that isn’t
quite true. For administrative purposes, you should create a table against which
user names and passwords can be authenticated. Here are the create statements
that will make the tables:

drop table if exists guestbook;
create table guestbook
(

entry_id integer not null auto_increment
, name varchar(40) null
, location varchar(40) null
, email varchar(40) not null
, url varchar(40) null
, comments text null
, created timestamp
, remote_addr varchar(20) null

, primary key (entry_id)

234 Part III: Simple Applications

, unique (email)
);

drop table if exists guestbook_admin;
create table guestbook_admin
(

username varchar(50) not null
, password varchar(255) not null

, primary key (username)
);

When you are adding a user to the guestbook_admin table, it would be best to
encrypt the password. The easiest way to do this is by using a built-in MySQL pass-
word encryption function like sha1(), as follows:

insert into guestbook_admin (username, password)
values (‘jay’, sha1(‘rules’));

After you’ve run this command, the actual value stored in the password column
is caa155adf81fddd29ab4b21a147927fb0295eb53. When you need to find out
whether a user knows the password, you can use the sha1 function again:

select * from guestbook_admin where
username = ‘jay’ and
password = sha1(‘rules’);

From the latest MySQL documentation:“Note: The PASSWORD() function is

used by the authentication system in MySQL Server, you should NOT use it in

your own applications. For that purpose, use MD5() or SHA1() instead. Also

see RFC-2195 for more information about handling passwords and authen-

tication securely in your application.”

Code Overview
In this, the first of your applications, you need to look at the architecture you will
use in constructing your applications. The applications on the CD have been con-
structed so that they are as reusable and portable as possible.

To start with, the CD contains a folder named book, which should be copied to
the document root directory of your Web server. On Apache this folder is usually
named htdocs by default. The book folder contains all the applications documented
in this book.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 235

Within the book folder is a series of folders, one folder for each of the applica-
tions presented here, one labeled classes, and one labeled functions. For the purpose
of this application we will concern ourselves with the basic.php file in the functions
folder; this file defines some functions that you will use in a variety of applications.
We’ll discuss the functions in basic.php that are used in Guestbook 2003 in the sec-
tion entitled “Code Breakdown.”

The code that is relevant only to Guestbook 2003 is kept in the guestbook2k
folder. Here, startup code that needs to be run at the beginning of each page is run
by the header.php file. The header.php file contains, in turn, two other files: globals.
php and functions.php. This is a structure that we’ll be using through all the exam-
ples in the book. The globals.php file is where you create global variables and
define constants for use in the application. The functions that will need to be
addressed across a number of pages are kept in the functions.php file. We will also
explain these functions in detail in the “Code Breakdown” section.

The pages that are called from the browser are named intuitively: view.php,
sign.php, and edit.php. The other page of the application is confirm_delete.php,
which is called only by edit.php and not by the user directly.

You may find the view.php, sign.php, and edit.php files surprisingly short. They
only contain a couple of dozen lines of code each. This is because just about every-
thing is written in reusable functions.

So once again the important thing is to understand the functions kept in /book/
functions/basic.php and /book/guestbook2k/functions.php, as well as the startup
code run in /book/guestbook2k/header.php.

Code Breakdown
As mentioned in the previous section, the vast majority of the work of this applica-
tion is done in functions, and these functions are kept in files that will be included
in the pages called from the browser.

From functions/basic.php
The following are the main functions from basic.php that we’ll be using in this
application. We’ll cover other functions later on, and they’re all briefly documented
in Appendix F. The functions are grouped by their general purpose, and that’s the
order in which we’ll go through them.

GENERAL UTILITY FUNCTIONS
(OR, “IF ONLY PHP HAD A FUNCTION TO . . .”)
Here are some utility functions that we find helpful:

ARRAY_KEY_VALUE() With the advent of the new “superglobal” PHP variables like
$_POST, you’ll be getting most of the values you use in your code from associative
arrays ($_GET, $_POST, and so on). The trouble is that if a particular key hasn’t been

236 Part III: Simple Applications

defined in the array, trying to access it causes an error — well, strictly speaking, a
warning, but it’s a good idea to eliminate those, too. You could type something like

$country = isset($my_array[‘country’]) ? $my_array[‘country’] : ‘’;

over and over again, but that isn’t great because if $my_array[‘country’] is
set to NULL, isset() will return FALSE, and that may not be the behavior you
want — after all, the key is present in the array. A better choice would be
array_key_exists(), which returns TRUE if the key exists, no matter what its con-
tents. But typing lines like the following repeatedly is no fun at all:

$country = array_key_exists(‘country’, $my_array) ?
$my_array[‘country’] : ‘’;

The following function will help:

function array_key_value($arr=’’, $name=’’, $default=’’)
{

// cast in case $arr is an object
$arr = (array)$arr;
if (!is_array($name))
{

if (array_key_exists($name,$arr))
$default = $arr[$name];

return $default;
}
$results = array();
foreach ($name as $n)
{

if (array_key_exists($n,$arr))
{

$results[] = $arr[$n];
}
else
{

$results[] = $default;
}

}
return $results;

}

You can see this function used on almost every page of the application. For
example, the sign.php page contains several lines that look like this:

$email = array_key_value($_POST,’email’);

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 237

When array_key_value() is called from the preceding example, the first if
block will be ignored. In the second if block, the array_key_exists() function
checks if a key by name of email exists in the $_POST array. If it does, the value of
$_POST[‘email’] will be assigned to $email when the function returns a value. If
the email key does not exist, $email will contain an empty string.

IS_ASSOC() Sometimes you need to know not just if a variable is an array, which
the PHP function is_array() can tell you, but if it’s an associative array — in other
words, do all the elements have named keys? The is_assoc() function exists for
this situation.

function is_assoc($a)
{

if (is_array($a) || is_object($a))
{

$nkeys = array_filter(array_keys($a),’is_numeric’);
if (empty($nkeys))
{

return TRUE;
}

}
return FALSE;

}

DEFENSIVE AND TEXT-HANDLING FUNCTIONS
A shocking amount of programming work has to do with the manipulation of
strings. It seems there’s always text to be chopped up, stuck together, searched for,
or formatted. This section deals with some of the text-processing functions avail-
able in PHP.

CHARSET() This function sends out an HTTP header that explicitly sets the
character-set-encoding value for the page to ISO-8859-1:

function charset($charset=’’,$mimetype=’’)
{

if (empty($charset))
{

$charset = ‘ISO-8859-1’;
}
if (empty($mimetype))
{

$mimetype = ‘text/html’;
}
header(“Content-Type: $mimetype; charset=$charset”);

}

238 Part III: Simple Applications

If the character set is left undefined, it can be much more difficult to detect and
prevent hacks into your scripts (by looking for < and > characters, for example). If
you have access to the php.ini file for your site, you can uncomment the
‘default_charset’ value there to the same effect. You can find more information
about this topic at the following sites:

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.apache.org/info/css-security/encoding_examples.html

CLEANUP_TEXT() This function goes a long way toward making sure we don’t
insert malicious text into our database.

function cleanup_text ($value=’’, $preserve=’’, $allowed_tags=’’)
{

if (empty($preserve))
{

$value = strip_tags($value, $allowed_tags);
}
$value = htmlspecialchars($value);
return $value;

}

This function accomplishes two things. First, it removes all HTML tags. The
strip_tags() function takes care of that. We can indicate tags we want to keep
with the third argument ($allowed_tags). For instance, if we want to allow bold
and italic tags, the second argument to strip_tags() can be a string like this:
<i>. If we want to leave tags as they are, we can indicate this with a non-empty
value in the second argument, $preserve.

Then htmlentities() changes characters like ampersands (&) and double quotes
to their equivalent HTML entities (& and ", respectively). After being run
through this little function, your text is ready to be inserted in the database.

REVERSE_CLEANUP_TEXT() So we’ve run all the text from your users through
cleanup_text() before storing it in our database, for safety’s sake. Now, though,
we need to get that text back out of the database and display it on a Web page. If
we did allow some HTML tags to be included, we’ll need to reverse the effects of
cleanup_text(), or instead of seeing this —

My mom won’t let me watch The Exorcist tonight!

— you’ll see this:

My mom won’t let me watch <i>The Exorcist</i> tonight!

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 239

function reverse_cleanup_text ($value)
{

static $reverse_entities = NULL;
if ($reverse_entities === NULL)
{

$reverse_entities = array_flip(
get_html_translation_table(HTML_ENTITIES)

);
}
return strtr($value,$reverse_entities);

}

The HTML translation table HTML_ENTITIES is a list of all the special characters
that have HTML-entity equivalents. Then we use array_flip() to turn it around,
so that strtr() can go through the string and replace each HTML entity it finds
with the special single character it represents_ < to <’ & to &, and so on.
(We save the modified translation table in a static variable, so subsequent calls to
this function won’t have to recreate it.)

MAKE_PAGE_TITLE() For most pages, we use the same text in the <title> that
appears in an HTML heading <h1>. But some characters are inappropriate for the
<title> tag. For instance, if we set $page_title to “José’s Review of
<i>The Exorcist</i>”, within a rendered <h1> tag we’d see the correct value,
José’s Review of The Exorcist. But the title of the browser window will show
José’s Review of <i>The Exorcist</i>. To avoid this, we can use this little
function:

function make_page_title ($title=’’)
{

return reverse_cleanup_text(cleanup_text($title));
}

FROM /GUESTBOOK2K/HEADER.PHP
Once again, this file will be included in every page in this application. It includes
the functions.php and globals.php files, where we’ll keep all the functions and
global variables specific to this application. In addition, the first few lines of this
application will see to a few details. For instance, it sets the PHP include_path
configuration variable to cover the /book/functions directory. (If you can edit the
php.ini file for your installation, you can set include_path in there and remove
this code.)

// make sure that the current directory and book/functions
// are in the include path

240 Part III: Simple Applications

// make sure that the book/functions directory is in the include path

//realpath turns a relative path to an absolute one, and
//DIRECTORY_SEPARATOR is pre-defined PHP constant that on Unix will
//return a slash(/) and on Windows a backslash(\)
$funcdir = realpath(‘..’.DIRECTORY_SEPARATOR.’functions’);
$include_path = ini_get(‘include_path’);
if (strpos($include_path, $funcdir) === FALSE)
{

// the only time there’s a semicolon in the include path is on Windows.
// (far as i know, at least...)
$ps = strchr($include_path, ‘;’) ? ‘;’ : ‘:’;
ini_set(‘include_path’,$include_path.$ps.$funcdir);

}

require_once(‘basic.php’);

// set the character encoding
charset();

// display all errors and warnings, but not notices
error_reporting(E_ALL ^ (E_NOTICE | E_USER_NOTICE));

require_once(‘globals.php’);
require_once(‘functions.php’);

mysql_dbconnect();

A few words about including files. You’ll notice that we use two different func-
tions to do this, require_once() and include_once(). They work exactly the
same way, except that — as the name implies — require_once() won’t take no for
an answer. If it can’t find the file it’s trying to include, the script will fail right
there. The include_once() function will just issue a warning and move on.

We also generally prefer the include_once() and require_once() functions
over include() and require(). Again, as the names imply, the difference is that
the _once functions will only include a file if it hasn’t already been included at
some point. This enables us to put calls to a file like header.php in all of our files,
even if some of them might end up including others.

FROM /GUESTBOOK2K/GLOBALS.PHP
In the following code, we have included something interesting: a constant, here
named DEFAULT_LIMIT. A constant is like a variable in that it contains a value (in
this instance 2). However, that value cannot be changed by a simple assignment; in
fact, once a constant has been defined with the define() function, it can’t be

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 241

changed at all. Constants do not run into the same scope problems that are encoun-
tered with variables, so you can use them within functions without having to pass
them in as arguments or worry about declaring globals. After you run the
define() function, the constant DEFAULT_LIMIT will be available everywhere in
the application.

We’ll use DEFAULT_LIMIT to decide the number of entries that will be viewable
on each page. You are welcome to change the value if you would like to see a larger
number.

// constants
define(‘DEFAULT_LIMIT’, 2);

// global variables

// we’ll look for offset in the $_REQUEST superglobal because it
// could be coming in from either the URL or a form. $_REQUEST is
// a combination of GET, POST, and cookie-based values.

$offset = array_key_value($_REQUEST,’offset’,0);

If you are putting together a query using a constant, you will have to end

your quoted string in order to make use of the constant value. For example,

$query = “select * from db_name limit DEFAULT_LIMIT”

will confuse MySQL, because PHP has not replaced the name of the constant

with its value. However, this will work:

$query = “select * from db_name limit “ .
DEFAULT_LIMIT

PHP has many built-in constants you can use within your scripts, like the

DIRECTORY_SEPARATOR constant seen in the header.php file. A list of

constants is included in the PHP manual at http://www.php.net/
manual/language.constants.php.

FROM /GUESTBOOK2K/FUNCTIONS.PHP
On top of the standard PHP functions are those that were created for the Guestbook
2003 application. The following sections take a look at the guestbook library.

MYSQL_DBCONNECT() This is a slightly prettier version of the original
dbconnect() function included in the first edition of this book.

242 Part III: Simple Applications

function mysql_dbconnect()
{

$link = @mysql_connect(‘localhost’,’nobody’,’ydobon’);
if ($link === FALSE)
{

$private_error = ‘mysql_dbconnect: could not open connection
to mysql:’

.’errno:’.mysql_errno()

.’error:’.mysql_error()
;
error_log($private_error, 0);
die(‘Error: could not connect to database server. Please

contact the system administrator.’);
exit;

}
if (!@mysql_select_db(‘guestbook2k’))
{

$private_error = ‘mysql_dbconnect: could not select
guestbook database:’

.’errno:’.mysql_errno()

.’error:’.mysql_error()
;
error_log($private_error, 0);
die(‘Error: could not connect to guestbook database. Please

contact the system administrator.’);
exit;

}
return $link;

}

The @ in front of the calls to mysql_connect() and mysql_select_db() tells
PHP not to print out any errors or warnings that happen inside those functions.
That enables us to write out the detailed errors to the error log while sending a sim-
pler error to the user.

SAFE_MYSQL_QUERY() This function will save you from pulling your hair out
when you’re trying to get your queries right.

function safe_mysql_query ($query=’’)
{

if (empty($query))
{

return FALSE;
}

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 243

$result = @mysql_query($query);

if ($result === FALSE)
{

// if there was an error executing the query, write out the
// details to the error log

$private_error = ‘ack! query failed: ‘
.’errorno=’.mysql_errno()
.’error=’.mysql_error()
.’query=’.$query

;
error_log($private_error, 0);

// send a generic error message to the user

die(‘There was an error executing a query. Please contact
the system administrator.’);

exit;
}

return $result;
}

Throughout the application, we will run our queries through this function. This
way, if the query fails for some reason, we can get a pretty good idea of what hap-
pened. This is another example of safe coding. After troubleshooting your code, we
won’t run into these problems often, but if a change is made somewhere (perhaps
without our knowledge) we’ll get a pretty good idea of what’s going on.

GUESTBOOK_AUTHENTICATE() This function will require the user to enter a
name and password and will then validate those against the guestbook_admin
table in the database. If the username and password don’t match any valid entries,
or if the user (by hitting Cancel, say) doesn’t submit them, an error message will be
displayed.

function guestbook_authenticate($realm = ‘Guest Book Administration’
, $errmsg = ‘You must enter a valid name and password to access
this function’
)
{
// check if we can use HTTP authentication - as of now, that
// means checking if we are running as an Apache module

244 Part III: Simple Applications

$http_auth_OK = (php_sapi_name() == ‘apache’);

// $_SERVER[‘PHP_AUTH_USER’] and $_SERVER[‘PHP_AUTH_PW’] are values
// supplied by PHP, corresponding to the user name and password
// the user has entered in the pop-up window created by an HTTP
// authentication header. If no authentication header has ever been
// sent, these variables will be empty. If we are not using HTTP
// authentication, the login form will create entries in the
// $_POST superglobal with the same names.

foreach (array(‘PHP_AUTH_USER’,’PHP_AUTH_PW’) as $v)
{

if (!isset($_SESSION[$v]))
{

if ($http_auth_OK)
{

$_SESSION[$v] = array_key_value($_SERVER,$v,’’);
}
else
{

$_SESSION[$v] = array_key_value($_POST,$v,’’);
}

}
}

$found_user = 0;
if (!empty($_SESSION[‘PHP_AUTH_USER’]))
{

// ignore case, even if MySQL has been set to
// pay attention to it
$query = <<<EOQ

select 1 from guestbook_admin
where password = sha1(lower(‘{$_SESSION[‘PHP_AUTH_PW’]}’))
and lower(username) = lower(‘{$_SESSION[‘PHP_AUTH_USER’]}’)
EOQ;

$result = safe_mysql_query($query);
if ($result)
{

list($found_user) = mysql_fetch_row($result);
}
else
{

// if the query didn’t work at all (which should have been caught by
// safe_mysql_query() in theory), we’re not going to be able to

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 245

// confirm the password, so fail.
$private_error = “problem running authentication query

($query): “
.mysql_error()

;
error_log($private_error,0);
die(‘Database error: could not check password. Please

contact the system administrator.’);
exit;

}

// if the query ran but didn’t find a match for the user name
// and password, $found_user will not be set to anything.
// if this is so, have the user try again.

if ($found_user == 0)
{

$errmsg .= <<<EOQ
Could not find entry for username ({$_SESSION[‘PHP_AUTH_USER’]})
-
please try again.
EOQ;

}
}
if ($found_user == 0)
{

if ($http_auth_OK)
{

// Send a WWW-Authenticate header, to perform HTTP authentication.
Header(“WWW-Authenticate: Basic realm=\”$realm\””);
Header(“HTTP/1.0 401 Unauthorized”);

// The user should only see this after hitting the ‘Cancel’ button
// in the pop-up form.

print $errmsg;

exit;
}
else
{

// Print out an HTML form to obtain a name and password
// for authentication.

if (!empty($errmsg)) { $errmsg = “<p>$errmsg</p>”; }

246 Part III: Simple Applications

print <<<EOQ
<h2>$realm</h2>
$errmsg
<form method=post>
Username: <input type=text name=”PHP_AUTH_USER”
value=”{$_SESSION[‘PHP_AUTH_USER’]}”>

Password: <input type=password name=”PHP_AUTH_PW”
value=”{$_SESSION[‘PHP_AUTH_PW’]}”>

<input type=submit>
</form>
EOQ;

exit;
}
// should never get here
$private_error = ‘authenticate: error: continued after

requesting password’;
error_log($private_error);
die(‘System error: please contact the system

administrator.’);
exit;

}
else
{

print <<<EOQ
<p>Editing as {$_SESSION[‘PHP_AUTH_USER’]}</p>
EOQ;

}
}

If PHP is installed as an Apache module, guestbook_authenticate() will send
out a 401 HTTP response code. This header forces the browser to open the username
and password box shown in Figure 8-7.

The values entered into these text fields are set by PHP to the variables
$_SERVER[‘PHP_AUTH_USER’] and $_SERVER[‘PHP_AUTH_PW’]. If PHP isn’t run-
ning as an Apache module, an ordinary HTML form is displayed, with text fields
using the same names. The text fields will be returned as values in $_POST.

When the user submits either form the same page is run, and guestbook_
authenticate() is called again. Now that it has a possible username and password
it can query MySQL to check if the values are stored in the database. If they are not,
the password form is displayed again.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 247

Figure 8-7: Results of a 401 Unauthorized header

PRINT_ENTRY() This prints the results of a query within a table.

function print_entry($row,$preserve=’’)
{

if (!is_assoc($row))
{

return FALSE;
}

// walk through any arguments passed in after the first two
$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{

$field = func_get_arg($i);

// This will transform a label string to a valid database
// field name - e.g., ‘Last Name’ becomes ‘last_name’
$dbfield = str_replace(‘ ‘, ‘_’, strtolower($field));

$dbvalue = cleanup_text($row[$dbfield],$preserve);
$name = ucwords($field);
print <<<EOQ

248 Part III: Simple Applications

<tr>
<td valign=”top” align=”right”>$name:</td>
<td valign=”top” align=”left”>$dbvalue</td>
</tr>
EOQ;

}
}

The easiest way to see how this function works is to take a look at the line of
code that calls a function. The following snippet was taken from the view.php file:

print_entry($row,$preserve,’name’,’location’,’email’,’URL’,’entry
date’,’comments’);

Notice that the function itself has only two default arguments ($row and
$preserve), while the call to the function has nine arguments. The first argument,
$row, is a row from a database call. It is expecting that a row was taken from a
query by means of mysql_fetch_array() so that the contents of the row are an
associative array, the keys of which are equal to the column names of the database
table. The second argument, $preserve, is needed for the cleanup_text() func-
tion, which we discussed previously in the chapter. The rest of the arguments are
equivalent to associative keys in $row.

The arguments sent to any user-defined function make up an array. The number
of elements in the array can be retrieved with func_num_args(). If we were to use
the call to print_entry() in this example, func_num_args() would return 9.

The value of each argument can then be accessed with func_get_arg(). This
allows for a structure like the one used here, where a loop accesses and then
processes each argument sent to the function. The first time through the for loop,
$field is assigned the third element in the array, name. You can use the value in
$field to access an element in the associative array $row ($row[‘name’]).

After you make sure the argument contains no capital letters or spaces, the value
is sent to the cleanup_text function and printed.

It’s nice to structure a function this way because it allows an arbitrary number of
arguments to be sent to the function. We can include one or many fields to print.

PRINT_INPUT_FIELDS() This function works much like print_entry(). func_
get_args() makes $fields an array, each element of which is an argument sent to
the function. The foreach() structure moves through all elements in the array and
prints a text field for each. The name of the field will be in one table cell, and the
input box will be in an adjoining cell.

function print_input_fields()
{

$fields = func_get_args();

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 249

foreach ($fields as $field)
{

$value = array_key_value($_POST,$field,’’);
$label = ucwords(str_replace(‘_’,’ ‘,$field));
print <<<EOQ

<tr>
<td valign=”top” align=”right”>
$label:
</td>
<td valign=top align=left>
<input type=”text” name=”$field” size=”40” value=”$value”>
</td>
</tr>
EOQ;

}
}

Notice that we check the $_POST global array for the default value of the text
field. The check is here in the event that the user enters bad information and the
information needs to be re-presented with the values he or she entered. Why would
information need to be printed a second time? That should make perfect sense after
you read about the next function, create_entry().

CREATE_ENTRY() We are not going to simply dump user information into the
database. First it needs to be verified.

function create_entry(
$name=’’, $location=’’,$email=’’,$url=’’,$comments=’’

)
{

// remove all HTML tags, and escape any other special characters
$name = cleanup_text($name);
$location = cleanup_text($location);
$email = cleanup_text($email);
$url = cleanup_text($url);
$comments = cleanup_text($comments);

// start out with an empty error message.
// as validation tests fail, add errors to it.
$errmsg = ‘’;
if (empty($name))
{

$errmsg .= “you have to put in a name, at least!\n”;
}

250 Part III: Simple Applications

// do a very simple check on the format of the email address
// supplied by the user. an email address is required.
if (!empty($email) && !preg_match(

‘/^[\w_-.+]+@[\w_-]+(\.[\w_-])+$/’, $email
))

{
$errmsg .= “$email doesn’t look like a valid email

address\n”;
}
else
{

// if the format is OK, check to see if this user has
already

// signed the guestbook. multiple entries are not allowed.
$query = “select * from guestbook where email = ‘$email’”;
$result = safe_mysql_query($query);
if (!$result)
{

$errmsg .= “couldn’t check the guestbook for
$email.\n”;

}
elseif (mysql_num_rows($result) > 0)
{

$errmsg .= “The email address ‘$email’ has
already signed this guestbook.\n”;

}
else
{

die(‘no previous entry found:’
.’query=’.$query
.’rows=’.mysql_num_rows($result)

);
}

}

// perform a very simple check on the format of the url supplied
// by the user (if any)

if (!empty($url) && !eregi(‘^http://[A-Za-z0-9\%\?_\:\~\/\.-
]+$’,$url))

{
$errmsg .= “$url doesn’t look like a valid URL\n”;

}

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 251

if (empty($errmsg))
{

$query = <<<EOQ
insert into guestbook (name,location,email,url,comments,remote_addr)
values (‘%s’,’%s’,’%s’,’%s’,’%s’,’%s’)
EOQ;

$query = sprintf($query
, mysql_real_escape_string($name)
, mysql_real_escape_string($location)
, mysql_real_escape_string($email)
, mysql_real_escape_string($url)
, mysql_real_escape_string($comments)
, mysql_real_escape_string($_SERVER[‘REMOTE_ADDR’])

);
safe_mysql_query($query);

print “<h2>Thanks, $name!!</h2>\n”;
}
else
{

print <<<EOQ
<p>

$errmsg

Please try again

</p>
EOQ;

}
return $errmsg;

}

This function is going to make sure that the information entered is moderately
useful. If there is a problem with the information, a text string describing the prob-
lem will be assigned to the variable $errmsg. If, after the function is executed,
$errmsg is empty, the values will be inserted into the database. Otherwise the error
message(s) will be printed, and the values the user entered will be assigned to glob-
als so that they can be printed as the default values in the text fields the next time
through.

252 Part III: Simple Applications

This function checks for the following in the following order:

◆ That the name field contains something

◆ That the email address is potentially a proper address (contains text, an @,
and a period (.)) Note that this is not very strong validation of email. It
takes a very long and complicated script to thoroughly validate an email,
as you will see in later chapters.

◆ If the email looks OK, that this email address hasn’t been entered in the
database already

◆ That the URL is potentially valid

Check Appendix G for more detail on regular expressions.

SELECT_ENTRIES() This function’s sole purpose is to put together your database call.

function select_entries ($offset=0, $limit=DEFAULT_LIMIT)
{

// cast to make sure that these are integer values
$limit = (int)$limit;
$offset = (int)$offset;

$query = <<<EOQ
select *, date_format(created,’%e %M, %Y %h:%i %p’) as entry_date
from guestbook
order by created desc
limit $offset, $limit
EOQ;

$result = safe_mysql_query($query);

return $result;
}

You already know that DEFAULT_LIMIT sets the number of records displayed per
page. As the second argument in the limit clause, the $offset variable indicates
which records will be returned from the query. If you are having problems under-
standing $offset, take a look at the explanation of the limit clause in Chapter 3.
A value for $offset will be passed through the navigational elements. (We’ll
examine this technique in detail when we discuss the next function.)

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 253

To retrieve the date value in a readable way, this query makes use of MySQL’s
date functions. MySQL stores the date and time as a 14-digit number (YYYY:MM:
DD:HH:SS), but it’s nicer to return the date information in a way that’s easier for
humans to read. The MySQL date_format function retrieves the information in the
way we want to use it. This function and many other MySQL functions are dis-
cussed in Appendix J.

NAV() This function’s sole purpose is to create navigational elements.

function nav ($offset=0, $this_script=’’, $limit=DEFAULT_LIMIT)
{

$offset = (int)$offset;
$limit = (int)$limit;

// don’t run things from outside this directory
if (empty($this_script) or

dirname(realpath(__FILE__)) !=
dirname(realpath($this_script))

)
{

$this_script = $_SERVER[‘PHP_SELF’];
}

// get the total number of entries in the guest book -
// we need this to know if we can go forward from where we are

$result = safe_mysql_query(‘select count(*) from guestbook’);
$total_rows = mysql_result($result,0,0);

print “<p>\n”;
if ($offset > 0)
{

// if we’re not on the first record,
// we can always go backwards
$poffset = $offset - $limit < 0 ? 0 : $offset - $limit;
print <<<EOQ

<<Previous
Entries

EOQ;

}
if ($offset+$limit < $total_rows)
{

// offset + limit gives us the maximum record number
// that we could have displayed on this page. if it’s

254 Part III: Simple Applications

// less than the total number of entries, that means
// there are more entries to see, and we can go forward
$noffset = $offset + $limit;
print <<<EOQ

Next Entries>>
EOQ;

}
print “</p>\n”;

}

When appropriate, this function will print out links that will enable the user to
view the next set of entries, the previous entries, or both. The scope is determined
by the $offset and $limit arguments.

The first time through $offset will have no value, and therefore no previous
entries link will exist (because $offset will not be greater than 0). But if more rows
remain to be displayed, a link will be created that creates a value for $offset to be
accessed if that link is followed.

Say it’s the first time we’re executing this function, so $offset has no value,
and the database contains 10 rows. When it reaches the last if block the script will
see that there are more rows to be displayed ($offset + $limit equals two, which
is less than 10), and so the following link will be printed:

Next
Entries>>

Interesting code flow
Once you understand how the functions presented thus far work, you should have
no problem figuring out how Guestbook 2003 works. For the most part, very, very
little work is done in the pages called by the browser. These pages are pretty much
an assemblage of function calls.

We will break down one file in detail so you can get the feel of how this struc-
ture works. Most of the rest you should be able to figure out by flipping between
the files and the explanations of the functions. In the following sections we will
walk through the view.php file.

VIEWING ENTRIES
The first thing you need to do in every page is include the header.php file, which
enables access to all the functions we outlined previously. After that, you should
include standard header information by calling the guestbook_start_page()
function, passing in the title of the page. Here is the logical flow of the code:

<?php

require_once(‘header.php’);

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 255

guestbook_start_page(‘View My Guest Book!!’);

?>

<table border=”0”>

<?php

// $preserve is passed into the cleanup_text() function (declared in
// /book/functions/basic.php). setting it to an empty value will
// cause any HTML tags in an entry to be stripped out before
// being displayed.

$preserve = ‘’;

// select_entries() (declared in header.php) should return a mysql
// result set identifier

$result = select_entries($offset);

while ($row = mysql_fetch_array($result))
{

print_entry($row,$preserve,’name’,’location’,’email’,’URL’,’entry
date’,’comments’);

print “<tr><td colspan=2> </td></tr>\n”;
}

// release memory associated with this mysql result set
mysql_free_result($result);

?>

</table>

<?php

nav($offset);

end_page();

?>

256 Part III: Simple Applications

This is it. You use the global $offset variable to run the query with the
select_entries() function, and then print the results by calling the print_
entry() function within a while loop. Navigational elements are determined by
the nav() function.

DELETING ENTRIES
The most complex portion of this application involves the ability to delete entries
from the guestbook. This stands to reason because you don’t want your guestbook
being fooled with by anonymous users. So the first thing you need to do before
deleting an entry is authenticate users. When discussing the guestbook_authenti-
cate() function, we showed how an HTTP 401 header will bring up the browser’s
username-and-password dialog box. The values entered need to be checked against
the guestbook_admin database table. The guestbook_authenticate() function
takes care of this for you, which is why it’s called at the top of the edit.php file.

<?php

ob_start();

require_once(‘header.php’);
guestbook_authenticate();

ob_end_flush();

guestbook_start_page(‘Edit The Guest Book’);

?>

We use the PHP output buffering functions, ob_start() and ob_end_flush(),
to make sure that no output gets sent to the browser before the HTTP 401 header.
Otherwise, a blank line or space outside the <?php ... ?> tags in the header.php
would prevent guestbook_authenticate() from running. If you know you won’t
be using PHP as an Apache module, then you know PHP won’t be trying to send
these headers, and you can remove this code. It shouldn’t make any visible differ-
ence if you leave it in, however.

Once a valid username and password have been entered, the remainder of the
edit.php file will be sent. But this time, in addition to all the other information, a
checkbox will be included so the user can decide which entries should be deleted.
The value of the checkbox will be the primary key of the guestbook table.

while ($row = mysql_fetch_array($result))
{

// call the normal function to display a guestbook entry
print_entry($row,$preserve,’name’,’entry date’,’location’,’email’

,’URL’,’comments’

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 257

);

// now add an extra row to allow the user to mark this entry
// for deletion
print <<<EOQ

<tr>
<td valign=”top” align=”right”>Delete?</td>
<td valign=”top” align=”left”>
<input type=checkbox name=”entry_id[]”

value=”{$row[‘entry_id’]}”>
Yes, delete entry #{$row[‘entry_id’]}
</td>
</tr>
<tr><td colspan=2> </td></tr>
EOQ;
}

This form is then submitted to the confirm_delete.php file. Notice how we’re
passing an array here. The name of the form element is entry_id[], which means
that when this form is passed to PHP entry_id will become an array. The number
of values in the array depends on the number of boxes checked. HTTP will not send
the unchecked boxes at all.

The first time through the confirm_delete.php file, we will print out the
entries. This will make the person deleting these entries make sure he or she isn’t
doing something stupid.

foreach ((array)$entry_id as $value)
{

print <<<EOQ
Delete entry #$value?
<input type=”hidden” name=”entry_id[]” value=”$value”>
EOQ;

}

If any of these entries are to be deleted, this page will submit to itself, with a dif-
ferent value (confirm delete) sent by means of the submit button. This will make the
following code run:

foreach ($entry_id as $value)
{

print “Deleting entry #$value\n”;
safe_mysql_query(“delete from guestbook where entry_id =

$value”);
}

We loop through the $entry_id array, deleting records for each member.

258 Part III: Simple Applications

Scripts
A few more scripts and functions are available to you, but these don’t warrant
much discussion. Complete copies of all the files are included on the CD. We sug-
gest you look at them and the comments to get a feel for how they fit into the
application.

Summary
The skills you learned here may not get you the big bucks as a programmer, but if
you understand everything that is being done here, you should be in pretty good
shape as you move forward in your PHP programming life.

In particular, you should see the priority that is put on creating reusable code.
Nearly everything in this example is in functions. This makes it much more likely
than it would otherwise be that the code we write will be usable in some future
application. Additionally, in this chapter you got to see some basic validation.
Validation is an important concept and one you will need to take very seriously
when your application accepts user input.

Chapter 8: Guestbook 2003, the (Semi-)Bulletproof Guestbook 259

Chapter 9

Survey
IN THIS CHAPTER

◆ Learning functions for creating HTML tags

◆ Understanding data that use a relational structure

◆ Putting MySQL’s date functions to work

◆ Working with PHP’s error-handling functions

IF GUESTBOOKS are the most common type of application on the Web, surveys are
probably second in popularity. Many sites have some sort of widget that enables
you to choose you favorite color or sports hero, or whatever, to see what percent-
age of voters take what stance.

This application will be a bit more complex than the guestbook application you
saw in Chapter 8. The programming will get a bit trickier, and the administration of
the application will require more work. Unlike the guestbook, this application will
require some knowledge of database theory. Related tables, complete with the pri-
mary and foreign keys, appear in Part I of this book. This means that your SQL
queries will include joins.

Determining the Scope and Goals
of the Application
The problem with the Web is that it can be mighty impersonal. You surf around,
look at pages, search for information, and have advertisements try to sell you
things. But you don’t see much evidence of other human beings. A survey on a site
gives surfers a clue that other people have been by and that it’s possible to leave a
mark that others will see later.

A survey application can be ultra-simple. If you want only to gather responses
to a single question and return basic statistical information on the responses (how
many votes for choice A, B, and so on), you don’t need a whole lot of code (or a
chapter explaining it). A single table to store answers would do the trick. The ques-
tion can even be hard-coded into the HTML for the Web site. But that would not
make for very interesting learning experience, would it?

261

It gets more interesting if there can be any number of questions. Instead of just
one, this application will allow for two, five, ten, or more — whatever you want.
This survey will also record demographic information (such as age and country of
origin) and enable sorting on the basis of this information. We also decided to add
the ability to pick a winner from those who filled out the personal information. This
might encourage people to give real rather than fictitious answers.

There is one more wrinkle to discuss here. It’s really not possible to create a sur-
vey application that records perfect data. Even if you go to extreme lengths, there
will always be an opportunity for the shrewd and persistent to submit multiple
answers as long as you allow anonymous access to your survey. But in all likeli-
hood your survey will not have to pass muster with the Federal Elections
Commission. A small step to weed out those ruining your survey should do the
trick, and you will see one way to accomplish this step later on in the chapter.

Necessary pages
Entering and viewing survey information will require three pages. The first is where
the questions will be presented and where the user will enter name, address, and
geographic and demographic information. The second page will show the basic
survey results. The third will give a detailed breakdown. Figures 9-1, 9-2, and 9-3
show these respective pages.

Figure 9-1: Page for filling out survey

262 Part III: Simple Applications

Figure 9-2: Basic survey results

Figure 9-3: Detailed survey results

This application, like all others, requires some administrative tools. For starters,
you will need to be able to add, delete, and edit questions. Additionally, another
page selects a winner at random from the database. Figures 9-4 and 9-5 show the
administrative page and the select winner page, respectively.

Chapter 9: Survey 263

Figure 9-4: Survey-administration page

Figure 9-5: Select winner page

264 Part III: Simple Applications

Winners will be notified via email and sent a URL to claim their prize. The page
they get when they open the URL will look like the one in Figure 9-6. Once there,
winners will need to confirm who they are, just so you have an extra level of security.

Figure 9-6: Claim prize page

Preventive measures
In the previous chapter we discussed methods for removing junk information that
people may attempt to send through the form elements. We will continue to use
these functions here. This application will also do some email address validation.

This application will provide you with a simple means of blocking some people
from entering information at your site. It’s nothing terribly sophisticated; a savvy
Internet user would be able to work around it in a minute. Using the form shown in
Figure 9-6 you will be able to enter a domain of origin that will be blocked from
the site. All users who enter data will have their $_SERVER[‘REMOTE_HOST’] and
$_SERVER[‘REMOTE_ADDR’] values checked against a table in the database (they
can turn the presentation of these values off, though). If their host is found, the
application will refuse access to the user. Again, this isn’t perfect. If you really have
sensitive information and need an effective way to block users, you should work
with some sort of login scheme. This is just an example of what you could do with
a database and HTTP header information.

Chapter 9: Survey 265

You’ll also need to take some steps to make sure that the wrong people won’t be
claiming prizes. You’ll need to make sure that the people coming to claim prizes are
who they say they are.

Designing the Database
This survey application allows for any number of multiple-choice questions. Each
question can have any number of answers. To create this relationship you’ll need
two tables, one named questions and one named answers, that have a one-to-many
relationship. (Each question (1) can have any (n) number of answers.)

User information is best represented by multiple tables as well, since each user
will answer multiple questions. A table named users will store name and address
information, while a table named responses will tie together a user and an answer.
(User A chose Answer Z to Question 2, for example.) The weekly contest winners will
be represented as a link to the appropriate user record in a table named winners,
where users’ names are listed along with the week in which they won. Two other
tables, states and age_ranges, are used to help us group responses together in dif-
ferent ways.

Finally, two administrative tables have no relationships to the other tables in the
database. The admin table holds usernames and passwords for administrators, and
blocked_domains records domains that have been blocked.

Because we have multiple tables that are linked together, in this database we can
begin to take advantage of the features of the InnoDB table type. One of those is the
ability to create foreign key constraints. (MySQL has always enabled you to declare
these, but they have no meaning for other table formats.) A foreign-key table con-
straint spells out the relationship between the table being defined and another table

266 Part III: Simple Applications

Email Addresses: To Validate or Not to Validate?
Verifying that an email is in the proper format takes a lot of work. To check a single
address thoroughly takes multiple regular expressions. Given that regular expressions
are fairly slow, you may be wondering if it is even worth running a script like that,
especially if you are running a site with very heavy traffic. You will need to decide
that for yourself, based on the amount of traffic you get and the strength of your
server hardware. Do you need to make sure emails are perfect, or will a simpler, less
robust form of validation be good enough? Even if you make sure the address is in the
proper format, that doesn’t tell you if the address is attached to an actual mailbox. If
you do need to validate your email addresses as much as possible, check around on
the Web. Online code archives contain software that will check an address’s validity
and do rudimentary network lookups to validate domain names and the like.

in the database, such as the relationship in this example between the answers and
questions tables. A nice benefit of the foreign key table is the ON DELETE part of the
constraint definition. If you set this to ON DELETE CASCADE, deleting a record in the
master table will automatically cause all dependent records in the child table to be
deleted as well. Therefore, if you delete a question, all of its answers go away too.
Which means that much less code to write (always a good thing).

Figure 9-7 shows a visual representation of the structure of the database. The
create statements for making these tables are shown in Listing 9-1. Note that these
table definitions were copied from the mysqldump utility. If you’re not aware of
mysqldump, or the other mysql utilities, make sure to read Appendix D.

Figure 9-7: Survey database schema

users

user_id
name
email
country
state
age
remote_addr
remote_host
create_dt

blocked_domains

domain
block_by
block_dt
release_dt
notes
modify_dt

weekdate
user_id
claim_code
notify_dt
claim_dt
confirm_dt

state

state
statename

age_ranges

min_age
max_age
age_range

questions

question_id
question

answers

answer_id
question_id
answer

responses

user_id
answer_id

survey admin

username
password

winners

Chapter 9: Survey 267

Listing 9-1: Create statements for survey

--
-- Table structure for table ‘admin’
--

CREATE TABLE admin (
username varchar(50) NOT NULL default ‘’,
password varchar(255) NOT NULL default ‘’,
PRIMARY KEY (username)

) TYPE=InnoDB;

--
-- Table structure for table ‘age_ranges’
--

CREATE TABLE age_ranges (
min_age int(11) NOT NULL default ‘0’,
max_age int(11) NOT NULL default ‘0’,
age_range varchar(10) default NULL,
PRIMARY KEY (min_age,max_age)

) TYPE=InnoDB;

--
-- Table structure for table ‘answers’
--

CREATE TABLE answers (
answer_id int(11) NOT NULL auto_increment,
question_id int(11) NOT NULL default ‘0’,
answer text NOT NULL,
PRIMARY KEY (answer_id),
KEY question_id (question_id,answer_id),
FOREIGN KEY (`question_id`) REFERENCES `survey.questions`

(`question_id`) ON DELETE CASCADE
) TYPE=InnoDB;

--
-- Table structure for table ‘blocked_domains’
--

CREATE TABLE blocked_domains (
domain varchar(64) NOT NULL default ‘’,
block_by varchar(50) default NULL,
block_dt datetime NOT NULL default ‘0000-00-00 00:00:00’,

268 Part III: Simple Applications

release_dt datetime default NULL,
notes text,
modify_dt timestamp(14) NOT NULL,
PRIMARY KEY (domain),
KEY block_by (block_by),
FOREIGN KEY (`block_by`) REFERENCES `survey.admin` (`username`) ON

DELETE SET NULL
) TYPE=InnoDB;

--
-- Table structure for table ‘questions’
--

CREATE TABLE questions (
question_id int(11) NOT NULL auto_increment,
question text NOT NULL,
PRIMARY KEY (question_id)

) TYPE=InnoDB;

--
-- Table structure for table ‘responses’
--

CREATE TABLE responses (
user_id int(11) NOT NULL default ‘0’,
answer_id int(11) NOT NULL default ‘0’,
PRIMARY KEY (user_id,answer_id),
KEY answer_id (answer_id),
FOREIGN KEY (`user_id`) REFERENCES `survey.users` (`user_id`) ON

DELETE CASCADE,
FOREIGN KEY (`answer_id`) REFERENCES `survey.answers`

(`answer_id`) ON DELETE CASCADE
) TYPE=InnoDB;

--
-- Table structure for table ‘states’
--

CREATE TABLE states (
state char(2) NOT NULL default ‘’,
statename varchar(30) NOT NULL default ‘’,
PRIMARY KEY (state)

) TYPE=InnoDB;

Continued

Chapter 9: Survey 269

Listing 9-1 (Continued)

--
-- Table structure for table ‘users’
--

CREATE TABLE users (
user_id int(11) NOT NULL auto_increment,
name varchar(50) default NULL,
email varchar(50) default NULL,
country varchar(20) default NULL,
state char(2) default NULL,
age int(11) default NULL,
remote_addr varchar(15) default NULL,
remote_host varchar(80) default NULL,
create_dt timestamp(14) NOT NULL,
PRIMARY KEY (user_id)

) TYPE=InnoDB;

--
-- Table structure for table ‘winners’
--

CREATE TABLE winners (
weekdate datetime NOT NULL default ‘0000-00-00 00:00:00’,
user_id int(11) NOT NULL default ‘0’,
claim_code char(8) NOT NULL default ‘’,
notify_dt datetime default NULL,
claim_dt datetime default NULL,
confirm_dt datetime default NULL,
PRIMARY KEY (weekdate),
UNIQUE KEY claim_code (claim_code),
KEY user_id (user_id),
FOREIGN KEY (`user_id`) REFERENCES `survey.users` (`user_id`) ON

DELETE CASCADE
) TYPE=InnoDB;

Code Overview
If you have already read the section of the same name in Chapter 8, the structure
we use here should be familiar to you. Items in the /functions folder are included
and ready for reuse. We’ve also taken the MySQL functions we used for the guest-
book, modified them a bit to make them more generally useful, and renamed them
my_connect() and my_query(). These can be found in the /functions/basic directory.

270 Part III: Simple Applications

It’s obvious that this survey application requires several more pages than the
guestbook: More needs to be done. Though you can include several actions in a sin-
gle page, and sort through the ones you need by passing variables and using if
statements, it can make code difficult to keep track of. Better to have several intu-
itively named files that perform specific tasks. That said, some pages in this appli-
cation make use of variables in order to decide how they should look and behave.

If you’ve done any Web work at all you know how tedious it can be to deal with
HTML tables and forms. On the one hand, putting literal HTML tags into your pages
will always be a faster procedure than any code-based method of generating them.
On the other hand, propagating changes through all those literal tags can be more
than tedious — it’s also a great source of bugs). For that reason, in this and most of
the other applications in this book, we will try to ease the pain involved in dealing
with tables and forms. In the following sections you will see several functions that
will make life, in the long run at least, a lot easier. The functions in the coming sec-
tions will make a lot more sense if you see what they accomplish first. Here’s some
code that will work just fine if used with the following functions:

print start_table();
print table_row(

table_cell(‘Cell text’)
);
print end_table();

or even just this:

print table(‘Cell text’);

This will create a table with one cell. You could build on the complexity of the
unicellular table by adding additional table_cell() calls within the table_row()
function call. You can do this because of PHP’s ability to deal with a variable num-
ber of arguments. We designed the table_row() function to loop through all of the
arguments (some of which are calls to the table_cell() function). You may be
wondering how these functions deal with table attributes, like width, align, and
others. How could you alter those for particular tables_or for all your tables at once?

If you don’t like the functions we’ve created for tables, forms, and other

HTML elements, don’t use them. It is perfectly acceptable (and perhaps even

more common) to type out HTML elements rather than create them

through functions. Like many things in programming, it comes down to a

matter of preference. For the question of whether to hard-code HTML or

programmatically generate it, there’s no right answer. It is true, though, that

dynamically generating HTML on a high-traffic site can put a big load on the

Chapter 9: Survey 271

server. In that situation, you probably will want to put literal HTML in your

pages — at least in your live pages — or look into a caching system of some

kind.

Here we come to another question of style. You can write your functions to
expect certain attributes as arguments, in a particular order, like this:

function table_cell ($value=’’, $align=’left’, $valign=’top’, $width=’’)

That’s straightforward, and calling the function is pretty simple too:

print table_cell(‘This will be in the upper left corner’);
print table_cell(‘This will end up in the lower right corner’,
‘right’, ‘bottom’);

But the drawback is that you have to remember what attribute goes where. And
reading code like this six months later, after you’ve forgotten you wrote it, or when
you didn’t write it all, can be a problem. For an example like the table_cell()
function above, it’s not so bad — “right” and “bottom” are clear enough. But a line
like

print image_tag(‘/images/b129.gif’, 10, 20, 5, 1, 0);

is not so clear. As an alternative, you can specify your arguments as named values
in an array:

print image_tag(array(‘src’=>’/images/b129.gif’, ‘width’=>10,
‘height’=>20

, ‘vspace’=>5, ‘hspace’=>1, ‘border’=>0
));

That makes the function call easier to read, but the tradeoff is that the function
itself is a bit less so:

function image_tag ($attributes=NULL)

Now the work of figuring out what values are being passed to the function takes
place inside the function itself. Still, that keeps it in one place. The function calls
are a little more tedious to write, and the functions a little trickier. The benefit is
code that’s easier to read, easier to maintain, and less ambiguous in the writing;
this means fewer bugs. (Unless you’re prone to forget parentheses, like some of us.)

272 Part III: Simple Applications

The functions we’ll use with these examples make something of a lazy compro-
mise between these two approaches. When there’s a single most common use of a
tag, involving one or two attributes, the function assumes that’s what you mean if
you hand it an unnamed simple value, like this:

print table_cell(‘This is the stuff that goes between the opening
and closing td tags.’);

If you want to specify other attributes, then everything has to be in an array:

print table_cell(array(‘value’=>’This is the content of the cell’
, ‘align’=>’right’, ‘valign’=>’bottom’

));

A more complex function call might look like this:

print table_row(array(
‘bgcolor’ => $bgcolor
, ‘cells’=>array(

table_cell(array(
‘value’=>’New entry’
, ‘align’=>’right’

))
, text_field(array(

‘name’=>’entered_by’
, ‘value’=>’’
, ‘size=>10

))
, submit_field(‘Insert Record’)

)
));

Here the arguments to table_row() specify the row’s background color
(‘bgcolor”=> $bgcolor) and an array of values to be set up as table cells. Some of
those are nothing more than the contents of the cell, and so we can just list them,
even when the contents themselves are the results of other function calls to create
form fields. But we want the first cell to be aligned to the right, so we make an
explicit call to the table_cell() function ourselves to build it.

Keep in mind that the methods for achieving nested function calls will be
explained later in the “Code Breakdown” section. Throughout the process of creating
this application we make more extensive use of MySQL functions than you saw in
Chapter 8.

Chapter 9: Survey 273

Code Breakdown
As with the guestbook application, the code here is divided for convenience. We’ve
added some final touches to the structure that we’ll use for the rest of the book. It’s
worth taking a minute or two to go over it. Here’s a picture:

/usr/local/apache/dsn/
* db_dsnlist.php
* dsn.ini

/usr/local/apache/htdocs/book/
* autoload.php
* book.ini
* book.php
* classes.php
* functions.php
* index.html
* phpinfo.php
* sitemap.php
* source.php
* survey/

+ admin/
o block_domain.php
o end_page.php
o get_winner.php
o header.php
o index.php
o login.php
o questions.php
o winners.php

+ age_results.php
+ claim.php
+ complex_results.php
+ country_results.php
+ db/

o admin.sql
o age_ranges.sql
o answers.sql
o blocked_domains.sql
o grants.sql
o load_questions.sql
o questions.sql
o responses.sql
o setup.bat

274 Part III: Simple Applications

o setup.in
o states.sql
o users.sql
o winners.sql

+ functions/
o check_domain.php
o fetch_question.php
o fetch_user.php
o get_answers.php
o weekstart.php

+ functions.php
+ header.php
+ index.php
+ results.php
+ state_results.php
+ thanks.php
+ verify_answers.inc.php

From the top, we have a file named /book/book.php. This adds the /book/functions
directory, where we keep the general-purpose functions used across all the examples
to the default PHP include path. It also adds the /book directory itself by modify-
ing the PHP configuration variable include_path. This in turn enables us to write
include statements that refer to /book/thing/stuff.php, even if the book directory is
not in the root document directory of your server.

The example application that we are looking at in this chapter, the Survey appli-
cation, lives in the /book/survey directory. In here are the files for the pages of the
application. The administrative pages are in a subdirectory named admin/, which
helps keep the file names somewhat regular— the header file is named header.php, the
page included at the end of every page is end_page.php, and so on. The header.php
file makes reference (via an include statement) to a second file, functions.php,
which defines the functions specific to this application. If we were using any con-
stants or global variables in this application, those would be defined in a file named
globals.php.

Two other subdirectories exist under survey/, standard to all the following
examples. The functions/ subdirectory is where the actual code defining our local
functions lives. Each function is in its own file in here. That’s to make it easier to
find later, mostly, but it also makes managing changes to the code a little bit simpler.
The functions.php file is just a set of require_once() calls that pull in the individ-
ual function files. (The functions under /book/functions are set up the same way.)

The db subdirectory is where we keep the SQL files that define the survey data-
base. There is a file in here named setup.bat, which runs mysql (the command-line
client) as the root user, prompting you for a password, and executes the commands
in the setup.in file. setup.in creates the database, includes the table definitions,
loads some rather silly sample data, and grants read and write access on the data-
base to the nobody account. (If your Web server runs under a different username

Chapter 9: Survey 275

you should edit this file to reflect the different credentials.) Static lookup tables, like
the states table, load the relevant data into their definition files.

We covered some of the functions defined by the /book/functions/basic.php file
in Chapter 8, so we won’t go over those again here. But we did add a few little
bonuses this time around.

HTML functions
As your applications get more complex, you’re going to need to continually use
some HTML ingredients — forms, tables, paragraph tags, anchors, and the like. For
this reason we’ve added a series of functions that make it easier to create those
repetitive HTML elements — and we’ve done it so as to demonstrate a variety of
ways to handle arguments to a function.

ARGUMENT-HANDLING FUNCTIONS
To introduce the techniques used by the HTML functions that we’ll cover here, we’ll
pick a small one — the image_tag() function — and show you what it’s doing.

This image_tag() function returns an HTML tag.

function image_tag()
{

static $_defaults = array(
‘src’ => ‘’
, ‘alt’ => ‘’
, ‘border’ => 0
, ‘allowed’ =>

array(‘Common’,’alt’,’height’,’width’,’longdesc’

,’src’,’usemap’,’ismap’,’name’,’align’,’border’,’hspace’,’vspace’
)

);
static $_simple = array(‘src’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
if (empty($p[‘alt’]))

$p[‘alt’] = $p[‘src’];
$attlist = get_attlist($p);
$output = “”;

return $output;
}

The first thing this function does is declare a couple of static variables (the
underscores in their names — $_defaults and $_simple— are just a convention
we’ve used for these particular variable names, to make them distinct from other
variable names; they have nothing to do with the variables being static or not).

276 Part III: Simple Applications

Static variables aren’t reinitialized every time the function is called. Instead, they
retain their values from one call to the next, including any changes. So if we have
a function like

function count_sales($newsales=0)
{

static $total_sales = 0;
$total_sales += $newsales;
print “Total sales to date: $total_sales\n”;

}

we can use it to keep a running total, like so:

count_sales(10.00);
OUTPUT ---> Total sales to date: 10.00

count_sales(5.00);
OUTPUT ---> Total sales to date: 15.00

Besides serving as a place to store data, statics are also useful when you have
something like a big array that gets used every time you call the function, but that
never changes. (Or doesn’t change much.) Especially when your function is one that
gets called over and over again, it can pay to not have to create those variables
from scratch each time. One thing to be aware of: Statics are handled just like ref-
erences, and that affects how they behave. For instance, you can’t store another
reference in a static variable. For more information, see the PHP manual section at
http://www.php.net/manual/sv/language.variables.scope.php.

In image_tag() the two static arrays we define are storing two kinds of data:

◆ $_defaults is an associative array that describes attributes of the HTML
tag and their default values. Sometimes attributes are listed in here
because we really do have default values for them — for example, the
default value for the ‘border’ attribute of an tag should be zero.
Most of the time, they’re here to establish the name of the attribute for
later use. In fact, many of the “attributes” listed in the $_defaults array
in other HTML tag functions aren’t strictly attributes of the tag at all. The
‘value’ attribute of a <textarea> tag, for instance, turns into the string
between the opening <textarea> and closing </textarea> tags.

◆ $_simple sets out how we want to interpret arguments to this function
when they don’t come neatly labeled in an array. As we mentioned earlier,
most of the time we’ll be using an array to pass arguments into these
functions, so that when we look at the function calls we’ll know what we
meant to do:

image_tag(array(‘src’=>’/images/chimp.jpg’, ‘height’=>50,
‘width’=>50));

Chapter 9: Survey 277

But we’d also like to be lazy:

image_tag(‘/images/spacer.gif’);

$_simple is what lets us get away with simplified coding style — it’s a list
of attribute names to be assigned to unlabeled values. Here, setting it to
array(‘src’) specifies that if we get just a plain string as an argument,
it’s meant to be the value of the src attribute of the tag.

Look at the functions being called here.
First up is the parse_arguments() function. We call it with three parameters: an

array containing the arguments that were passed into image_tag() and the two
static arrays. You might notice that even though the arguments are declared as ref-
erences to the passed-in variables we can still initialize them to default values. This
is a very useful feature of the new PHP engine release. Being able to define a
default value means that the caller can ignore arguments that don’t apply.

In the function itself, we use casting operators to make sure that these are arrays,
and set up some variables that we’ll use to hold values as we go through the argu-
ments (note that in PHP 5, you can assign default values to by-reference argu-
ments; this makes calling the functions much easier):

function
parse_arguments($args=array(),&$simple=array(),&$defaults=array())

{
$args = (array)$args;
$simple = (array)$simple;
$defaults = (array)$defaults;
$key = NULL;
$result = $defaults;
$result[‘_defaults’] = $defaults;
$result[‘_simple’] = $simple;

We start out the $result variable, which is what the function will eventually
return, as a copy of $defaults. This ensures that everything defined in the
$_defaults array will come back as an attribute for the tag. Then we put those
arrays themselves into $result so that they can be modified or replaced by argu-
ments passed in to the original function. This will let us change the default and
simple values in the code of a page, setting up a default image size or border width,
for example_ without having to rewrite the function itself.

Next we’ll walk through the list of arguments. Associative arrays are merged
into $result, empty arguments are ignored, and other arguments are assigned to
the named parameters from the $_simple array:

$i = 0;
$sc = count($simple);
foreach ($args as $arg)

278 Part III: Simple Applications

{

if ($arg === NULL || (is_array($arg) && count($arg) == 0))
{

// do nothing
}
elseif (is_object($arg))
{

$result = array_merge($result, get_object_vars($arg));
}
elseif (is_assoc($arg))
{

$result = array_merge($result, $arg);
}
else
{

if ($i < $sc)
{

$key = $simple[$i++];
if (!empty($arg) || !isset($result[$key]))
{

$result[$key] = $arg;
}

}
else
{

if ($key === NULL)
{

user_error(“Argument ‘$arg’ was passed with no
available target - aborting...\n”, E_USER_ERROR);

}
if (isset($result[$key]))
{

if (!is_array($result[$key]))
{

$result[$key] = array($result[$key]);
}
$result[$key][] = $arg;

}
else
{

$result[$key] = $arg;
}

}
}

}

Chapter 9: Survey 279

Two things are worth pointing out here. If a simple argument is encountered
after we’ve run out of parameter names from $_simple, it’s added into an array by
means of the last simple name. This is how a function like paragraph() works. It
has just one simple argument name, ‘values’, so a list of simple arguments passed
in to the function ends up as elements in the $values array:

paragraph(‘One line’,’Another line’,$variable,’Yet another line’);

becomes

‘values’ => array(‘One line’, ‘Another line’, $variable, ‘Yet
another line’);

If there are no names passed in, however, we won’t have anywhere to put any
arguments that aren’t associative arrays. In this case we use PHP’s user_error()
function to raise an error. This prints out our error message and stops the script,
just like a normal PHP error. (The user_error() function is one you’ll be seeing
more of in later examples.)

Finally, to clean up, we take any changes to our list of default and simple argu-
ments and pass them back to the calling function. Because the two arrays are passed
in by reference, changes made to them here will update the original variables. And
because they’re declared as static, those changes will still be there the next time the
function is called.

$defaults = array_merge($defaults, $result[‘_defaults’]);
$simple = $result[‘_simple’];
return $result;

}

Changes to $_defaults are merged into the original list, while a new value for
$_simple will replace the old one.

After calling parse_arguments() in the image_src() function, like this,

$p = parse_arguments($p, $_simple, $_defaults);

we have an array, $p, containing all the attribute values and other parameters
from the original call. For example, from this line in the Web page —

image_src(‘/images/monkey.jpg’);

— we would end up with the following values in $p:

$p = array(‘src’=>’/image/monkey.jpg’, ‘alt’=>’’, ‘border’=>0);

280 Part III: Simple Applications

For the tag specifically, if the ‘alt’ attribute is empty, we’ll use the name
of the image file (from the ‘src’ attribute) as a default:

if (empty($p[‘alt’]))
$p[‘alt’] = $p[‘src’];

The next step is to turn the reference to the image file into an HTML tag. So we
pass the array to the get_attlist() function. This takes key/value pairs from an
associative array and reformats them as a single string of HTML-style attributes.
The previous example would come back as the following:

src=”/images/monkey.jpg” alt=”/images/monkey.jpg” border=”0”

Therefore, we only need add the name of the tag itself and the opening and clos-
ing angle brackets to get this, which image_tag() returns as its result:

<image src=”/images/monkey.jpg” alt=”/images/monkey.jpg”
border=”0”>

A special constant, STANDALONE, defined in /functions/basic.php, is useful for
attributes like ‘selected’ in an <option> tag. So

array(‘value’=>’CA’,’selected’=>STANDALONE)

becomes

value=”CA” selected

Using this function may seem like a lot of work just to get a simple tag.
Well, it is. The payoff is flexibility, the cost is an increase in complexity. In a high-
performance environment you would probably end up discarding parts of this code.
For instance, you could decree that all function calls will be of the following form:

my_function(array(‘param1’=>’value1’, ‘param2’=>’value2’, ...)

This would enable you to eliminate the call to parse_arguments() and simply
merge the passed-in array with $_defaults. Or you could use functions like these
in your production/development environment to produce less clever, and thus
faster, files that will then get pushed out to your servers.

FUNCTIONS FROM /BOOK/FUNCTIONS/HTML/
These functions make it easier to create common HTML tags. Most of the functions
in this file are very similar.

Chapter 9: Survey 281

ANCHOR_TAG() This function creates an anchor tag.

function anchor_tag()
{

static $_defaults = array(
‘href’=>’’
, ‘text’ => ‘’
, ‘value’ => ‘’
, ‘allowed’ => array(‘Common’,’accesskey’,’charset’,’href’

,’hreflang’,’rel’,’rev’,’tabindex’,’type’,’name’,’target’
)

);
static $_simple = array(‘href’,’value’);

$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);

if (empty($p[‘text’]))
{

$p[‘text’] = $p[‘href’];
}
if (empty($p[‘value’]))
{

$p[‘value’] = $p[‘text’];
}

$attlist = get_attlist($p);
$output = “<a $attlist>{$p[‘value’]}”;
return $output;

}

You can expect only two things every time with an anchor tag: an href attribute
and some text to go between the opening and closing <a> tags. However, it is pos-
sible that a name attribute would be more descriptive, and more useful in client-side
scripting. But more often than not, the call to this function will look something like
this:

anchor_tag(‘myurl.com/index.html’, ‘this is a great link’);

PARAGRAPH() This function will either print out opening and closing <p> tags
and everything between them, or just the opening <p> tag, depending on how it’s
called.

282 Part III: Simple Applications

function paragraph ()
{

static $_defaults = array(
‘values’ => array()
, ‘allowed’ => array(‘Common’,’align’)
, ‘start’ => NULL

);
static $_simple = array(‘values’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);

$output = “\n<p $attlist>\n”;
if ($p[‘start’] !== NULL)
{

return $output;
}
$output .= implode(“\n”,(array)$p[‘values’])

.end_paragraph($p)
;
return $output;

}

The first thing to understand about this function is that by default it will print
not only the opening <p> tag along with its attributes, but also the closing </p> tag
and everything that could occur between the two. This could include anchor tags,
image tags, or just about anything else. The following function call would work just
fine, and in fact is used within the survey application:

print paragraph(anchor_tag(‘block_domain.php’,’Return to Domain
List’));

One argument exists in this function call, and that’s another function call with
two arguments. In effect, when one function call is nested inside another, PHP exe-
cutes the internal one first. So first the anchor_tag() function is called, creating a
string like ‘’. Then the outer function is executed,
so the call to the paragraph function will actually look something like this:

print paragraph(‘Return to Domain
List’);

Note how flexible this becomes. By looping through the number of arguments
you can send any number of additional function calls to the paragraph function.
And you can happily mix text and function calls together, because by the time

Chapter 9: Survey 283

paragraph() sees it, it’s all text. So the following is a perfectly fine call to the
paragraph function:

print paragraph(
“Blocked by: $block_by
”
, “Date Blocked: $block_dt
”
, “Date Released: $release_dt
”
, “Last Modified: $modify_dt
”

);

START_PARAGRAPH() You might have noticed that the paragraph() function
checked to see if it had been passed an argument named ‘start’, and if it had,
returned only the opening <p> tag. Sometimes you need to use the function that
way because what goes inside the paragraph is too complicated to be included in a
list of values. In such a case you can just call paragraph() with a ‘start’=>TRUE
attribute, or you can use the start_paragraph() function, as follows:

function start_paragraph ()
{

$p = func_get_args();
$p[] = array(‘start’=>’yes’);
return call_user_func_array(‘paragraph’, $p);

}

The start_paragraph() function takes the arguments passed into it and adds a
‘start’ argument. Then comes the interesting part. The PHP function
call_user_func_array () takes a function name and an array of arguments and
uses them to make a call to the named function. The elements in the array of argu-
ments are passed in exactly as they would be in a normal function call. So

call_user_func_array(‘myfunc’,array(1,2,3);

works just like

myfunc(1,2,3);

The call_user_func_array() strategy lets start_paragraph() work as a kind of
front end to the paragraph() function. A call to start_paragraph() like this one:

start_paragraph(array(‘align’=>’center’));

is equivalent to

paragraph(array(‘align’=>’center’, ‘start’=>’yes’));

284 Part III: Simple Applications

Both calls produce the same HTML output:

<p align=”center”>

END_PARAGRAPH() This function just prints out an end paragraph tag (</p>), as
follows:

function end_paragraph ()
{

$output = “\n</p>\n”;
return $output;

}

Its main reason for existing, besides making a lovely matched set with
start_paragraph(), is to let you close any opening tags you might want to hard-
code into the opening of a paragraph — a tag, for example.

UL_LIST() With this function you can create a bulleted list. Most frequently, an
array will be passed to the function, each element prepended with an tag. The
function also deals with occasions in which a string is sent as the only argument.

function ul_list ()
{

static $_defaults = array(
‘values’ => array()
, ‘contents’ => NULL
, ‘allowed’ => array(‘Common’,’compact’,’type’)

);
static $_simple = array(‘values’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);

$output = “<ul $attlist>\n”;

if (!empty($p[‘values’])
&& !is_array($p[‘values’])
&& !is_object($p[‘values’])

)
{

$output .= $p[‘values’];
}
else
{

array_key_remove($p,array(‘_defaults’,’_simple’,’allowed’));

Chapter 9: Survey 285

foreach ((array)$p[‘values’] as $p[‘text’])
{

$output .= li_tag($p);
}

}
$output .= $p[‘contents’];
$output .= “\n”;
return $output;

}

START_TABLE() Every HTML table begins with more or less the same code, so we
have a function to generate it for us.

function start_table ()
{

static $_defaults = array(
‘cellspacing’ => 0
, ‘cellpadding’ => 1
, ‘allowed’ =>

array(‘Common’,’border’,’cellpadding’,’cellspacing’

,’datapagesize’,’frame’,’rules’,’summary’,’width’,’align’,’bgcolor’
)

);
static $_simple = array(‘width’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);
$output = “\n<table $attlist>\n”;
return $output;

}

END_TABLE() The same goes for the end of the table — it’s boilerplate, and boiler-
plate should be generated programmatically. Here’s a function that does just that.

function end_table ()
{

$output = “\n</table>\n”;
return $output;

}

TABLE() Here, unlike with the similar paragraph functions, start_table() is the
function that knows how to generate the opening <table> tag, and it is the overall
table() function that calls it. This is because we’d like to be able to pass in the

286 Part III: Simple Applications

width as an argument when we are only opening a table. However, when we’re cre-
ating a whole table, any unlabeled arguments are going to be rows in the resulting
table. Because the two situations need two different values for $_simple,
start_table() can’t be just a front end to table().

function table ()
{

static $_defaults = array(
‘rows’ => array()

);
static $_simple = array(‘rows’);

$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);

$output = start_table($p);

foreach ((array)$p[‘rows’] as $row)
{

$output .= table_row($row);
}

$output .= end_table($p);

return $output;
}

TABLE_ROW() This function does not only print out the opening <tr> tag and its
attributes; it also prints the table cells that will be nested within the <tr> tags.

function table_row ()
{

static $_defaults = array(
‘cells’ => array()
, ‘allowed’ =>

array(‘Common’,’align’,’valign’,’char’,’charoff’
,’bgcolor’

)
);
static $_simple = array(‘cells’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);
$output = “\n <tr $attlist>\n”;

Chapter 9: Survey 287

foreach ((array)$p[‘cells’] as $cell)
{

if (!preg_match(‘/<t[dh]/i’, $cell))
{

$output .= table_cell($cell);
}
else
{

$output .= $cell;
}

}
$output .= “\n </tr>\n”;
return $output;

}

The following table_row() call has two arguments, one of which is itself
another function call. The table_cell() function (described later) is executed first,
and the results are passed in to table_row().

print table_row(
‘A simple cell’
, table_cell(array(‘value’=>’A not-so-simple cell’,

‘align’=>’right’))
);

So when table_row() goes through the values in its $cells argument, it finds
one plain string (‘A simple cell’), which it runs through table_cell()
itself, and one already-formatted cell (the output of the table_cell() call in our
initial code), which it just tacks onto its output string as is.

TABLE_CELL() Not too much is new here. It might be worth pointing out the way
the $value attribute is handled: You check to see if it’s an array or an object,
because PHP lets you cast an object as an array — you get back an associative array
of the properties of the object.

function table_cell ()
{

static $_defaults = array(
‘align’ => ‘left’
, ‘valign’ => ‘top’
, ‘value’ => ‘’
, ‘allowed’ =>

array(‘Common’,’abbr’,’align’,’axis’,’char’,’charoff’

,’colspan’,’headers’,’rowspan’,’scope’,’valign’,’width’,’height’

288 Part III: Simple Applications

,’nowrap’,’bgcolor’
)

);
static $_simple = array(‘value’);

$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
$attlist = get_attlist($p);

if (is_array($p[‘value’]) or is_object($p[‘value’]))
{

$p[‘value’] = implode(‘’,(array)$p[‘value’]);
}

$output = “\n <td $attlist>{$p[‘value’]}</td>\n”;
return $output;

}

FUNCTIONS FROM /BOOK/FUNCTIONS/FORMS.PHP
Most of these functions are fairly straightforward and don’t require any explana-
tion. We will show a couple just for examples.

text_field() This prints out a text field. All the expected attributes should be
passed to the function. (Note: labelize() is a function in /book/functions/basic —
essentially a slightly trickier version of ucwords().)

function text_field ()
{

static $_defaults = array(
‘type’ => ‘text’
, ‘size’ => 40
, ‘name’ => ‘textfield’
, ‘label’ => NULL
, ‘default’ => NULL
, ‘value’ => NULL
, ‘source’ => NULL

);
static $_simple = array(‘name’,’label’,’default’);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
array_key_remove($p,array(‘_defaults’,’_simple’));
if ($p[‘label’] === NULL)
{

$p[‘label’] = labelize($p[‘name’]);
}

Chapter 9: Survey 289

$p[‘value’] =
get_field_value($p[‘name’],$p[‘default’],$p[‘value’],$p[‘source’]);

return input_field($p);
}

Most of the other functions look similar to this one, the only real exceptions
being the checkbox and radio button.

checkbox_field() The only thing that may be of interest about this function is how
we decide if a checkbox is to be checked by default. We can do this by adding an
argument called $match. If $match equals either the value of the field or the label
(unless you tell it not to match the label by setting label_match to FALSE), the field
will be checked when displayed. The radio_field() function works the same way.

function checkbox_field ()
{

static $_defaults = array(
‘type’ => ‘checkbox’
, ‘name’ => ‘checkboxfield’
, ‘value’ => ‘’
, ‘label’ => NULL
, ‘match’ => NULL
, ‘default’ => NULL
, ‘checked’ => NULL
, ‘source’ => NULL
, ‘prefix’ => ‘<nobr>’
, ‘suffix’ => ‘</nobr>’
, ‘label_match’ => TRUE

);
static $_simple = array(‘name’,’value’,’label’);

$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);
if ($p[‘label’] === NULL)
{

$p[‘label’] = labelize($p[‘value’]);
}

if (!$p[‘skip_selection’])
{

$p[‘value’] = get_field_value($p[‘name’]
, $p[‘default’]
, $p[‘value’]
, $p[‘source’]

);

290 Part III: Simple Applications

$p[‘checked’] = (
in_array($p[‘value’],(array)$p[‘match’])
|| (

$p[‘label_match’]
&& in_array($p[‘label’],(array)$p[‘match’])

)
) ? STANDALONE : NULL ;

}
$output = $p[‘prefix’].input_field($p).’

‘.$p[‘label’].$p[‘suffix’];

return $output;
}

FUNCTIONS AND CODE FROM /BOOK/BOOK.PHP
This is a kind of uberheader file, which the following examples include to set up the
basic environment and call in the reusable functions from /book/functions.

book_constants() We store information about how your site is configured in a file
named ‘book.ini’, using the same format as PHP’s own ‘php.ini’ file. This lets us use
the built-in function parse_ini_file() to read it in and set up the location of
your /book directory, your /dsn directory, etc. as constants.

function book_constants()
{

static $constants = NULL;
if ($constants === NULL)
{

$ini_file = dirname(__FILE__).’/book.ini’;
if (!file_exists($ini_file))
{

generate_ini_file($ini_file);
}
$constants = parse_ini_file($ini_file);
foreach ($constants as $k => $v)
{

if (!defined($k))
{

define($k, $v);
}

}
}
return $constants;

}

Chapter 9: Survey 291

path_separator() This is a simple function to figure out what character separates
directory names for your environment:

function path_separator()
{

static $path_separator = NULL;
if ($path_separator === NULL)
{

// if the include path has semicolons in it at all, then
they’re

// there to separate the paths; use a colon otherwise
if (strchr(ini_get(‘include_path’),’;’) === FALSE)
{

$path_separator = ‘:’;
}
else
{

$path_separator = ‘;’;
}

}
return $path_separator;

}

add_to_include_path() This function adds a directory to PHP’s default include path.

function add_to_include_path()
{

$include_path = ini_get(‘include_path’);

$ps = path_separator();
book_constants();

$paths = explode($ps, $include_path);
$above_book = realpath(BOOK_ROOT.’/../’);
if (!in_array($above_book, $paths, TRUE))
{

$paths[] = $above_book;
}
$args = func_get_args();
foreach ($args as $newpath)
{

if ($newpath == ‘’)

292 Part III: Simple Applications

{
$newpath = $above_book;

}
elseif (strpos($newpath,’/book’) === 0)
{

$newpath = $above_book.$newpath;
}
if (!in_array($newpath, $paths, TRUE))
{

$paths[] = $newpath;
}

}
$new_include_path = implode($ps, $paths);
if (!ini_set(‘include_path’, $new_include_path))
{

die(“Could not set the ‘include_path’ configuration variable
to ‘$new_include_path’”);

}
return $new_include_path;

}

The PHP configuration variable ‘include_path’ defines a set of directories that
PHP will search through to find files included with the include() and require()
functions. (Several of the built-in file system functions, like fopen(), will also use
this path if asked politely, a nice feature.) The add_to_include_path() function
figures out where it is on the actual file system of your server and what character
your installation uses to separate directories in ‘include_path’ (a semicolon in
Windows, a colon elsewhere). This lets us add the /book directory to the include
path, even if the example code is not really in the root document directory of your
Web server. The only reason the code is in a function, by the way, is to avoid creat-
ing global variables, which is considered bad style.

INITIALIZATION CODE Having defined add_to_include_path, we promptly call
it, and then include the book/functions.php file, which sets up our reusable set of
functions:

// use the local PEAR libraries
ini_set(‘include_path’, ‘.’);
add_to_include_path(‘/book’, ‘/book/pear/PEAR’, ‘/book/classes’);

require_once(‘book/autoload.php’);

// include the core function set
if (!defined(‘no_include’))

Chapter 9: Survey 293

{
require_once(‘book/functions.php’);

}

The survey application
We’re ready to dive into the code of the survey itself now, starting as always with
our header.php file.

CODE FROM /BOOK/SURVEY/HEADER.PHP
This file is included in all the pages of the survey application.

<?php
require_once(
preg_replace(‘|/survey/.*|’,’/book.php’,realpath(__FILE__))
);

// include the function definitions for this application
// (use a path from book/survey so the include will work if we’re
// running a script in the survey/admin directory)
require_once(‘book/survey/functions.php’);

// connect to the database
my_connect(‘survey’,’joeuser’,’resueoj’);

// make sure the domain isn’t on our blocked list
check_domain();

?>

This code has been put inside an if statement as a precaution. There is no need
to reload the header once it has been loaded. We can make sure that it isn’t reloaded
by creating a constant named SURVEY_HEADER. If by chance this page were loaded
a second time, you wouldn’t have to worry that included files would be imported
more than once.

The first thing we do is include the /book/book.php file. Because the survey
header file is included by pages in the /survey/admin subdirectory, as well as the
main pages in /survey, we have to specify an absolute location for /book/book.php.
We can do this using __FILE__. __FILE__ is a PHP language construct that works
like an ordinary constant, and that always contains the full name of the current file.

After /book/book.php has run, all of our main functions are defined. Then we
load the local set of function definitions. After connecting to the database, we
check to see if we’ve blocked the user’s domain (see the following section).

294 Part III: Simple Applications

FUNCTIONS FROM /BOOK/SURVEY/FUNCTIONS
The following are useful functions used in the application.

check_domain() As mentioned earlier, this is a facility to block domains, and we
use the check_domain() function to enforce the block:

function check_domain()
{

// check to see if the user is coming from a domain that is
listed

// as currently blocked in the blocked_domains database table,
// as specified by the $_SERVER values REMOTE_HOST or

REMOTE_ADDR.
// if it is, print out an error and exit.

$remote_host =
(string)array_key_value($_SERVER,’REMOTE_HOST’,’’);

$remote_addr =
(string)array_key_value($_SERVER,’REMOTE_ADDR’,’’);

$wheres = array();
if (!empty($remote_host))
{

$wheres[] = “‘$remote_host’ like concat(‘%’,domain)”;
}
if (!empty($remote_addr))
{

$wheres[] = “‘$remote_addr’ like concat(domain,’%’)”;
}
if (count($wheres) > 0)
{

$is_blocked = 0;
$where = implode(‘ or ‘, $wheres);
$query = “select 1 as is_blocked from blocked_domains

where release_dt is null and ($where)
“;
$result = my_query($query);
list($is_blocked) = mysql_fetch_row($result);
mysql_free_result($result);
if ($is_blocked == 1)
{

// Be noncomittal.
print subtitle(‘Page unavailable.’);
exit;

}
}

}

Chapter 9: Survey 295

In order to understand this code, look more closely at the query, particularly the
like predicates. When we bring up this Web page from my ISP (att.net),
$_SERVER[‘REMOTE_HOST’] is something like this: 119.san-francisco-18-19rs.
ca.dial-access.att.net. When you block domains, you’ll be blocking the top-
level domain — in this case att.net. And this top-level domain is what will reside
in the database. So the query will have checked on any number of wildcard charac-
ters prior to the top-level domain name.

To achieve the wildcard checking, you will need to concatenate the domain
names with the % wildcard character — so that, for instance, the query will work
against %att.net. Doing this may seem somewhat different from using your typi-
cal like predicate. It’s another powerful technique to use with SQL.

Or, since you might not have $_SERVER[‘REMOTE_HOST’] available on your
server, you might have entered a literal IP address instead. In this case, the most
general part is the beginning of the string, rather than the end. So when we compare
the domain field to $_SERVER[‘REMOTE_ADDR’], we concatenate the % character
onto the end rather than the beginning.

Also note that the start of the select statement contains select 1 rather than
select count(*). This leads to a good way of testing if any rows meet the condi-
tion of the where clause. If the where clause matches any number of rows the query
will return a single column with the value of 1, which in the programming world
means TRUE. If no rows are returned you know the where portion of the query had
no matches.

This function is just intended to demonstrate some general techniques for check-
ing server variables and comparing them against a database. In the real world it
would be about as hacker-proof as a wet tissue.

weekstart() This function generates SQL, MySQL style, to figure out the day of the
week for a particular date. You use this in the application to pick a winner for the
current week.

function weekstart ($when=’’)
{

if (empty($when))
{

$when = ‘now()’;
}
elseif ($when != ‘create_dt’)
{

$when = “‘$when’”;
}
return “from_days(to_days($when)-dayofweek($when) + 1)”;

}

The MySQL to_days() function returns an integer of the number of days since
January 1, 1000. dayofweek() returns an integer representing the day of the week

296 Part III: Simple Applications

(Sunday equals 1, Saturday equals 7). So the portion (to_days($now)-
dayofweek($when) + 1) will return an integer representing the Sunday of the
week in question. The from_days() function will then turn that number into a
date. Here is the result of this query run on Monday August 4, 2002 (the day this
chapter was first written):

mysql> select from_days(to_days(now())-dayofweek(now()) + 1);
+--+
| from_days(to_days(now())-dayofweek(now()) + 1) |
+--+
| 2002-08-04 |
+--+
1 row in set (0.01 sec)

Note that the value passed here can be a string representing a date, it can be
empty, or it can be a field from the users table — namely the create_dt field.

fetch_question() This function grabs the contents of a row in the questions table
and returns them as an associative array.

function fetch_question ($question_id=0)
{

$result = my_query(
‘select * from questions where

question_id=’.(int)$question_id
);
$output = mysql_fetch_assoc($result);
mysql_free_result($result);
return $output;

}

This will return from the database all the information regarding a particular
question, based on the question_id.

fetch_user() This function grabs the contents of a row in the users table and
returns them as an associative array.

function fetch_user ($user_id=’’)
{

$result = my_query(
‘select * from users where user_id=’.(int)$user_id

);
$output = mysql_fetch_assoc($result);
mysql_free_result($result);
return $output;

}

Chapter 9: Survey 297

This function returns the result set based on a user_id.

get_answers() This function returns an array of answers associated with a ques-
tion, along with the total number of votes so far for each answer.

function get_answers($question_id=0)
{

$question_id = (int)$question_id;
$query = “select a.answer, a.answer_id, count(r.user_id) as

votes
from answers a

left join responses r on a.answer_id = r.answer_id
where a.question_id = $question_id
group by a.answer_id
having votes > 0
order by votes desc

“;
$answers = array();
$result = my_query($query);
while ($row = mysql_fetch_assoc($result))
{

$answers[] = $row;
}
mysql_free_result($result);
return $answers;

}

Interesting Code Flow
There are a few pages in this application that could stand some explanation.
However, you should be able to follow most of them if you understand the func-
tions in the previous section.

admin/questions.php
This is a fairly lengthy page, and for good reason: it is used for adding, editing, and
deleting questions in the database. The portion of the page to be run will be deter-
mined by the values passed by forms or links. The first time through, there will be
no variables passed, so a list of the current questions will be presented along with a
form for entering a new question. Each of the links to questions that already exist
in the database looks like this:

298 Part III: Simple Applications

When a link like this is clicked, and the questions.php script is run again, the
very last of the initial if-else tests in the setup code at the top of the file run, as
shown here:

else
{

// if the ID of a question is passed in, retrieve its
information

// from the database for editing.
extract(fetch_question($question_id));

// set the form title to indicate the action the user can
perform

$qform_title = ‘Edit A Question : #’.$question_id;
}

print subtitle($qform_title);

print start_form(‘questions.php’);

print paragraph(
‘Question:’
, text_field(array(

‘name’=>’question’,’value’=>$question,’size’=>60
))
, hidden_field(array(

‘name’=>’question_id’, ‘value’=>$question_id
))
);

Notice how you can get all the information associated with $question_id with
one function call (fetch_question()). Since fetch_question() is returning an
associative array, we can use extract() to create variables from the values in the
array.

Next, go into this loop:

$lines = array(‘Answers:
’);

// print form elements for answers to the question.
$acount = 0;
if ($question_id > 0)
{

$query = “select answer_id, answer from answers

Chapter 9: Survey 299

where question_id = $question_id order by answer_id
“;
$result = my_query($query);
while (list($aid,$atxt) = mysql_fetch_row($result))
{

// we increment the count first because we want the
// first key value to be 1, not 0, to make sure that
// the key will test as non-empty.
$acount++;
$lines[] = text_field(array(

‘name’=>”answer_text[$acount]”
, ‘value’=>$atxt
, ‘size’=>60

));
$lines[] = hidden_field(array(

‘name’=>”answer_id[$acount]”
, ‘value’=>$aid

));
$lines[] = “ ($aid)
\n”;

}
mysql_free_result($result);

}

This block gets the answers for the selected question and prints them out inside
text fields. Additional information is put inside hidden fields. When printed out the
result for one answer will look like this:

<input type=”text” name=”answer_text[1]” value=”Answer” size=”60” >
<input type=”hidden” name=”answer_id[1]” value=”10”>

When this form is submitted, $answer_text will be an array. $acount will see
that the key of the array is incremented by one for each additional form field. Note
that we need to make use of a hidden form element here, because each answer
requires three pieces of information: the answer number (1–10), the answer text,
and, if the answer came from the database, the primary key of the row the answer
came from. The hidden field will create an array named $answer_id. The value in
each element of that array will be the primary key of the row storing the answer.
The index of that array will be the match for the index of $answer_text. In code
the technique looks like this:

$i = 1;
$answer_text[$i];
$answer_id[$i];

300 Part III: Simple Applications

You’d know, when receiving and processing the information from this screen,
that $answer_id[$i] contains the primary key of a row, and $answer_text[$i] is
the answer text that belongs in that row.

The previous section of code will print out form elements only where an answer
exists. But you should offer blank form elements so the administrator can enter
new answers:

// print out blank fields to bring us up to at least 10 answers
while ($acount < 10)
{

$acount++;
$lines[] = text_field(array(

‘name’ => “answer_text[$acount]”
, ‘value’ => ‘’
, ‘size’ => 60

));
$lines[] = hidden_field(array(

‘name’ => “answer_id[$acount]”
, ‘value’ => 0

));
$lines[] = “
\n”;

}
print paragraph($lines);

This will complete the form and display it, giving all the blank elements you need.
For these blank answers, the form will contain the following:

<input type=”text” name=”answer_text[8]” value=”” size=”60” >
<input type=”hidden” name=”answer_id[8]” value=”0”>

In these form elements, the value of the hidden field is set to 0. That way, when
it comes time to process these form elements, the script will have something to
evaluate: If $answer_id[$i] is equal to 0, this is a new element.

If the user clicks the Save Changes button to submit this form, the preceding
chunk of code will run after handling the update of the database record for the
question itself. There will always be 10 elements to be looped through, so a for
loop works nicely.

$answer_texts =
(array)array_key_value($_POST,’answer_text’,array());

$answer_ids =
(array)array_key_value($_POST,’answer_id’,array());

for ($i = 1; $i <= 10; $i++)

Chapter 9: Survey 301

{
$atxt = (string)$answer_texts[$i];
$aid = (int)$answer_ids[$i];
if (empty($atxt))
{

if (!empty($aid))
{

If no text exists for the answer, and a value exists for the answer ID, the user has
blanked out an existing answer. So delete it from the database:

my_query(‘delete from answers where answer_id =
‘.(int)$aid);

}
}
else
{

$answer = mysql_real_escape_string(cleanup_text($atxt));
if (empty($aid))
{

// if we have no ID for the answer,
// it doesn’t exist yet. create a new
// record in the answers table.
$query = “insert into answers (question_id, answer)

values ($question_id,’$answer’)
“;

}

Pay attention to the explicit casting — (int)— at the beginning of that passage.
It prevents an error when the value is 0. If the element of $answer_id is not empty
(which means it can’t be equal to 0), an insert statement is run:

else
{

// if we do have an ID, the answer is already
// in the answers table. update it.
$query = “update answers

set question_id = $question_id, answer =
‘$answer’

where answer_id = $aid
“;

}
my_query($query);

}
}

302 Part III: Simple Applications

Otherwise, if an existing answer was present, an update query will do the trick.

admin/get_winner.php
Most of this file is readable by humans. Our goal is to draw a qualified winner at
random from the database. First we use the weekstart() function (discussed earlier
in this chapter in the section “Functions from /book/survey/functions”) to get the
date on which the current week begins:

$weekdate = (string)array_key_value($_REQUEST,’weekdate’,’’);

$result = my_query(‘select ‘.weekstart($weekdate));
list($thisweek) = mysql_fetch_row($result);
mysql_free_result($result);

print subtitle(‘Draw a winner for the week of ‘.$thisweek);

// get a list of qualifying entries for the given week.
$query = “select name, email, user_id from users

where week(create_dt) = week(‘$thisweek’)
and year(create_dt) = year(‘$thisweek’)
and name is not null and name != ‘’
and email is not null and email != ‘’ and email like ‘%@%.%’
and age > 0
and country is not null and country != ‘’

“;

We then create a query that will determine who is qualified. As you can see,
we’ve decided that in addition to having signed in during the last week, participants
need to have entered a name, an email address, and a legitimate age to qualify.

admin/winners.php
We created a few pages to ensure that the winner selected is notified of the exciting
news and that we issue the notification in a way that provides some security. The
security isn’t much, but to make reasonably sure that the person who claims the
prize is the person we intended, we would need to make use of a login system, and
users of a silly little survey may not be interested in keeping track of yet another
password.

The best we can do here is to try to make sure that if some immoral person sees
the claim information one week, that person will not be able to easily spoof our
system in future weeks. When we send the winner notification, we will include an
eight-character claim code. This prize can only be claimed with the code. To make
things as secure as possible, we want to make sure this code is unique and very dif-
ficult to guess.

Chapter 9: Survey 303

mt_srand ((double) microtime() * 1000000);
$claim_code = substr(md5(uniqid(rand())),0,8);

The preceding code uses the uniqueid() and md5() functions to create a string
that is very random. There’s little for a hacker to latch onto in trying to figure out
how the string is constructed. md5() will create a string that is 32 characters long,
but that can be a bit unwieldy. So we’re using substr() to limit the string to eight
characters.

The user_id, the claim code, and the week of during which the contest took
place are inserted into the winners table:

$query = “replace into winners (weekdate, user_id, claim_code,
notify_dt)

values (‘$weekdate’, $user_id, ‘$claim_code’, now())
“;

The winner is sent an email containing a URL that includes a claim code that
matches one in the database: http://mydomain.com/book/survey/claim.
php?claim_code=54fa3399.

If the user is interested, he or she will go to this page.

claim.php
If the winner comes to claim.php, we first need to check that the claim code exists
in the database. The query in the following code grabs queries from the database to
see if the claim code exists; if it does, the query performs a join and returns the user
information associated with the claim code.

$user_id = 0;
$winner_email = NULL;
$weekdate = NULL;

$claim_code = (string)array_key_value($_REQUEST,’claim_code’,’’);

if (!empty($claim_code))
{

$query = “select u.user_id, u.email, w.weekdate from users u,
winners w

where w.claim_code = ‘$claim_code’ and w.user_id = u.user_id
“;
$result = my_query($query);
list($user_id, $winner_email, $weekdate) =

mysql_fetch_row($result);
mysql_free_result($result);

304 Part III: Simple Applications

}

if ($user_id == 0)
{

// we couldn’t find a record corresponding to the claim_code
// submitted (if any). print out an error and exit.
$msg = <<<EOQ

I’m sorry, that doesn’t appear to be a valid claim code.
The URL may not have registered properly.
Make sure to copy the complete link into your browser and try again,
or forward your original prize notification to $admin_email.

EOQ;
print paragraph($msg);
exit;

}

Once it is established that a claim code is valid, we want to do a bit of double-
checking and make sure that the person who submitted this claim code knows the
email address to which the notification was sent. The application does this by dis-
playing a form asking the user to enter the correct email. That form is sent and
processed by the form page. When the form is submitted, the following code will
execute:

$user_email = (string)array_key_value($_POST,’user_email’,’’);

if (!empty($user_email))
{

// the user has submitted an email address to claim
// the prize.
if ($user_email != $winner_email)
{

// the email address submitted by the user doesn’t
// match the one stored for the winning entry.
// display an error message.
$notice = <<<EOQ

I’m sorry, that email address doesn’t match our records.
Please try again, or forward your original prize notification
to $admin_email.

EOQ;
}

Chapter 9: Survey 305

The comparison $user_email != $winner_email will work because the query
that ran at the top of the page retrieved the correct winner’s email, and we get
$user_email from the form submitted by the user. If that comparison fails, an error
message prints. If it does not fail, the following code updates the winners database,
recording the time the prize was claimed, and sends an email to the winner letting
him or her know that the claim was successful:

else
{

// everything matches. we can update the database
// to record a valid claim.
$claimquery = “update winners set claim_dt = now()

where user_id = $user_id
and claim_code = ‘$claim_code’
and weekdate = ‘$weekdate’

“;
my_query($claimquery);
if (mysql_affected_rows() > 0)
{

// send a notification to the administrator that
// the prize has been claimed.
$confirm_url = regular_url(‘admin/winners.php’);
$msgtext = <<<EOQ

The prize for $weekdate has been claimed by $user_email.

Confirm the prize at

$confirm_url

EOQ;
$subject = ‘Prize Claim’;
$result = mail($admin_email,$subject,$msgtext);

if ($result)
{

// we don’t need to re-display the form now.
// print out congratulations and bail.
$msg = <<<EOQ

Thanks! Your claim has been accepted.
Your prize should be on its way soon!
EOQ;

print paragraph($msg);
exit;

}

306 Part III: Simple Applications

else
{

$private_error = <<<EOQ
could not send claim notification:
admin_email=($admin_email)
subject=($subject)
msgtext=($msgtext)
EOQ;

user_error(‘Warning: Could not notify administrator
of your claim.’, E_USER_WARNING);

}
}
else
{

// just in case the database is broken or
// some other horror has occurred...
$msgtext = <<<EOQ

The prize for $weekdate has been claimed by $user_email, but the
database
update did not work.
EOQ;

$subject = ‘Prize Claim’;
$result = mail($admin_email,$subject,$msgtext);
if (!$result)
{

$private_error = <<<EOQ
could not send claim problem notification:
admin_email=($admin_email)
subject=($subject)
msgtext=($msgtext)
EOQ;

user_error(‘Warning: Could not notify administrator
of your claim.’, E_USER_WARNING);

}

// let the user know that something broke
// and re-display the form by continuing
// with the script.
$notice = <<<EOQ

Your claim is valid, but we were unable to record that fact.
Please try again later, or forward your initial prize notification
to $admin_email and let them know there was a problem.

EOQ;

Chapter 9: Survey 307

}
}

}

The final portion of this page simply prints the form in which the user will enter
his or her email. There’s really no need to show that here.

Summary
The survey application involves quite a bit of code, but it isn’t anything that you
shouldn’t be able to figure out with some close scrutiny of the files and the comments.
Take a look at the complex_results.php page and its includes (age_results.php,
state_results.php, and country_results.php) for a look at how MySQL aggregate
functions can come in handy.

This application contains much more complexity than the guestbook. In it is a
real database schema complete with related tables. In the course of the application
we need to make use of queries that contain MySQL functions. (See Appendix J for
more information on MySQL functions.)

Another notable item seen in this chapter is the function set we’ve created for
creating common HTML elements. Whether you want to make use of such functions
or not is up to you. You may prefer typing out individual form elements, tables, and
the like. But you will be seeing these functions used in the remainder of this book.

308 Part III: Simple Applications

Not So Simple Applications
CHAPTER 10

Threaded Discussion

CHAPTER 11
Content-Management System

CHAPTER 12
Catalog

CHAPTER 13
Problem-Tracking System

CHAPTER 14
Shopping Cart

CHAPTER 15
XML Parsing

CHAPTER 16
SOAP

CHAPTER 17
Project Management

Part IV

Chapter 10

Threaded Discussion
IN THIS CHAPTER

◆ Adding to your Web site features that promote community

◆ Using an advanced technique to write functions

◆ Looking at other criteria to use when designing a database

◆ Setting up error-handling and debugging functions

IF YOU’VE CREATED a Web site or are looking to create one, it’s probably safe to
assume that you want people to return frequently to your pages. But as everyone in
the Web industry knows, loyalty is fleeting, and people are always looking for
something better, more engaging, or closer to their interests.

One way to keep the anonymous masses involved with your site is to offer your
visitors a way to contribute to its content. If someone has accessed your site, it’s
likely that he or she has an opinion on the topic you are presenting. And if our con-
clusions from 30-plus years of observation are correct, people love to share their
opinions.

Using the threaded-discussion application in this chapter, you can create an area
on your Web site where your users can share their opinions and interact with you
and each other.

Once you have this piece of your site up and running, you are well on your way
to creating your own Web community. I make special mention of the word commu-
nity for two reasons.

◆ First, it is a huge buzzword within the industry. Everyone is looking to
create a sense of familiarity and inclusion that tempts users to return.

◆ Second — and perhaps more importantly — you, the Webmaster, should
know what you’re getting yourself into. From personal experience, we
can tell you that “community” can be a real pain in the butt. On the Web,
everyone is pretty much anonymous, and few consequences are associated
with antisocial behavior. Thus, in many discussion groups, opinionated
windbags have a way of ruining a promising discussion.

311

Before too long, you will undoubtedly see things that are mean or dis-
tasteful, and you must be prepared to deal with it. We’re not trying to
scare you away from including a discussion list on your site. We’re just
letting you know that you need to put some effort into administering it.
Whether you monitor the list yourself or appoint someone to do it for
you, somebody will need to make sure your users behave if you want it
to be orderly and functional.

Determining the Scope and Goals
of the Application
The purpose of any discussion board is reasonably simple. Any visitor to the site
should be able to post a new topic to the board or reply to any of the existing top-
ics. Furthermore, the board must be flexible enough to deal with any number of
replies to an existing topic, or replies to replies, or replies to replies to replies, and
so on. Put another way, the board must be able to deal with an indefinite level of
depth. The script must be able to react appropriately, whether the discussion goes
one level deep, five levels deep, or ten levels deep, which requires some new tech-
niques, both in your data design and in your scripts.

What do you need?
You need only two files to generate all the views needed for this application. But
these two files can have very different looks, depending on the information that is
displayed.

The first file displays topics and their replies. The first time users come to the
message board they will not know what threads they wish to read. Therefore, a list
of topics will be displayed. Figure 10-1 shows the list of top-level topics.

Once a user chooses a topic the page lists all the posts within that topic. As you
can see in Figure 10-2, the top of the page shows the text and subject of the post
being read. Below that, immediate replies to that post are indicated with a colored
border, and the text of the immediate replies is also printed. Figure 10-2 also shows
that the application provides a subject, a name, and a link to posts that are more
than one level deep in the thread. You can see that it is rather easy to tell who has
replied to what.

This same page provides another view. If a user clicks through to a post that does
not start a topic, the page shows all threads beneath that post. At the top of the
page the script will print the top-level post (or root) and the post immediately prior
to the one being viewed (or parent). Figure 10-3 shows an example of this view.

312 Part IV: Not So Simple Applications

Figure 10-1: List of top-level topics

Figure 10-2: Display of a thread

Chapter 10: Threaded Discussion 313

Figure 10-3: View further down a thread

Everything you saw in the previous figures was handled by one page. The sec-
ond page posts threads to the board. This posting requires only a simple form that
contains form elements for a subject, a name, and room for the comment. The form
needs to be aware of where in the thread the message belongs. For new top-level
topics a form without any context is fine (see Figure 10-4), but for replies within an
existing thread some context is helpful (see Figure 10-5).

What do you need to prevent?
As you’ve seen in previous chapters, you need to spend quite a bit of time making
sure things work properly. Unless every post is reviewed before it becomes available
on the site, there is no good way of preventing users from posting nonsense and
then replying to their own meaningless posts. This kind of thing can get pretty dis-
tracting — and again, no foolproof way of preventing it exists. However, you can
make it a bit more obvious to other users who is making the nefarious postings. For
that reason, this application uses the IP of origin to generate a unique ID number,
which can make it more plain who is posting what. This strategy isn’t great protec-
tion, but it is better than nothing.

314 Part IV: Not So Simple Applications

Figure 10-4: Form for posting a top-level topic

Figure 10-5: Form for posting a lower-level topic

Chapter 10: Threaded Discussion 315

The Data
Of all the applications discussed in this book, this one has perhaps the most unex-
pected data structure.

We’ll take a moment right here to tell you a little secret about database develop-
ment: Though you can usually figure out the structure of a database by going
through the normalization process, sometimes you’re better off concentrating more
on the hoped-for end result. You’ll see what we mean as you read the rest of this
section.

But before we show you what we created and why it works so well, let us show
you an example of what you might have expected — and why it would have been so
problematic. You might think that this application would start with a table looking
something like Table 10-1.

TABLE 10-1 PROBLEMATIC ROOT_TOPICS

root_ root_ root_ root_ root_
topic_id topic_date topic_name topic_subject topic_text

1 08/20/2003 Jack Snacks Rule I love em.

2 08/20/2003 Edith More Cheetos I want my fingers orange.

3 9/1/2003 Archie M&Ms Mmmmore.

This table, as you can probably guess, would list the root topics. A simple
SELECT * FROM root_topics returns a record set of all the root topics. This table
doesn’t allow for any data below the root level. To take care of this, you might
envision a structure in which each root_topic_id is associated with another table.
Whenever you inserted a row into the root_topics table, you’d also run a CREATE
TABLE statement to make a table that would store the replies to the root topic.

For example, all the replies to the “Snacks Rule” post are stored in a table that
looks like Table 10-2. This arrangement works. A one-to-many relationship between
the tables exists, and information is available pretty readily. But now consider what
happens when somebody wants to reply to one of these posts. You have to create
yet another table. And what if you were to go another level or two deeper? It’s easy
to see that before long this would get completely out of control. With just a couple
of active threads you could end up with dozens of tables that need to be managed
and joined — no fun at all.

316 Part IV: Not So Simple Applications

TABLE 10-2 PROBLEMATIC TOPICS

topic_id topic_date topic_author topic_subject topic_text

1 08/20/2003 Ellen Re: Snacks Rule You betcha

2 08/20/2003 Erners Re: Snacks Rule Indeed

Now we move away from this ill-considered idea and move toward a more
sound plan. Think about what information needs to be stored for each post to the
mailing list. Start with the obvious stuff. You need a column that stores the subject
of the thread (for example, “Nachos, food of the gods”), one that stores the author’s
name, and one that records the date the item was posted. So the table starts with
these columns — we’ve thrown in some sample information in Table 10-3 and an
auto_increment primary key just to keep it clear.

TABLE 10-3 START OF A USEABLE TABLE

topic_id subject author date

1 Nachos rule Jay 3/12/2003

2 Cheetos are the best Brad 3/12/2003

But of course this isn’t enough. Somehow you need a way to track the ancestry
and lineage of any specific topic. (Look again at Figure 10-1 if you are not sure
what we mean.) So how are you going to do this? If you are looking to track the
ancestry of any particular thread, it probably makes sense to add a field that indi-
cates the topic that started the thread — the root topic.

Take a close look at Table 10-4. Start with the first row. Here the root_id is the
same as the topic_id. Now look at the third row. Here the root_id (1) matches the
topic_id of the first row. So you know that the thread to which row 3 belongs
started with topic_id 1— “Nachos rule.” Similarly, row 6 must be a reply to row 2.

Now look at rows 1, 2, and 5. Notice that in these rows the topic_id and the
root_id are identical. At this point you can probably guess that whenever these
two are the same, it indicates a root-level topic. Easy enough, right? The following
SQL statement retrieves all the root-level topics:

select * from topics where root_id=topic_id.

Chapter 10: Threaded Discussion 317

TABLE 10-4 A MORE COMPLETE TABLE

topic_id root_id subject author date

1 1 Nachos rule Jay 3/12/2003

2 2 Cheetos are the best Ed 3/12/2003

3 1 Re: Nachos rule Don 3/12/2003

4 1 Re: Nachos rule Bill 3/13/2003

5 5 What about cookies Evany 3/14/2003

6 2 Re: Cheetos are the best Ed 3/13/2003

Now that you’ve added a root_id field to the table, you should know the begin-
ning of a thread. But how can you get all the entries that came between the origi-
nal topic and the one you’re interested in? Initially you might think it would be
prudent to add a column that lists the ancestors. You could call the column ances-
tors and in it you’d have a listing of topic_ids. It might contain a string like 1,
6, 9, 12. Taking this approach would be a very, very bad idea. Why, you ask?
Well, the most important reason worth mentioning is that you should never put
multiple values in a single field — you’ll open yourself up to all kinds of hassles.

MySQL does have a column type that takes multiple values. It is called set. It

is not used anywhere in this book because Dr. Codd would not approve. Do

you remember Dr. Codd from Chapter 1? He’s the guy who originally devel-

oped relational-database theory in the first place. Generally, it’s a bad idea to

put multiple values in a single field because, except in cases in which the

multiple values are always used together (in which case they’re not really

multiple values), you invariably end up parsing the group to use the values

separately.That’s extra work you don’t need.

So what options are you left with? Create another table to keep track of a topic’s
lineage? That isn’t necessary. The easiest thing to do is add to the previous table a
single column that tracks the parent of the current topic, as shown in Table 10-5.

318 Part IV: Not So Simple Applications

TABLE 10-5 AN EVEN BETTER TABLE

topic_id root_id parent_id subject author date

1 1 0 Nachos rule Jay 3/12/2003

2 2 0 Cheetos are the best Ed 3/12/2003

3 1 1 Re: Nachos rule Don 3/12/2003

4 1 3 Re: Nachos rule Bill 3/13/2003

5 5 0 What about cookies Evany 3/13/2003

6 2 2 Re: Cheetos are the best Ed 3/14/2003

7 1 4 Cheetos, are you kidding Jeff 3/15/2003

8 5 5 Re: What about cookies Jay 3/15/2003

When you look at the first couple of rows in Table 10-5, you might see little dif-
ference between the fields. And that sort of makes sense: If the topic_id and the
parent_id are the same, you already know that it’s a root level and that therefore
the parent is irrelevant. Move your attention to row 7. Here you can see that root is
row 1, “Nachos rule.” That’s easy enough. Now look at the parent_id, which is row
4. If you look at the parent of row 4, you will find that it’s row 3— and further that
the parent of that row is row 1, which is also the root. So with just this information
you can follow a thread to its origin. A very simple script that traces a topic to its
origin looks something like this:

Select all fields from current topic
If parent_id is not equal to 0 and parent_id does not equal root_id

Make parent ID current topic
Go to line 1

So that will about do it. Using this data structure, you can get all the information
you are going to need. Throw in a couple of timestamps for safekeeping, and you’re
all set. Listing 10-1 shows the SQL statement that will create the table (using name
for the subject of the topic, create_dt for the date, and description for the text):

Listing 10-1: create table Statement for Threaded Discussion

create table topics (
topic_id integer not null auto_increment
, parent_id integer default 0

Continued

Chapter 10: Threaded Discussion 319

Listing 10-1 (Continued)

, root_id integer default 0
, name varchar(255)
, description text
, create_dt timestamp(14)
, modify_dt timestamp(14)
, author varchar(255)
, author_addr_id int

, primary key (topic_id)
)
type=InnoDB
;

One other table exists in the database, to create the author-ID values we men-
tioned earlier:

create table author_addrs (
author_addr_id integer default 0 not null auto_increment
, author_addr varchar(255)
, entry_dt timestamp

, primary key (author_addr_id)
, unique key (author_addr)
)
type=InnoDB
;

As you can see, this code makes use of MySQL’s auto_increment feature to get
a unique value per entry. There is potential here. If you want to add some adminis-
trative functions to this application you can add a foreign-key constraint with an ON
DELETE CASCADE qualifier to the main topics table that references author_addrs.
Then just remove the row from author_addrs for the problematic poster and poof,
all his or her posts disappear. Bear in mind, though, that the responses to those
posts would remain, and the threads the poster started would be orphaned unless
they were manually deleted. There are always improvements to be made.

Code Overview
As we mentioned earlier, two main functions are involved in this application:

◆ Displaying a listing of posts

◆ Inserting a new post to the database

320 Part IV: Not So Simple Applications

Thus, it should come as little surprise that at the base level there are only two
files: display_topic.php and write_topic.php. In addition to these files, you have a
separate file that stores all of your functions (functions.php). If you read the previ-
ous section, you probably won’t be surprised to find that most of the effort
involved in developing this application, and therefore most of the code we are
introducing, relates to displaying the ancestors and children of a particular post.
Keep in mind that a post can have any number of ancestors and any number of
children. So your script has to be flexible enough to deal with a post with one reply
or twenty.

The portion that writes a topic to the database should be pretty easy to deal with.
In your form you need to have hidden fields that mark the root_id and the
parent_id, and you want to validate the contents of the forms, but other than that
it should be pretty easy. The next section of the chapter breaks it down.

Code Breakdown
As usual, most of the fun occurs in the functions. In fact, in this application the
only two files actually referenced by URLs are practically empty.

Reusable functions
Again, this application makes use of the functions described in Chapter 8 and
Chapter 9. In addition, in this example we introduce some error-handling functions,
to give you a finer level of control over what gets displayed to the end user when
something goes wrong. When your users can complain about error messages right
there in the site itself, this is a topic worth some attention. The code involved is a
little more complex than what we’ve seen so far, so we’ll look at it at the end of this
chapter, after we’ve gotten a better idea of what’s supposed to happen when things
go right.

Functions from /book/discussion/functions
The application itself has just a few functions, one of which uses a technique that
requires some explanation. The concept that is new to this application is called
recursion. It comes up in the display_kids() function.

display_kids()
Usually, in this part of the book, a function is displayed and then described.
However, this function must be treated a bit differently because recursion can be
somewhat difficult conceptually. So before we display the function, we want to take
a look at recursion. (If you already know your way around recursive functions, feel
free to skim.)

Chapter 10: Threaded Discussion 321

The important thing to keep in mind is that you have no idea how deep any
thread will be: There can be one level of replies, or twenty. So to properly lay out
all the children of any one thread you need a very, very flexible script. It needs to
do something like this:

print current topic
while the current topic has unprocessed child topics

set current topic to next unprocessed child
go to line 1

end while
if current topic has a parent

set current topic to that parent and go to line 2
else

exit
end if

This block of code must be repeated indefinitely until no other answers exist. But
how do you tell a script to do something until it runs out of answers? The looping
mechanisms we’ve discussed so far won’t really work. The for..., while..., and
do...while loops that we talked about in Chapter 5 and used in the previous chap-
ters are of no help.

If that isn’t clear, take a look at Table 10-6 and the code that follows.

TABLE 10-6 SAMPLE TABLE

topic_id root_id parent_id subject name date

1 1 0 Nachos rule Jay 3/12/2003

2 2 0 Cheetos are the best Ed 3/12/2003

3 1 1 Re: Nachos rule Don 3/12/2003

4 1 3 Re: Nachos rule Bill 3/13/2003

5 5 0 What about cookies Evany 3/13/2003

6 2 2 Re: Cheetos are the best Ed 3/14/2003

7 1 4 Cheetos, are you kidding Jeff 3/15/2003

8 5 5 Re: What about cookies Jay 3/15/2003

Suppose you want each level to be indented a little farther than the previous
one, by means of the HTML blockquote tag. Now, assume that you’re calling the
following function by passing a topic_id of 7.

322 Part IV: Not So Simple Applications

function RecurForMe($topic_id)
{

$query = “SELECT * from topics WHERE topic_id = $topic_id;
$result = mysql_query($query) or

die(“Query failed”);
$row = mysql_fetch_array($result);
echo “<blockquote>”;
echo $row[“name”], “\n”;
RecurForMe($row[“parent_id”]);

}

You know by now not to actually run a script like this because there’s no error
checking, and eventually, when no responses to the query exist, it will cause an
error. We wrote this function so you could look at the last line. You see what it
does: The function calls itself. If you’re not clear about the impact this has, walk
through it with us.

The first time through, given the $topic_id of 7, the query returns (surprise,
surprise) row number 7. Then a blockquote tag and the name (Jeff) is printed out.
Then the function calls itself, this time passing the parent_id of 4. The next time
through the query returns row 4, the time after that it returns row 3, and finally, it
returns row 1. When the function is done, the script output (before the error) looks
like this:

<blockquote>Jeff
<blockquote>Bill
<blockquote>Don
<blockquote>Jay

The display_kids() function works in pretty much the same way: It calls itself
for as long as necessary. But in the final script you have to take a lot more into con-
sideration. For example, the description field of immediate children is printed out,
but farther down the ancestral path you show only subject and name. Before you
get caught up in the larger script, look at how to change layout based on ancestry
in your simplified script.

function RecurForMe($topic_id, $level = 1)
{

$query = “SELECT * from topics WHERE topic_id = $topic_id”;
$result = mysql_query($query);
$row = mysql_fetch_array($result);
echo “<blockquote>”;
echo $row[“name”], “\n”;
if($level == 1) {echo $row[“subject”];}
RecurForMe($row[“parent_id”], $level + 1);

}

Chapter 10: Threaded Discussion 323

We’ve added another variable ($level) to this function to keep track of the level.
The default value is 1, and it is incremented each time through. The first time
through the subject is printed, but in subsequent iterations it is not.

Recursion can be an expensive process: It takes up quite a bit of processor

time if it goes too far. To prevent a system from being overwhelmed, you

might want to limit the depth of any topic.

Armed with this information, you should be able to get through the
display_kids() function. A lot of info is in there to ensure good layout, but other
than that it’s all pretty readable. Some comments help you get through.

In the code that follows, note the line

$topic_id = (int)$topic_id;

This is an example of casting to an int value. Casting to an int is an easy

way of adding safety to your application — you’re always sure you’ll get an

int to work with.

function display_kids ($topic_id=0, $level=0)
{

$topic_id = (int)$topic_id;
$level = (int)$level;

// make sure that we aren’t caught in some terrible loop
if ($level > 50)
{

$private_error = “trying to display topic $topic_id, level
is $level - bailing”;

user_error(“Error: Recursion too deep”, E_USER_ERROR);
exit;

}

// retrieve topic records from the MySQL database having
// this topic_id value in their parent_id column (i.e. those
// for whom this topic is the parent_topic

$query =
“select topic_id, name, author

, date_format(create_dt,’%b %e %Y %r’) as create_dt

324 Part IV: Not So Simple Applications

, description
, author_addr_id

from topics
where parent_id = $topic_id
order by create_dt, topic_id”

;

$result = my_query($query);
$output = ‘’;
while ($r = mysql_fetch_assoc($result))
{

extract($r, EXTR_PREFIX_ALL, ‘r’);

if (empty($r_author))
{

$r_author = ‘[no name]’;
}

if ($r_topic_id != $topic_id)
{

$tag = anchor_tag(
‘index.php?topic_id=’.$r_topic_id
, $r_name

);
}
else
{

// this should never happen, but just in case -
// don’t print a link back to this topic
$tag = $r_name;

}

$tag .= “ by $r_author (ID#$r_author_addr_id) on
$r_create_dt”;

if ($level)
{

// non-zero level - use unordered list format
$output .= li_tag($tag);

}
else
{

// zero (first) level - print inside a table
$output .= table(array(

‘width’ => ‘75%’

Chapter 10: Threaded Discussion 325

, ‘rows’=>array(
table_row(table_cell(array(

‘bgcolor’=>’skyblue’
, ‘colspan’=>2
, ‘value’=>$tag

)))
, table_row(

table_cell(array(
‘width’=>’5’
, ‘value’=>’ ’

))
, $r_description

)
)

));
}
// display any child topics of this child, at the next
// higher level
$output .= display_kids($r_topic_id, $level+1);

}
mysql_free_result($result);

if ($output)
{

if ($level)
{

// if not the first level and at least one child
// was found,
// display it as an unordered list
$output = ul_list(array(‘contents’=>$output));

}
else
{

// this is the first child record:
// - print out a header
$output = “Comments:
\n$output”;

}
}
return $output;

}

display_topic()
This function displays information about a given topic. If no topic_id is indicated,
a list of the root-level topics is displayed.

326 Part IV: Not So Simple Applications

function display_topic ($topic_id=0, $show_kids=1, $level=0)
{

$topic_id = (int)$topic_id;
$show_kids = (int)$show_kids;
$level = (int)$level;

The following portion executes if no topic_id is indicated. It displays the root-
level topics.

if (!$topic_id)
{

// no topic_id given - get all root topics
$query = ‘select topic_id, name from topics where topic_id =

root_id’;
$result = my_query($query);

The query in the preceding snippet gets all the root-level topics. The while...
loop directly following prints each topic as an HTML anchor, something like Topic name. When it’s finished, it returns
from the function.

while (list($r_topic_id,$r_name) = mysql_fetch_row($result))
{

// print the name of each topic as
// a link to this script, passing in
// the topic_id
print paragraph(anchor_tag(

‘index.php?topic_id=’.$r_topic_id
, $r_name

));
}
mysql_free_result($result);
return;

}

If a topic_id is available, the following query gets the parent and root of the
indicated topic_id. An outer join ensures that the information regarding the cur-
rent topic is returned by the query, even if the parent or root topic has gone missing.

$query = “select distinct current.parent_id
, current.root_id
, current.name
, current.description

Chapter 10: Threaded Discussion 327

, current.author
, date_format(current.create_dt,’%b %e %Y %r’) as

create_dt
, date_format(current.modify_dt,’%b %e %Y %r’) as

modify_dt
, current.author_addr_id
, parent.name as parent_name
, root.name as root_name

from topics current
left join topics as parent

on current.parent_id = parent.topic_id
left join topics as root

on current.root_id = root.topic_id
where current.topic_id = $topic_id “

;
$result = my_query($query);
$r = mysql_fetch_assoc($result);
mysql_free_result($result);
if ($r === FALSE)
{

print paragraph(‘Error: No such topic.’);
return;

}
extract($r);

if (empty($author)) { $author = ‘[no name]’; }

if ($root_id != $topic_id && $root_id != $parent_id)
{

// if the root topic is something other than the current
// topic or its immediate parent, print out its name
// as a link to it
if ($root_name == ‘’) { $root_name = ‘[no topic name]’; }
print paragraph(

‘root:’
, anchor_tag(‘index.php?topic_id=’.$root_id

, $root_name
)

);
}

If a parent topic exists, the name of the topic is printed, along with a link to it.

if (!empty($parent_name))
{

328 Part IV: Not So Simple Applications

// if an immediate parent was found, print out its name
// as a link to it
print paragraph(

‘parent:’
, anchor_tag(‘index.php?topic_id=’.$parent_id

, $parent_name
)

);
}

// print out the current topic
print paragraph(

“$name by $author (ID#$author_addr_id) on
$create_dt”

);
print paragraph($description);

if ($show_kids)
{

// print out a link to where the user to reply to
// the current topic
print paragraph(

anchor_tag(‘write_topic.php?topic_id=’.$topic_id
, ‘Reply to this’

)
);

// now display any children of the current topic
print paragraph(display_kids($topic_id, $level));

}

// return information retrieved about the current topic
return array(‘root_id’=>$root_id, ‘parent_id’=>$parent_id,

‘name’=>$name);

}

create_topic()
This function inserts the data taken from a form into the database. As we men-
tioned earlier, we are taking the IP address from the $_SERVER[‘REMOTE_ADDR’]
variable and using it to generate a unique ID number, which is also inserted into the
database.

Many of the fields (such as $root_id) are coming from hidden form fields. And
root_id is set to 0 if the user is attempting to create a new top-level topic. In those
cases the parent_id needs to be set to the same value as the topic_id.

Chapter 10: Threaded Discussion 329

function create_topic()
{

static $_defaults = array(
‘name’ => ‘[no name]’
, ‘description’ => ‘[no comments]’
, ‘parent_id’ => 0
, ‘root_id’ => 0
, ‘author’ => ‘[no author]’

);
static $_simple = array();
$args = func_get_args();
$p = parse_arguments($args, $_simple, $_defaults);

// run the topic name, description, and author through the
// cleanup_text() function (defined in /book/functions/base.php)
// to remove HTML tags and other special characters.

$name = cleanup_text($p[‘name’]);
$description = cleanup_text($p[‘description’]);
$author = cleanup_text($p[‘author’]);

// we want to know that the same person is having a conversation
// with himself, but these days storing real IP addresses is a
// bit hinky. this serves our purpose just as well.
$author_addr =

array_key_value($_SERVER,’REMOTE_ADDR’,’unknown’);
$author_addr = crypt($author_addr,$author_addr);
$result = my_query(“select author_addr_id from author_addrs

where author_addr = ‘$author_addr’”
);
if (mysql_num_rows($result))
{

list($author_addr_id) = mysql_fetch_row($result);
}
else
{

my_query(
“insert into author_addrs (author_addr) values

(‘$author_addr’)”
);
$author_addr_id = mysql_insert_id();

}
mysql_free_result($result);

330 Part IV: Not So Simple Applications

// insert the new record into the topics table
$query = sprintf(

“insert into topics
(name,description, parent_id, root_id, author,

author_addr_id)
values (‘%s’,’%s’,%d,%d,’%s’,’%s’)

“
, mysql_real_escape_string($name)
, mysql_real_escape_string($description)
, $p[‘parent_id’]
, $p[‘root_id’]
, mysql_real_escape_string($author)
, $author_addr_id

);

// begin transaction
my_query(‘begin’);

my_query($query);

$topic_id = mysql_insert_id();
if ($p[‘root_id’] == 0)
{

// if the root_id is zero, that means that this
// topic is itself a root topic. set the root_id
// column of its database record to that ID value
// (a root topic is its own root)
my_query(

‘update topics set root_id = topic_id where root_id = 0’
);

}

// end transaction
my_query(‘commit’);

return $topic_id;
}

This function simply inserts the data into the database. All the information is
coming from an HTML form.

In going through these functions, you might notice that you never check to see
if the result of a query is false. You can get away with this because you aren’t get-
ting away with it, really; you’re just checking in the reusable my_query() function.

Chapter 10: Threaded Discussion 331

if ($result === FALSE)
{

// if there was an error executing the query, write out the
// details to the error log
$private_error = ‘ack! query failed: ‘

.’errorno=’.mysql_errno()

.’error=’.mysql_error()

.’query=’.$query
;

// just in case we were in a transaction
@mysql_query(‘rollback’);

// send a generic error message to the user

user_error(‘There was an error executing a query. Please
contact the system administrator.’, E_USER_ERROR);

}

You use the $private_error variable, which your error-handling function
checks for, to store the query that failed and the error message. Then the error-
causing query can be written out to the server error log, or right to the screen if
you’re debugging the application. Meanwhile, the user gets a less revealing (and
less frightening) error message.

Error-handling and debugging functions
Unlikely as it seems, sometimes you make mistakes in your code. Or the database
server won’t be running because someone forgot to restart it. Errors happen. When
they do, it’s useful to have a uniform way of responding to them. PHP enables you
to set up a function that gets all the errors in your application (those that come
from PHP itself — most of them, at least) and errors you raise in your own code
when something doesn’t seem right. In this section we cover a set of functions that
we use throughout the rest of the book to handle errors. The same functions also
prepare your code for debugging in a number of ways, without interfering with its
normal use.

PHP has its own error-handling functions. And obviously, doing work that
someone else is perfectly willing to do for you is not the simplest path you can take.
However, setting up your own error handler is worthwhile for a couple of reasons.

◆ One, it enables you to exercise a little more control over the user’s experi-
ence. When something breaks, if you choose, the user sees only a calm
report that there seems to be a little problem, while MySQL still writes the
scary original error message out to a log file where you can use it to fix
whatever’s wrong.

332 Part IV: Not So Simple Applications

◆ Two, it can make debugging an application a lot easier, especially with
some of the functions that now exist in PHP.

For sure, what you see in the following pages is no Hello_World() function. A
lot is going on in here. And debugging errors when devising your error-handling
code is almost more fun than a person should be allowed to have. But once you
have it set up, you should find that getting on with the rest of your work is easier
because it’s there.

error_debugging() and error_logging()
The PHP function error_reporting() enables you to modify the level of errors
displayed by the default error handler. Here you use one of the oldest tricks in pro-
gramming — stealing — to set up the same kind of levels for the types of errors (or
other things) that you want to write out to the server’s error log, or as debugging
information:

function error_debugging($newlevel=NULL)
{

static $debug_error_level = 0;
$output = $debug_error_level;
if ($newlevel !== NULL)
{

$debug_error_level = $newlevel;
}
return $output;

}
function error_logging($newlevel=NULL)
{

static $log_error_level = E_ALL;
$output = $log_error_level;
if ($newlevel !== NULL)
{

$log_error_level = $newlevel;
}
return $output;

}

Each function works just like error_reporting()— you can change the level
by passing in a new value, or just get the current value by calling the function with
no arguments. Also, when a new value is set, the previous value is returned.

set_handler()
Now that you have three functions that track how you want to respond to various
types of errors — the built-in error_reporting() function, and our own error_
debugging() and error_logging() functions — managing all of them could get

Chapter 10: Threaded Discussion 333

unwieldy. So you create an interface to them that makes setting up just the condi-
tions you want more straightforward.

// create constants to represent normal error reporting,
// error logging, and debugging
define(‘H_ERROR’,1);
define(‘H_LOG’,2);
define(‘H_DEBUG’,4);
define(‘H_ALL’, (H_ERROR | H_LOG | H_DEBUG));

function set_handler($newvalue=NULL, $where=NULL, $direction=NULL)
{

// store the names of the handling functions

static $functions = array(
H_ERROR => ‘error_reporting’
, H_LOG => ‘error_logging’
, H_DEBUG => ‘error_debugging’

);

// this will hold the last error level that we turned on,
// so we can easily turn it off (see below)
static $last_args = array();

if ($direction === FALSE && $newvalue === NULL && $where ===
NULL)

{
// if we just get an argument to turn something off, but
// not what or where, use the last error level that we
// turned on
list($where,$newvalue) = array_pop($last_args);

}

if (empty($where))
{

// if we don’t get a request for a specific kind of
// handler, pick a default one

if (error_levels($newvalue))
{

// if the error level we’re dealing with
// is one of the standard PHP values, assume that
// we want to change error handling

334 Part IV: Not So Simple Applications

$where = H_ERROR | H_LOG;
}
else
{

// if we’re dealing with some made-up error level,
// it’s probably for debugging, so use that as
// the default

$where = H_DEBUG;
}

}

if ($direction !== FALSE)
{

// if we’re turning on handling for something, store
// it for turning off later

array_push($last_args, array($where,$newvalue));
}

$output = 0;
foreach ($functions as $handler => $handler_function_name)
{

if ($where & $handler)
{

// if this type of handler is one of the ones we want
// to change, get its current value

$handler_level = call_user_func($handler_function_name);

// either set handling directly to new level,
// or turn it on or off
if ($direction === FALSE)
{

$handler_level = $handler_level ^ $newvalue;
}
elseif ($direction === TRUE)
{

$handler_level = $handler_level | $newvalue;
}
else
{

$handler_level = $newvalue;

Chapter 10: Threaded Discussion 335

}

// add the new level to our result
$output = $output | $handler_level;

// call the handler function to set it to the new level
call_user_func($handler_function_name,$handler_level);

}
}

// return an OR’d sum of the changed handling values
return $output;

}

In this code you set up three constants corresponding to your three ways of
responding to an error: H_ERROR for catching errors and displaying them on the
screen, set with error_reporting(); H_LOG for writing errors to the server error-
log file, set with error_logging(); and H_DEBUG for taking extra steps to debug an
error, set with error_debugging(). You use these constants in your code much as
you would use the PHP error-level constants (E_ERROR, E_USER_NOTICE, and the
like). You also define an H_ALL constant to indicate that you want to affect all of
them, just as E_ALL means “all error levels.”

The set_handler() function gets called, normally, with three arguments: one to
specify whether you want to turn handling of a given error on (TRUE) or off
(FALSE); one to specify what error level or other kind of value, such as a debugging
constant, you are interested in; and one to specify which of the handlers you want
to affect: H_ERROR, H_DEBUG, H_LOG, H_ALL for all of them, or a bitmask combining
any two of them, such as (H_ERROR|H_LOG) to affect error reporting and logging.

If you are turning handling on for a given error level, you store the error handler
specifications in a static array that functions like a stack. That enables you to call
set_handler() without any argument beyond OFF; in that case, you just turn off
the last thing that you turned on.

The other interesting thing in this function is the use of the PHP
call_user_func() function. For all three handler functions, you make exactly the
same kind of calls — once with no arguments at all, to get the current state, and once
passing in a new state. Since the steps are the same, you don’t need to hard-code
them in three separate times. Note that in call_user_func(), the arguments after
the function name are passed to the called function just as they are. So this code

call_user_func(‘my_function’,3,’hello’,$some_variable);

is effectively the same as this code:

my_function(3,’hello’,$some_variable);

336 Part IV: Not So Simple Applications

push_handler() and pop_handler()
These functions use the stack features of set_handler() to make changing error-
handling levels even simpler.

function push_handler($newvalue=0, $where=NULL)
{

return set_handler($newvalue,$where,TRUE);
}
function pop_handler($newvalue=NULL, $where=NULL)
{

return set_handler($newvalue,$where,FALSE);
}

The push_handler() and pop_handler() functions don’t do much; they’re just
saving you the trouble of writing the first argument to set_handler(). But in your
application code they’re much simpler to follow. If you want to turn on logging of
user notices — the PHP E_USER_NOTICE error level — you can write this:

push_error_handler(E_USER_NOTICE, H_LOG);

And to turn it off again:

pop_error_handler(E_USER_NOTICE, H_LOG);

Or just this:

pop_error_handler();

It’s not quite English, but it’s relatively clear.
You’re making the same kind of decision here that you made when deciding how

to pass arguments to your functions. It would be perfectly valid to skip the
set_handler(), push_handler(), and pop_handler() functions and just use the
handler functions directly:

error_reporting(error_reporting() | E_USER_NOTICE);
error_logging(error_logging() | E_USER_NOTICE);

The function calls get a little more obscure, though not terribly so. It’s up to you
to find the balance. Do you put a pretty complicated chunk of code in one place, or
slightly complicated code in lots of places? There’s no universal answer to that
question.

error_handler()
Speaking of pretty complicated chunks of code in one place, now you are ready to
look at your actual error-handling function. You use the PHP function

Chapter 10: Threaded Discussion 337

set_error_handler() to tell PHP to call your own function whenever an error
occurs in your code. That function is then responsible for doing all the work that
PHP’s normal error handler does by default. It checks the current error-reporting
level to see if it’s supposed to react to the particular error, it controls what kind of
error message the user sees, and so forth.

Not every PHP error will be sent to the error-handling function. Calls to

an undefined function, for example, will not. To quote the manual, “The

following error types cannot be handled with a user defined function:

E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_
ERROR, and E_COMPILE_WARNING.” For more information, check out

the manual page: http://www.php.net/manual/en/function.set-
error-handler.php.

function error_handler($error_level,$error,$file,$line,$context)
{

// $context is an array of all the variables defined at the
// time of the error. so we can check it to see if the
// variables $public_error, $private_error, or $debug were
// defined.

if (array_key_exists(‘public_error’, $context))
{

$public_error = $context[‘public_error’];
}
else
{

$public_error = $error;
}
if (array_key_exists(‘private_error’, $context))
{

$private_error = $context[‘private_error’];
}
else
{

$private_error = ‘’;
}

// the value for $debug that we’ll use is a combination of the
// value of the $debug variable in the scope of the line where

338 Part IV: Not So Simple Applications

// the error occurred (if defined), the setting of the debugging
// level for the file from debug_file() (if there is one), and
// the value of the constant DEBUG (if defined).

if (array_key_exists(‘debug’, $context))
{

$debug_scope = $context[‘debug’];
}
else
{

$debug_scope = 0;
}
$debug_file = debug_file($file);
if (defined(‘DEBUG’))
{

$debug_constant = constant(‘DEBUG’);
}
else
{

$debug_constant = 0;
}

$debug = $debug_scope | $debug_file | $debug_constant;

// get the current error handling levels
$error_reporting = error_reporting();
$error_logging = error_logging();
$error_debugging = error_debugging();

// get the name of the constant that matches the error
// (if there is one)
$error_name = error_levels($error_level, “_Error

#$error_level”);
$public_name = substr($error_name,strrpos($error_name,’_’)+1);

// write the error to the server error log if it’s of a level
// that we’re interested in

if ($error_logging & $error_level)
{

$logerror = “$error_name file: $file line: $line\n”
.” error: $error\n”

;

Chapter 10: Threaded Discussion 339

if ($public_error && $public_error != $error)
{

$logerror .= “ public_error: $public_error\n”;
}

if ($private_error && $private_error != $error
&& $private_error != $public_error

)
{

$logerror .= “ private_error: $private_error\n”;
}

error_log($logerror);
}

// if $debug is set to something that we’re debugging at the
// moment, add some stuff to the error message and make sure
// it gets displayed, no matter what the error_reporting level

is

if ($error_debugging & $debug)
{

$debug_error = “ error: $error\n”;
if ($public_error && $public_error != $error)
{

$debug_error .= “ public_error: $public_error\n”;
}
if ($private_error && $private_error != $error

&& $private_error != $public_error
)
{

$debug_error .= “ private_error: $private_error\n”;
}

$debug_error .= “backtrace:\n”;

$backtrace = debug_backtrace();

foreach ($backtrace as $skip)
{

$class = ‘NoClass’;
$function = ‘NoFunction’;
$file = ‘NoFile’;
$line = ‘NoLine’;
extract($skip, EXTR_IF_EXISTS);

340 Part IV: Not So Simple Applications

$debug_error .= sprintf(“\t%s::%s [%s:%s]\n”
, $class
, $function
, $file
, $line

);
}
$debug_error .= “\n”;

$public_error .= $debug_error;

// if E_ALL has been explicitly set in the debug mask
// dump *everything*...
if (($error_debugging & E_ALL) == E_ALL)
{

// OK, not everything. but you can uncomment this
// if you want.

// $context = array_merge(
// $context, get_defined_constants()
//);

$public_error .= “context:”.dumpvar($context).”\n”;
}

}
elseif (!($error_reporting & $error_level))
{

// if the error is not of a level that we’re reporting,
// blank out the error message
$public_error = ‘’;

}

if (!empty($public_error))
{

print <<<EOQ
<blockquote>
$public_name:
$public_error
</blockquote>
EOQ;

}

if (error_debugging() & get_constant(‘fatal’))
{

exit;

Chapter 10: Threaded Discussion 341

}
switch ($error_level)
{

// the non-fatal errors
case E_NOTICE:
case E_USER_NOTICE:
case E_WARNING:
case E_USER_WARNING:

return;

// everything else is fatal
default:

exit;
}

}

The first things we should go over are the arguments. Because PHP is calling the
function, it defines what the arguments are. The first one, $error_level, is the
kind of error, and matches the predefined error-level constants. You can find a list
of these online at http://www.php.net/manual/en/ref.errorfunc.php.

The second argument, $error, is the text of the error message. This might be
PHP’s own error message; if you’ve raised an error with user_error(), it is the
text passed in to that function. The next two arguments, $file and $line, tell you
the name of the file and the line number in that file where the error occurred. The
final argument, $context, is an associative array of all the variables in scope at the
time of the error. (Be careful with this — if the error happens outside of a function,
in a global scope, then this contains not only your own global variables but all of
the PHP superglobals as well. Because some of these variables incorporate others —
$_REQUEST containing $_POST, $_GET, and $_COOKIE, for example — trying to
dump this array out can lead to recursion problems.)

This last argument, $context, is something that you can make good use of. It’s
where you get the local value of $debug from, for one thing. It also enables you to
see if you’ve set up a “private” error message. As an example, in the my_query()
function, you can use this to capture the MySQL error message:

$private_error = ‘ack! query failed: ‘
.’errorno=’.mysql_errno()
.’error=’.mysql_error()
.’query=’.$query

;

Then the error handler can write it out to the error log or print it out as debug-
ging output, however you’ve set it up. Meanwhile, a generic message is set up for
the user:

342 Part IV: Not So Simple Applications

user_error(‘There was an error executing a query. Please contact the
system administrator.’, E_USER_ERROR);

You can also set up a “public error” message, which gets used instead of the
default error message. This strategy is one way to cover situations where a normal
PHP error might occur.

Next, you check to see if you have turned on debugging. You can do this just by
setting a variable named $debug to an appropriate value — this approach is good for
debugging inside a function. Or you can set debugging at a file level with the
debug_file() function (see the next section). You can also just define a constant
named DEBUG that is visible from anywhere in the application.

You check in with your handler functions to see how you want to react to the
error. If logging is turned on, a message is written out to the error log. If debugging
is turned on, you create a detailed debugging message for display. If error reporting
is set to display this level of error, you prepare a message to be shown to the user.

In setting up the debugging message, you can make use of a very nice new fea-
ture in PHP, the debug_backtrace() function. This function returns an array of all
the functions and files that got you from the initial URL to where you are now,
including the relevant line numbers. When you get an error from a function that’s
five or six levels down, this function is a godsend.

Finally, you display a message to the screen (if there is one), and then either
return from the function back to the main program, if it was a warning or notice, or
exit, if it was a full error.

debug_file()
You saw this function in the error handler. The debug_file() function sets up a
debugging level for an entire file:

function debug_file()

{
// store the file names for which we set up debugging levels
static $debug_files = array();

// some quick & dirty argument handling. we can do this
// because we’re only interested in two possible arguments,
// $file and $level

$args = func_get_args();
$file = NULL;
$level = NULL;
foreach ($args as $arg)
{

switch (gettype($arg))

Chapter 10: Threaded Discussion 343

{
case ‘array’:
case ‘object’:

extract((array)$arg,EXTR_IF_EXISTS);
break;

case ‘string’:
$file = $arg;
break;

case NULL:
break;

default:
$level = (int)$arg;

}
}

if (!$file)
{

// if no file name is given, use the current
//file by default.

// we want to find the path to the file that called
//this function,
// so we can’t use __FILE__ - that’ll just give
//us the name of
// the file where this function is defined.
//use debug_backtrace()
// instead.
$backtrace = debug_backtrace();
$last = array_shift($backtrace);
$file = $last[‘file’];

if ($level === NULL)
{

// if we’re using a default file name, then if no level
// is passed in, set up a default level as well
$level = get_constant($file);

}
}
else
{

$rfile = realpath($file);
if ($rfile)
{

$file = $rfile;
}

344 Part IV: Not So Simple Applications

}
}

if ($level !== NULL)
{

// if we’re given a level for a file (or have set one
// as a default case), make a record of it
$debug_files[$file] = $level;

}

// in any case, return the current level for this file,
// if there is one, or FALSE if there isn’t

if (array_key_exists($file, $debug_files))
{

return $debug_files[$file];
}
// so now do more tedious file name matching
$pat = ‘/’.str_replace(‘/’,’.’,$file).’/i’;
return current(preg_grep($pat, array_keys($debug_files)));

}

Most of the time, if you want to debug a section of your code, you just set
$debug to a value that you’ve set up the debug handler to watch. Sometimes,
though, you might want to turn on debugging for all the code in a particular file.
This can easily be the case with a simple Web page or an included file, where
assigning $debug a value sets it at a global scope, and possibly triggers a lot of
debugging code you don’t want to see. That’s a problem that debug_file() solves.
It stores an error level or some other value and associates with a single file. When
you get an error, or your code calls user_error(), the error-handling routine uses
debug_file() to see if you’ve set anything up for the file in which the error
occurred.

get_constant()
When you want to define a constant to use in a bitmask, the way you use
E_WARNING with error_reporting(), it doesn’t particularly matter what the actual
value of the constant is, so long as it doesn’t collide with any other constant you’re
using for the same purpose. That’s what get_constant() manages for you:

function get_constant($constname=’’)
{

// start at one above E_USER_NOTICE to avoid conflicts
// (we can’t initialize a static variable to an expression,

Chapter 10: Threaded Discussion 345

// so we have to start it off as NULL and then fix that.)

static $last_constant = NULL;
if ($last_constant === NULL)
{

$last_constant = E_USER_NOTICE << 1;
}
static $defined_constants = array();
static $defined_or = 0;

$output = 0;
if (!empty($constname))
{

if (!defined($constname))
{

define($constname,$last_constant);
$defined_constants[$constname] = $last_constant;
$defined_or = $defined_or | $last_constant;
$last_constant = $last_constant << 1;

}
$output = constant($constname);

}
else
{

// if no constant name is given, hand back the equivalent
// of E_ALL for the constants defined so far
$output = $defined_or;

}
return $output;

}

The other purpose of this function is to enable you to get the value of a constant
that you’ve defined elsewhere — or that you will define, which sounds like some
kind of time-travel feature only because that definition isn’t really accurate. It
works like this: Suppose that in a function named foo(), you make a call to
get_constant():

function foo()
{

get_constant(‘MY_CONSTANT’);
print “<h4>my constant is “.MY_CONSTANT.”</h4>\n”;

}

346 Part IV: Not So Simple Applications

In the normal course of our application, this might be the fifth call made to
get_constant(), so MY_CONSTANT would end up being defined as 32768. But sup-
pose you want to watch for MY_CONSTANT somewhere else, such as in a debugging
function. You can put the same call to get_constant() in the header file of your
application:

$global_variable = get_constant(‘MY_CONSTANT’);

This is the first call to get_constant() that is executed, so MY_CONSTANT will be
defined as 2048. The point is, it doesn’t matter. It’s the same value that will be
returned inside the foo() function when it makes its get_constant() call. As long
as MY_CONSTANT represents the same value everywhere in the application, that’s
what counts.

Summary
If you would like to see how the rest of the code comes together, take a look at the
accompanying CD. The other files are well commented and should be relatively
easy to follow.

You should come away from this chapter with an understanding of two concepts:

◆ First, recursion. Recursion is a nifty tool that can be very helpful at times.

◆ Second, the way we went about organizing the data. We didn’t follow a
strict normalization procedure, like the one described in Chapter 1. Here
we were more concerned with what gets the job done. In the end that’s
what all application developers are trying to do, right?

Finally, we covered how to set up your own error handler, and some of the uses
to which you might put it. As with the HTML functions, you might decide that you
want to use a different approach. If so, feel free to ignore our example.

Chapter 10: Threaded Discussion 347

Chapter 11

Content-Management
System
IN THIS CHAPTER

◆ Creating an affordable content-management system

◆ Maintaining security in your databases

◆ Anticipating shortcomings in MySQL’s privilege scheme

WELCOME TO OUR FAVORITE APPLICATION in this book. Don’t get us wrong, we love
the guestbook, we love the shopping cart, and we adore the problem tracker. But, as
we spent our formative years dealing with Web sites that produced a steady stream
of prose, we know the importance of having some sort of content-management sys-
tem in place.

Content-management systems come in all shapes, sizes, and costs. Depending on
your needs (or your company’s), you might be inclined to make a five-figure
investment in something like Vignette or a six- to seven-figure investment in
something like Broadvision. But your choices don’t end there. Zope (http://
www.zope.org), Midgard (http://www.midgard-project.org/), and FileNet, for-
merly eGrail, (http://www.filenet.com/) are just three open-source options for
content management.

Given all of these options, you might wonder why you should consider using the
application presented here — why not just run off one of the aforementioned appli-
cations? There is, in fact, an excellent reason. Content management is a field in
which a high degree of customization is necessary. Your company’s concerns are
going to be distinct from any other’s, and no matter what system you end up using,
you are going to need to do a lot of coding to get your systems working just the
way you want. For example, if you decide on Vignette, you’ll need to learn a nasty
little language called Tcl (pronounced “tickle”) or write in Java. If you want to use
Zope, you will have to add Python to your repertoire. Midgard is a PHP-based
application, and there’s no question that there’s a lot of good code in there. It’s
open-source, and presents a nice opportunity to contribute to the development of
an increasingly sophisticated piece of software. But you may just want something
you can call your own, an application that you know inside out, something built to
solve the problems specific to your organization. So take a look at what’s available,

349

and see if your challenges, budget, and temperament make one of the ready-made
systems a good fit. If not, you can look at the framework and code presented in this
chapter and adapt them to your needs, or maybe just recode from scratch.

Determining the Scope and Goals
of the Application
For the sake of presenting this content-management application, we’ve created a
fairly basic site (which is in the /book/netsloth directory on the CD-ROM). But
given the nature of Web content, whatever site you create is going to require all the
design and editorial resources you can muster, and we’re not going to worry about
that too much here.

Our content-management system is going to need to do several things. Its most
obvious purpose is to offer an environment where writers, editors, and administra-
tors can create new stories. Additionally, it must offer a flexible series of stages
through which a story moves. For example, if originally implemented with a single
editorial stage, the application must be flexible enough to accommodate an addi-
tional editorial stage (or several of them) if needed.

Additionally, this application must meet the various demands of a staff. There
will be a series of writers, and some byline information will be presented with each
story. Further, staff members will be assigned specific functions in the editorial
process. Various levels of permission will ensure that not everyone will have the
authority to edit or proofread a particular story, or to make that story available to
the world at large.

Finally, a sort of super-user authority must exist. A few select people will have
the authority to add users and authorities to the editorial staff.

Necessary pages
First off, we need a site, a place where the articles will be displayed. As the site isn’t
really the focus of this application, we deal with it very briefly. You will obviously
need to code a site that fits your needs. Figures 11-1 and 11-2 show the Netsloth site
in all its glory.

This application manages content and the creators of the content. We will need
a series of editorial stages and a series of users. Users will have access only to the
stages that involve them. Figure 11-3 shows a page that lists sample stages and
users. Figures 11-4 and 11-5 show pages that administer these rights and stages,
respectively.

350 Part IV: Not So Simple Applications

Figure 11-1: Netsloth index page

Figure 11-2: Story page

Chapter 11: Content-Management System 351

Figure 11-3: Rights and stages page

Figure 11-4: Rights-administration page

352 Part IV: Not So Simple Applications

Figure 11-5: Stages administration page

This application also needs a workspace, a page where writers and editors can
create stories, and where stories can work their way through the editorial process.
The workspace will contain a few fields that identify the author, the date, the body
of text, and other necessary information. Additionally, the stage of the editorial
process that the story is in is indicated. This page is shown in Figure 11-6.

Another important aspect of an editorial environment is versioning. It’s very
important to be able to track pieces as they work through the process. We’ll want to
know who is making changes. Figure 11-7 shows the page that tracks versions, or
the story-history page.

This application performs a few more tasks, but they are minor enough to over-
look here. Here we have touched on the major functions of the application.

What do we need to prevent?
The major issue in this application is ensuring that users do only what they are per-
mitted to do, and absolutely no more. To do this, the application makes use of
MySQL administrative privileges.

All the previous applications have a simple header file that calls a function with
which to log in to the database. Each file ends up using the same my_connect()
call, with the same username and password. But that won’t work here because dif-
ferent users need different levels of access.

Chapter 11: Content-Management System 353

Figure 11-6: Editorial workplace

Figure 11-7: Story-history page

354 Part IV: Not So Simple Applications

Moreover, in this application some users are going to need the ability to grant
access to others. Workers will come and go and their responsibilities will change. An
administrator will need to be able to change these rights. Since we don’t want every-
body who logs in to the database to have the same rights, this application will need
the facility to have different people log in using different names and passwords.

Privileges in MySQL are granted and revoked with the aptly named grant and
revoke statements. These processes are fairly painless and are described in
Appendix E. So before you move forward with this application, it might be worth
taking a quick look at that appendix.

In the content-management application you will run into some of the

weirder aspects of MySQL. If some of the design of this application seems a

little strange, that’s because it is. But we’ll cross that bridge as we develop

our application.

Designing the Database
The schema represented in Figure 11-8 shows how this application divides its data,
and Listing 11-1 reveals the MySQL command sequence used to set it up. Keep in
mind as you look at it that in database-development land there is usually more
than one decent way to go about things. You might find a different way to arrange
these types of data that works equally well. In fact, you may even prefer another
way. That’s fine with us. We encourage independent thought and creativity, as long
as it does not result in immoral or ungodly behavior. So normalize your data as you
see fit, but in the process please don’t violate any natural laws. On the other hand,
data normalization makes it easier to grow your databases and adapt them to new
purposes. Bear that in mind, too.

Listing 11-1: create Statements for the Content-Management System

drop database if exists netsloth;
create database netsloth;
use netsloth;

drop table if exists admin;
create table admin
(

username varchar(50) not null
, password varchar(255) not null

, primary key (username)
)
type=InnoDB

Continued

Chapter 11: Content-Management System 355

Listing 11-1 (Continued)

;

drop table if exists author_seq;
create table author_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB
;
drop table if exists authors;
create table authors
(

author_id integer not null auto_increment
, author varchar(50) null
, email varchar(255) null
, bio text null
, user_id int null

, primary key (author_id)
, key (user_id)
, foreign key (user_id) references users (user_id) on delete cascade
)
type=InnoDB
;
-- read-write tables
grant select,update,insert,delete on stories to fake@localhost;
grant select,update,insert,delete on story_seq to fake@localhost;
grant select,update,insert,delete on story_versions to
fake@localhost;
grant select,update,insert,delete on authors to fake@localhost;
grant select,update,insert,delete on author_seq to fake@localhost;
grant select,update,insert,delete on story_author_map to
fake@localhost;

-- read-only tables
grant select on admin to fake@localhost;
grant select on users to fake@localhost;
grant select on stages to fake@localhost;
grant select on user_stage_map to fake@localhost;

-- build local copy
drop table if exists content_tables;
create table content_tables as

select Table_name, Table_priv
from mysql.tables_priv
where Host = ‘localhost’ and Db = ‘netsloth’ and User = ‘fake’

;

356 Part IV: Not So Simple Applications

alter table content_tables add unique (Table_name);

-- delete the slug
delete from mysql.user

where Host = ‘localhost’ and User = ‘fake’
;
delete from mysql.tables_priv

where Host = ‘localhost’ and Db = ‘netsloth’ and User = ‘fake’
;

Figure 11-8: Content management schema

content_admin

username
password

authors

author_id
author
email

story_author_map

story_id
author_id

user_stage_map

user_id
stage_id

editing_stories

story_id

Note: Each of these
tables corresponds to
an entry in the
content_stages table.
The tables will change
as stages are added
and deleted.

killed_stories

story_id

proofreading_stories

story_id

live_stories

story_id

writing_stories

story_id

stories

story_id
stage_id
publish_dt
headline
subtitle
byline_prefix
summary
body

content_stages

stage_id
stage
stage_dsc

content_users

user_id
username
name
email

story_versions

story_id
modify_dt
modify_by
stage_id
publish_dt
headline
subtitle
byline_prefix
summary
body

Chapter 11: Content-Management System 357

(In these lines, up to ‘flush privileges’, we are setting up basic permissions
for the database, where ‘nobody’ is the account used by the NetSloth site itself,
and ‘content_admin’ is an example of an account for an administrator of the
content management application itself.)

delete from mysql.user where user = ‘content_admin’;
delete from mysql.db where Db = ‘netsloth’;
delete from mysql.tables_priv where Db = ‘netsloth’;
grant select on netsloth.*

to nobody@localhost
identified by ‘ydobon’

;
grant reload on *.*

to content_admin@localhost identified by ‘supersecret’
;
grant delete, insert, select, update, create

on netsloth.*
to content_admin@localhost
with grant option

;
grant delete, insert, select, update, create on mysql.user to
content_admin@localhost ;
grant delete, insert, select, update, create on mysql.db to
content_admin@localhost ;
grant delete, insert, select, update, create on mysql.columns_priv
to content_admin@localhost ;
grant delete, insert, select, update, create on mysql.tables_priv to
content_admin@localhost ;

flush privileges;

drop table if exists stage_seq;
create table stage_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB
;
drop table if exists stages;
create table stages
(

stage_id integer not null auto_increment
, stage varchar(20) not null
, stage_dsc text null

358 Part IV: Not So Simple Applications

, stage_table varchar(32) not null
, primary key (stage_id)
)
type=InnoDB
;

drop table if exists stories;
create table stories
(

story_id integer not null auto_increment
, stage_id integer not null
, publish_dt date null
, headline varchar(255) null
, subtitle varchar(255) null
, byline_prefix varchar(20) null
, summary text null
, body text null

, primary key (story_id)
, index (stage_id)
)
type=InnoDB
;

drop table if exists story_author_map;
create table story_author_map
(

story_id integer not null
, author_id integer not null

, primary key (story_id)
, index (author_id)
, foreign key (story_id) references stories (story_id) on delete
cascade
, foreign key (author_id) references authors (author_id) on delete
cascade
)
type=InnoDB
;

drop table if exists story_seq;
create table story_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB

Chapter 11: Content-Management System 359

;

drop table if exists story_versions;
create table story_versions
(

story_id integer not null
, modify_dt timestamp
, modify_by varchar(20) not null
, stage_id integer not null
, publish_dt date null
, headline varchar(255) null
, subtitle varchar(255) null
, byline_prefix varchar(20) null
, summary text null
, body text null

, primary key (story_id, modify_dt)
, foreign key (story_id) references stories (story_id) on delete
cascade
)
type=InnoDB
;

drop table if exists user_seq;
create table user_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB
;
drop table if exists user_stage_map;
create table user_stage_map
(

user_id integer not null
, stage_id integer not null

, primary key (user_id,stage_id)
, index (stage_id,user_id)
, foreign key (user_id) references users (user_id) on delete cascade
, foreign key (stage_id) references stages (stage_id) on delete
cascade
)
type=InnoDB
;
drop table if exists users;
create table users

360 Part IV: Not So Simple Applications

(
user_id integer not null auto_increment
, username varchar(20) not null
, password varchar(16) not null
, name varchar(50) not null
, email varchar(255) null

, primary key (user_id)
-- , unique (username)
)
type=InnoDB
;

Code Overview
At this point, we assume that you are getting comfortable with the way the appli-
cations in this book have been constructed. Even with the simple safe_
mysql_query() function in the guestbook example, you saw the usefulness of hav-
ing a standard way of working with PHP’s native MySQL routines. The built-in rou-
tines will let you do what you need to do, no question. But in the course of using
them, you may find that you’re writing the same kind of code multiple times, a sure
signal that some higher-level functions are called for. Also, should you ever want
to port your code to a different DBMS for some crazy reason, like because you’re
being paid to, going through your code and converting those MySQL-specific func-
tions to some other system can be a big pain.

If you’ve ever done any work with Perl, you may be familiar with the DBI
library. It provides a standard interface to multiple database systems. You may have
also used Comprehensive Perl Archive Network (CPAN), the big code library where
you can find all sorts of previously invented wheels. The same kinds of benefits are
available with PHP, thanks to the good people who have built — and are building
even now — PEAR.

To quote from the PEAR Manifest (http://pear.php.net/manual/en/
introduction.php): “PEAR is short for ‘PHP Extension and Application
Repository’ and is pronounced just like the fruit.” PEAR has several facets. It’s a
library of PHP code that solves many common problems encountered by Web
developers. It’s also a means of packaging and distributing code, to make it simpler
to install code from that library, and to encourage people to share their own code.
The best place to find out more is at the Web site: http://pear.php.net. Here
you’ll find the code, the main PEAR documentation, mailing lists, and other useful
information.

PEAR is very much a moving target, undergoing constant improvement and
extension, and it has the rough edges that brings. So by way of introduction, we’ll
focus on one of the most widely used — and most completely documented — classes,
the DB class. It’s one of the core PEAR classes that are automatically distributed
and installed as part of PHP (at least, as of this writing). Like Perl’s DBI class, DB

Chapter 11: Content-Management System 361

provides a standard interface to multiple database systems. It makes it easy to do
the kinds of things you’ll want to do to get data out of a database (like building an
associative array from the results of a query) and to put data into a database (like
handling those pesky quote marks).

As you work through, less and less of the code should require explanation.
Thus, our descriptions of the code will deal only with those parts that are really
new or tricky.

Here, most of the newer looking code will come from assigning the privileges
discussed in the previous section. The application sends queries that you haven’t
used before.

Code Breakdown
Once again, the code in this application will make heavy use of the functions in the
/functions folder. A lot of the code presented here will make calls to those functions.
The great thing about functions is that they become part of your library of code
that you can re-use for other purposes.

Functions from /dsn
The PEAR DB library takes a connection string that will look somewhat familiar if
you’ve used Perl’s DBI class, and that is easy to figure out in any case. It typically
looks something like this:

phptype://username:password@hostspec/database

where hostspec might be replaced with the port number and name of the local-
host. The routine that accepts connections also accepts an associative array with all
the parts spelled out as key/value pairs, so that’s what we’ll use.

Rather than store usernames and passwords in the code of the example, as we
have done up until now, we’ve moved the connection information for the database
to a function in a separate directory, outside the document root of the Apache
server. This provides a small amount of extra security — though if you’re on a
shared server, this information is still vulnerable. But at least moving it out of the
Web-server document root means that no one can download the file as a Web page.

In our setup, the /dsn directory is parallel to the /htdocs directory. In there is one
file, db_dsnlist.php, defining one function, db_dsnlist():

function db_dsnlist()
{

static $_defaults = array(
‘application’ => ‘default’

);
static $_simple = array(

362 Part IV: Not So Simple Applications

‘application’, ‘username’, ‘password’, ‘database’
);
$p = func_get_args();
$p = parse_arguments($p, $_simple, $_defaults);

static $dsnlist = array(
‘default’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘test’

)
, ‘oldcatalog’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘oldcatalog’

)
, ‘catalog’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘catalog’

)
, ‘discussion’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’

Chapter 11: Content-Management System 363

, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘discussion’

)
, ‘netsloth’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘netsloth’

)
, ‘content’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => NULL
, ‘password’ => NULL
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘netsloth’

)
, ‘admin’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘admin’
, ‘password’ => ‘supersecret’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’
, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘netsloth’

)
, ‘tracking’ => array(

‘phptype’ => ‘mysql’
, ‘dbsyntax’ => NULL
, ‘username’ => ‘nobody’
, ‘password’ => ‘ydobon’
, ‘protocol’ => ‘tcp’
, ‘hostspec’ => ‘localhost’

364 Part IV: Not So Simple Applications

, ‘port’ => NULL
, ‘socket’ => NULL
, ‘database’ => ‘tracking’

)
);
// remove NULL values to not override entries from dsn
$p = array_diff($p, array_filter($p,’is_null’));
if (isset($dsnlist[$p[‘application’]]))
{

$dsn = array_merge($dsnlist[$p[‘application’]],$p);
}
else
{

$dsn = array_merge($dsnlist[‘default’],$p);
}
return $dsn;

}

Typically, this function is called with just the application name as a parameter,
and will return the entry for that application from the static array of connection
parameters. But we can pass in other values as well, which are merged into the
returned array.

Functions from /book/functions/database
The functions of the PEAR DB library are powerful enough that in most circum-
stances you can use them either directly in the code of the Web pages or in functions
specific to an example. In a few instances you do the same work in all the examples,
though, and these general functions are stored in the /databases directory of the
general /functions directory.

db_connect()
The db_connect() function is similar to the mysql_connect() function we used in
previous examples. It creates a persistent connection to the MySQL server, getting
connection parameters from the db_dsnlist() function described earlier.

function db_connect()
{

static $_connections = array();
static $_defaults = array(

‘application’ => NULL
, ‘database’ => NULL
, ‘username’ => NULL
, ‘db_error_level’ => E_USER_ERROR
, ‘db_error_handler’ => ‘db_error_handler’

Chapter 11: Content-Management System 365

, ‘options’ => array(
‘debug’ => 4
, ‘persistent’ => TRUE
, ‘autofree’ => TRUE

)
);
static $_simple = array(‘application’,’username’,’password’);

$dc = count($_connections);
$p = func_get_args();
if (empty($p))
{

if ($dc)
{

$dbh = array_pop(array_values($_connections));
if ($dbh === NULL) { user_error(‘Last connection is

NULL.’, E_USER_ERROR); exit; }
return $dbh;

}
user_error(‘No existing database connection found.’,

E_USER_ERROR);
exit;

}

$p = parse_arguments($p, $_simple, $_defaults);

if (empty($p[‘application’]))
{

$p[‘application’] = $p[‘database’];
if (!empty($p[‘username’]))
{

$p[‘application’] .= ‘:’.$p[‘username’];
}

}

$dbh = array_key_value($_connections,$p[‘application’],NULL);
if ($dbh !== NULL)
{

return $dbh;
}

$dsn = db_dsnlist($p);
$dbh = DB::connect($dsn, $p[‘options’]);
if (DB::isError($dbh))
{

$private_error = ‘dsn:’.var_export($dsn,TRUE).”\n”

366 Part IV: Not So Simple Applications

.’ error:’.var_export($dbh,TRUE).”\n”
;
user_error(

‘Could not connect to database: ‘.$dbh->getMessage()
, $p[‘db_error_level’]

);
return FALSE;

}
if (is_string($p[‘db_error_handler’])

&& function_exists($p[‘db_error_handler’])
)
{

// it’s a function name - OK
}
elseif (is_array($p[‘db_error_handler’])

&& count($p[‘db_error_handler’]) == 2
&& method_exists($p[‘db_error_handler’][0],

$p[‘db_error_handler’][1])
)
{

// it’s an object method - OK
}
else
{

$p[‘db_error_handler’] = NULL;
}
if (!empty($p[‘db_error_handler’]))
{

$dbh->setErrorHandling(PEAR_ERROR_CALLBACK,
$p[‘db_error_handler’]);

}
else
{

$dbh-
>setErrorHandling(PEAR_ERROR_TRIGGER,$p[‘db_error_level’]);

}
$_connections[$p[‘application’]] = $dbh;
if ($dbh === NULL)
{

$private_error = var_export($_connection, TRUE);
user_error(‘connection is NULL.’, $p[‘db_error_level’]);
exit;

}
return $dbh;

}

Chapter 11: Content-Management System 367

If db_connect() is called with no parameters, it hands back the handle of the
last DB object that was created. You’ll notice the use of this function throughout
this example and the examples that follow; we can call db_connect() from any
point in the application — in a Web page, inside a function, and so on — and get
access to the database, without having to set up a global variable, and without
making multiple connections. The more advanced object-oriented features of PHP
4.3 even let us do away with storing the object handle in a variable, and just use
the function in its place. Prior to PHP 4.3 we would have to do something like this:

$dbh = db_connect();
$dbh->query(‘delete * from mysql.users’);

But the new PHP object handling lets us just write

db_connect()->query(‘delete * from mysql.users’);

The db_connect() function also sets up how DB errors are handled. They can
either be passed on directly to a function or class method, or processed when they
trigger a PHP error of a given error level and thus go through whatever error
handling we’ve set up for general PHP errors. For the examples in this book, we
normally use the former method, passing DB errors on to a function of our own,
db_error_handler().

db_error_handler()
We use a special error-handling function for DB errors rather than only relying on
our regular error_handler() function. We do this so that we can roll back any
open transaction (if we still have an active database connection) and then trigger a
fatal error that will exit the page and stop any other queries from running. This is
key to the concept of atomic transactions, which are multi-stage procedures in
which, by rule, either all of the steps must occur, or none of them. This prevents
such problems as, in the case of a bank, money being credited to one account with-
out being subtracted from another one.

function db_error_handler($db_error)
{

$timestamp = time();
// this should be unnecessary but can’t hurt
$dbh = db_connect();
if (is_a($dbh,’DB’))
{

$last_query = $dbh->last_query;
$dbh->query(‘rollback’);

}
$skip_past_function = ‘mysqlraiseerror’;
$private_error = “DB error ($timestamp): “.$db_error->userinfo;

368 Part IV: Not So Simple Applications

$error_level = E_USER_ERROR;
user_error(

“Database error - please contact the system
administrator.($timestamp)”
,$error_level

);
}

db_fetch_record()
This function provides a convenient way to get a record or set of records from a
table. It makes use of DB’s system for token replacement, which is a fancy way of
saying “placeholders.” As a simple example, you can run a query with DB like this:

$result = $dbh->query(‘select * from mytable where mykey = 1’);

But you can also pass in two arguments to DB::query(), the query string itself,
and an array of values to replace into the string:

$result = $dbh->query(
‘select * from mytable where mykey = ?’
, array($mykey)

);

The token character ? in the query string tells DB that it should replace it with
the content of a value from the array of arguments. If you have two ? characters in
your query string, it looks for two values in the array, and so on. The very nice
aspect of this — beyond freeing you from having to build a new query string for
every new set of values you want to include in your query, which is no small pota-
toes — is that DB takes care of quoting and escaping characters for you. A statement
like this:

$mykey = 1;
$myname = “O’Reilly”;
$result = $dbh->query(

‘select * from mytable where mykey = ? and myname = ?’
, array($mykey, $myname)

);

results in this query being run by MySQL:

select * from mytable where mykey = 1 and myname = ‘O\’Reilly’

and although this book is about PHP and MySQL, it’s worth noting here that DB
can be used with a wide variety of databases, handling the proper quotation and
escape syntax for each one. If you’ve ever had to port code from, say, Sybase or
PostgreSQL to MySQL, you can appreciate how valuable a feature that is.

Chapter 11: Content-Management System 369

You can also make substitutions for literal parts of the query, using the ! token
character, like this:

$mykey = 1;
$myname = “O’Reilly”;
$result = $dbh->query(

‘select * from mytable where mykey = ? and ! = ?’
, array($mykey, ‘myname’, $myname)

);

DB interprets the ! character to indicate that it should put the corresponding
value from the argument list as-is, without quoting it, so that you can change the
name of the table of the column you query dynamically. You might be thinking,
looking at this example, what is the point of putting the literal string ‘myname’ in
the argument list, when you could have just written it into the query in the first
place? It’s only to show that you are not limited to using variables in your argu-
ment array.

DB even grabs the contents of an entire file for you, using the & token character,
like this:

$dbh->query(
‘insert into myfiles (filename, filecontents) values (?, &)’
, array(‘my file’, ‘myfile.txt’)

);

So now that we’ve seen a little more of what DB can do for us, look at an exam-
ple of using it, in the db_fetch_record() function:

function db_fetch_record()
{

static $_defaults = array(
‘table’ => NULL
, ‘key’ => NULL
, ‘value’ => NULL
, ‘columns’ => ‘*’
, ‘extra’ => NULL
, ‘key_op’ => ‘=’
, ‘key_join’ => ‘ and ‘
, ‘order_by’ => NULL

);
static $_simple = array(‘table’, ‘key’, ‘value’);
$args = func_get_args();
extract($_defaults);
$p = parse_arguments($args, $_simple, $_defaults);

370 Part IV: Not So Simple Applications

extract($p, EXTR_IF_EXISTS);

$query = ‘select ! from !’;
$bind = array($columns,$table);
$where = NULL;
if (!empty($key) && !empty($value))
{

$where .= implode($key_join, array_fill(0, count($key), “!
$key_op ?”));

if (is_array($key) && is_array($value))
{

foreach ($key as $i => $k)
{

$bind[] = $k;
$bind[] = $value[$i];

}
}
else
{

$bind[] = $key;
$bind[] = $value;

}
}
if ($extra)
{

if ($where)
{

$where = “ ($where) and “;
}
$where .= “ ($extra) “;

}
if ($where)
{

$query .= ‘ where ‘.$where;
}
$order_by = (array)$order_by;
if (count($order_by) > 0)
{

$query .= ‘ order by ‘.implode(‘,’,$order_by);
}
$result = db_connect()->getAll($query, $bind,

DB_FETCHMODE_ASSOC);
if (!$result)
{

Chapter 11: Content-Management System 371

$private_error = ‘could not fetch record: ‘
.’ query=’.$query
.’ bind=’.$bind
.’ result=’.$result

;
user_error(“Could not fetch $table record”, E_USER_ERROR);
exit;

}
if (count($result) == 1)
{

$result = array_shift($result);
}
return $result;

}

If the resulting data set has only one row, that row is returned directly. Otherwise,
the entire data set is returned. In either case, the constant DB_FETCHMODE_ASSOC
(defined by the DB library) tells the DB::getAll() method to return each row of
data as an associative array, with the column names from the query as keys.

db_values_array()
The db_values_array() function is similar to db_fetch_record() in that it’s a
shorthand for writing out a whole query. In this case, though, a list of values is
always returned and a particular table structure is assumed: that the name of the
table is the plural of the name of the label column, and that the name of the key
column is the name of the label column plus _id. You can pass in corrections to
these assumptions as arguments to the function (a common example from our code
here: the name of a status lookup table is usually ‘status’, not ‘statuss’).

function db_values_array ()
{

static $_defaults = array(
‘label’ => NULL
, ‘table’ => NULL
, ‘value’ => NULL
, ‘sort’ => NULL
, ‘where’ => NULL

);
static $_simple = array(‘label’,’table’);
$p = func_get_args();
extract($_defaults);
$p = parse_arguments($p, $_simple, $_defaults);
extract($p, EXTR_IF_EXISTS);

if (empty($label))

372 Part IV: Not So Simple Applications

{
$label = str_replace(‘_id’,’’,$value);

}
elseif (empty($value))
{

$value = $label.’_id’;
}
if (empty($table))
{

$table = $label.’s’;
}
if (empty($sort))
{

$sort = $label;
}
if (empty($where))
{

$where = ‘1=1’;
}

$output = db_connect()->getAssoc(
‘select !, ! from ! where ! order by !’
, FALSE
, array($value,$label,$table,$where,$sort)

);
return $output;

}

The most common use of db_values_array() is to generate a list of values
from a database table for use in a SELECT field or group of option fields (radio but-
tons or checkboxes).

nullop()
The nullop() function returns either is or is not if the value being checked is
equal to NULL, and either = or <> otherwise. We use <> rather than != because the !
character has special meaning to the DB code (see the db_fetch_record() func-
tion, described previously in the chapter):

function nullop($value=NULL,$op=’=’)
{

if ($value === NULL)
{

if (strstr($op,’!=’))
{

$op = ‘is not’;

Chapter 11: Content-Management System 373

}
else
{

$op = ‘is’;
}

}
else
{

if (strstr($op, ‘!=’))
{

$op = ‘<>’;
}

}
return $op;

}

Functions from /content/functions
These functions will be used throughout the application. This section will contain
many references to Chapter 9 because in that chapter we first used many of the
functions we’ll call upon here.

connect_validate_login()
In this example we are using MySQL’s own user and password tables to set up
accounts that can be used with this application. The success or failure of the
attempted connection to a MySQL server tells us if a username is valid or not. We
do this by splitting the authenticate() function used in previous examples into
several pieces, so that we can drop in our own validation code — in this case,
connect_validate_login().

function connect_validate_login()
{

// if we haven’t started a session yet, the references to
$_SESSION

// will come up invalid, so start one if we need to.
check_session();
if (!isset($_SESSION))
{

global $_SESSION;
}

static $_defaults = array(
‘application’ => ‘content’
, ‘username’ => NULL
, ‘password’ => NULL

374 Part IV: Not So Simple Applications

, ‘database’ => ‘netsloth’
);
if ($_defaults[‘username’] === NULL)
{

if (isset($_SESSION[‘PHP_AUTH_USER’]))
{

$_defaults[‘username’] = $_SESSION[‘PHP_AUTH_USER’];
}
if (isset($_SESSION[‘PHP_AUTH_PW’]))
{

$_defaults[‘password’] = $_SESSION[‘PHP_AUTH_PW’];
}

}
static $_simple = array(‘username’,’password’);
$args = func_get_args();
$p = parse_arguments($args, $_simple, $_defaults);

$ok = FALSE;

$p[‘db_error_level’] = E_USER_NOTICE;
ob_start();
$dbh = @db_connect($p);
ob_end_clean();
if ($dbh)
{

$ok = TRUE;
}
else
{

$p[‘error_message’] = “Could not connect\n”;
}
return $ok;

}

fetch_story()

This function enables us to get the record for a story.

function fetch_story ($args=NULL)
{

$story_id=NULL;
if (isset($_SESSION) && isset($_SESSION[‘PHP_AUTH_USER’]))
{

$this_username=$_SESSION[‘PHP_AUTH_USER’];
}

Chapter 11: Content-Management System 375

else
{

$this_username = NULL;
}
if (is_assoc($args))
{

extract($args, EXTR_IF_EXISTS);
}
elseif (is_numeric($args))
{

$story_id = $args;
}

$query = <<<EOQ
select m.user_id as is_ok

, s.*
, date_format(s.publish_dt, ‘%Y’) as publish_yr
, date_format(s.publish_dt, ‘%m’) as publish_mn
, date_format(s.publish_dt, ‘%d’) as publish_dy
, t.stage, t.stage_table

from stories s
left join stages t on s.stage_id = t.stage_id
left join users u on u.username = ifnull(?, user())
left join user_stage_map m on s.stage_id = m.stage_id

and m.user_id = u.user_id
EOQ;

$bind = array($this_username);
if ($story_id)
{

$query .= ‘ where s.story_id = ? ‘;
$bind[] = $story_id;

}

$result = db_connect()->getRow($query, $bind,
DB_FETCHMODE_ASSOC);

return $result;
}

fetch_story_version()
This function works like fetch_story(), except that it allows us to specify a value
for the modify_dt value.

<?php
function fetch_story_version ($args=NULL)

376 Part IV: Not So Simple Applications

{
$story_id = NULL;
$modify_dt = NULL;
$this_username = $_SESSION[‘PHP_AUTH_USER’];
if (is_assoc($args))
{

extract($args, EXTR_IF_EXISTS);
}
elseif (is_array($args))
{

$story_id = array_shift($args);
$modify_dt = array_shift($args);
$this_username = array_shift($args);

}
elseif ($args !== NULL)
{

$story_id = $args;
}

$query = <<<EOQ
select m.user_id as is_ok

, s.*
, date_format(s.publish_dt, ‘%Y’) as publish_yr
, date_format(s.publish_dt, ‘%m’) as publish_mn
, date_format(s.publish_dt, ‘%d’) as publish_dy
, t.stage, t.stage_table

from story_versions s
left join stages t on s.stage_id = t.stage_id
left join users u on u.username = ifnull(?, user())
left join user_stage_map m on s.stage_id = m.stage_id

and m.user_id = u.user_id
EOQ;

$bind = array($this_username);
$wheres = array();
if ($story_id)
{

$wheres[] = ‘s.story_id = ?’;
$bind[] = $story_id;

}
if ($modify_dt)
{

$wheres[] = ‘s.modify_dt = ?’;
$bind[] = $modify_dt;

Chapter 11: Content-Management System 377

}
if (count($wheres) > 0)
{

$query .= ‘ where ‘.implode(‘ and ‘, $wheres);
}

$result = db_connect()->getRow($query, $bind,
DB_FETCHMODE_ASSOC);

return $result;
}
?>

function fetch_author()
This function works similarly to the fetch_story() function, except that it operates
on the authors table to find all the stories by a specified author.

function fetch_author ($args=array())
{

$author_id = NULL;
$other = NULL;
if (is_assoc($args))
{

extract($args, EXTR_IF_EXISTS);
}
else
{

$author_id = $args;
}
$args = array(‘table’=>’authors’);
if ($author_id)
{

$args[‘key’] = ‘author_id’;
$args[‘value’] = $author_id;

}
if (is_assoc($other))
{

$args = array_merge($args, $other);
}
return db_fetch_record($args);

}

fetch_user()
This function also works similarly to the fetch_story function, except it looks for
postings by a given user.

378 Part IV: Not So Simple Applications

function fetch_user ()
{

$params = array(‘table’=>’users’);
$args = func_get_args();
foreach ($args as $arg)
{

if (is_assoc($arg))
{

$params = array_merge($params, $arg);
}
elseif (is_numeric($arg))
{

$params[‘key’][] = ‘user_id’;
$params[‘value’][] = $arg;

}
elseif (is_string($arg))
{

$params[‘key’][] = ‘username’;
$params[‘value’][] = $arg;

}
}
return db_fetch_record($params);

}

stage(), stage_id(), stages()
The stage() and stage_id() functions are front ends to the main stages() func-
tion. The first time stages() is called, the contents of the stages table from the
database are loaded into a static array. This enables us to make subsequent calls to
look up a stage name by its ID value, or vice versa, without querying the database.

<?php
function stage($stage_id=NULL)
{

return stages(‘stage_id’,$stage_id);
}
function stage_id($stage=NULL)
{

return stages(‘stage’,$stage);
}
function stage_table($stage_id=NULL)
{

return stages(‘stage_table’,$stage_id);
}
function stages($key=NULL,$value=NULL)
{

Chapter 11: Content-Management System 379

static $stages = NULL;
if ($stages === NULL)
{

$result = db_connect()->query(
‘select * from stages order by stage_id’

);
while ($row = $result->fetchRow(DB_FETCHMODE_ASSOC))
{

extract($row);
$stages[‘stage’][$stage] = $stage_id;
$stages[‘stage’][‘’][] = $stage_id;
$stages[‘stage_id’][$stage_id] = $stage;
$stages[‘stage_id’][‘’][] = $stage;
$stages[‘stage_table’][$stage_id] = $stage_table;
$stages[‘’][] = $row;

}
$result->free();

}
if (empty($key))
{

return $stages[‘’];
}
elseif (array_key_exists($key,$stages))
{

if (empty($value))
{

return $stages[$key][‘’];
}
elseif (array_key_exists($value,$stages[$key]))
{

return $stages[$key][$value];
}

}
return NULL;

}
?>

stage_table_name()
We build a separate table for each stage of the workflow through which a story
passes. MySQL permissions are assigned, allowing individual users of the applica-
tion to access these tables. This function converts a stage name into the name of the
corresponding stage table.

function stage_table_name($stage)
{

380 Part IV: Not So Simple Applications

return preg_replace(‘/ /’, ‘_’,
strtolower(trim($stage)).’_stories’);
}

write_author()
The write_author() function creates or updates a record in the authors table in
the database.

function write_author($args=array())
{

$author_id = NULL;
$author = NULL;
$email = NULL;
$bio = NULL;
if (is_assoc($args))
{

extract($args, EXTR_IF_EXISTS);
}
else
{

$private_error = ‘bad arguments to write_author:’
. var_export($args, TRUE)

;
user_error(

‘Invalid arguments - could not write author’
, E_USER_WARNING

);
return FALSE;

}

if (empty($author_id))
{

// if we don’t have an ID value, no record exists
// for this author - create one.
$author_id = db_connect()->nextId(‘author’);
$stmt = db_connect()->prepare(

‘insert into authors (author,email,bio,author_id) values
(?,?,?,?)’

);
}
else
{

// if we have an ID value, a record currently exists
// for this author - update it.

Chapter 11: Content-Management System 381

$stmt = db_connect()->prepare(
‘update authors set author=?, email=?, bio=? where

author_id = ?’
);

}
$result = db_connect()->execute($stmt,

array($author,$email,$bio,$author_id));
if (!$result)
{

user_error(‘Could not update author record’,
E_USER_WARNING);

return FALSE;
}
return TRUE;

}

write_story()
The write_story() function creates or updates a record in the stories table in the
database. It also moves a story from one stage to another. Because a user may
attempt to modify a story that is in a stage to which the user does not have access,
or send a story forward or backward in the workflow to a restricted stage, we may
end up getting MySQL permission errors from a query. We don’t want the applica-
tion to simply roll back the transaction and stop when this happens, so we use the
DB class pushErrorHandling() and popErrorHandling() methods (actually,
these are methods inherited from the general PEAR Error class) to temporarily
change the way database errors are handled.

<?php
function start_dbhandler()
{

db_connect()->pushErrorHandling(PEAR_ERROR_TRIGGER,
E_USER_NOTICE);
}
function end_dbhandler($result=TRUE)
{

db_connect()->popErrorHandling();
return $result;

}

function write_story($args=array())
{

$stage_id = NULL;
$publish_yr = NULL;
$publish_mn = NULL;

382 Part IV: Not So Simple Applications

$publish_dy = NULL;
$publish_dt = NULL;
$headline = NULL;
$subtitle = NULL;
$byline_prefix = NULL;
$summary = NULL;
$body = NULL;
$story_id = NULL;
$submit = NULL;
$author = NULL;
$author_id = NULL;

if (is_assoc($args))
{

extract($args, EXTR_IF_EXISTS);
}
else
{

$private_error = ‘write_story: error: bad arguments: ‘
. var_export($args, TRUE)

;
user_error(‘Could not update story’, E_USER_WARNING);
return FALSE;

}

start_dbhandler();

// begin transaction
db_connect()->query(‘begin’);

if (empty($story_id))
{

// if we have no ID value, this is a new story.
// get the ID value of a new record from story sequence
$story_id = db_connect()->nextId(‘story’);
$result = db_connect()->query(

‘insert into stories (story_id,headline) values (?,?)’
, array($story_id,’Not Yet Updated’)

);
if (!$result)
{

db_connect()->query(‘rollback’);
user_error(

‘Could not insert new record into stories table’

Chapter 11: Content-Management System 383

, E_USER_ERROR
);
return end_dbhandler(FALSE);

}
}
else
{

// if we have an ID value, this is an existing story.
// get the name of its current stage table.
// (see admin/stage.php for notes about the purpose and
// use of the stage access tables.)
$oldstage_table = db_connect()->getOne(

‘select s.stage_table from stages s, stories t
where t.story_id = ? and t.stage_id = s.stage_id’

, array($story_id)
);
if (!$oldstage_table)
{

db_connect()->query(‘rollback’);
user_error(

‘Could not access current stage table for story
‘.$story_id

, E_USER_WARNING
);
return end_dbhandler(FALSE);

}

// remove the story from the old stage access table
$result = db_connect()->query(

‘delete from ! where story_id = ?’
, array($oldstage_table,$story_id)

);
if (!$result or DB::isError($result))
{

db_connect()->query(‘rollback’);
user_error(

‘Could not delete from current stage table for story
‘.$story_id

, E_USER_WARNING
);
return end_dbhandler(FALSE);

}
}

// get the assigned stage, or the first stage by default

384 Part IV: Not So Simple Applications

$query = ‘select stage_id, stage, stage_table from stages
where stage_id = ?

union
select stage_id, stage, stage_table from stages

having stage_id = min(stage_id)
‘;
$row = db_connect()->getRow(

$query
, array($stage_id)
, DB_FETCHMODE_ORDERED

);
if ($row)
{

list($stage_id,$stage,$stage_table) = $row;
}
else
{

user_error(‘Unable to get current stage for this story’
, E_USER_ERROR

);
}

// create or update a record for this story in the stage access
// table for the new stage.
$result = db_connect()->query(

‘replace into ! (story_id) values (?)’
, array($stage_table,$story_id)

);
if (!$result)
{

if (preg_match(‘/denied to user/’, db_connect()-
>error_message))

{
$error = “Access denied to $stage for $username”;

}
else
{

$error = ‘Database error - could not update stage’;
}
user_error($error, E_USER_ERROR);

}

if (!empty($publish_yr) && !empty($publish_mn) &&
!empty($publish_dy))

{

Chapter 11: Content-Management System 385

// build a publish date from the three related select
// fields in the form, if all three were set to a value.
$publish_dt = $publish_yr.’-’.$publish_mn.’-’.$publish_dy;

}
elseif ($stage == ‘Live’)
{

// if no publish date was set and the story is being
// set to the ‘Live’ stage, use a default publish date
// of now (i.e., the story will go live immediately).
$publish_dt = date(‘Y-m-d’);

}
else
{

// if no publish_dt was set and the story is not Live,
// set $publish_dt to ‘null’ for use in the query.
$publish_dt = NULL;

}

// update the story record in the database
$stmt = db_connect()->autoPrepare(

‘stories’
, array(‘stage_id’,’publish_dt’,’headline’,’subtitle’

,’byline_prefix’,’summary’,’body’
)
, DB_AUTOQUERY_UPDATE
, ‘story_id = ?’

);
db_connect()->execute(

$stmt
, array($stage_id, $publish_dt, $headline, $subtitle

, $byline_prefix, $summary, $body, $story_id
)

);

// now save a copy of the updated record in the story_versions
// table. this keeps the history of the story complete up to
// the present moment.
$query =

‘insert into story_versions
(modify_by, story_id, stage_id, publish_dt, headline

, subtitle, byline_prefix, summary, body)
select user() as modify_by, story_id, stage_id, publish_dt,

headline
, subtitle, byline_prefix, summary, body

from stories where story_id = ?’

386 Part IV: Not So Simple Applications

;
db_connect()->query($query,array($story_id));

if (!empty($author_id))
{

// if an author was selected for the story, remove any
// current link between the story and an author, and
// add a link for the selected author.
db_connect()->query(

‘delete from story_author_map where story_id = ?’
, array($story_id)

);
db_connect()->query(

‘insert into story_author_map (story_id, author_id)
values (?,?)’

, array($story_id, $author_id)
);

}

// end the transaction
db_connect()->query(‘commit’);

return end_dbhandler(TRUE);
}
?>

Interesting Code Flow
Since most of the more complicated aspects of our application have to do with
maintaining users and stages, we will start the breakdown of code with the pages
that take care of these stages. Later we will move on to the other features performed
by this application.

content/authenticate.php
As we already mentioned, this application differs from the previous ones in that
each user will be logging in to the database with his or her own username and pass-
word. The script that performs this login will need to be just a touch more flexible
than the one we used in the other applications.

This application is going to use the same authentication methods seen in the
previous examples, but here the values for $PHP_AUTH_USER and $PHP_AUTH_PW
will also be the values used to log in to the database.

Chapter 11: Content-Management System 387

The content/header.php file, which is included in every page in the content-
management system, contains the following code:

require(‘authenticate.php’);

Because we have placed the administrative code in a subdirectory of the main con-
tent directory, this one statement will include either the basic authenticate.php file
(for normal users) or the content/admin/authenticate.php file (for administrators).

Here are the contents of the basic authenticate.php file.

<?php

check_session();
if (!isset($_SESSION))
{

global $_SESSION;
}

$realm = ‘Netsloth Content Management’;
$message = ‘You must enter a valid name & password to access this
function’;

$submit = array_key_value($_REQUEST, ‘submit’, NULL);
if ($submit == ‘logout’)
{

logout();
}

$username = session_auth(array(
‘realm’ => $realm
, ‘message’ => $message
, ‘validate_function’ => ‘connect_validate_login’

));
$result = db_connect()->getRow(

‘select u.*, if(a.username is null, 0, 1) as is_admin
from users u left join admin a on u.username = a.username
where u.username = ? ‘

, array($username)
, DB_FETCHMODE_ASSOC

);
foreach ($result as $k => $v)
{

388 Part IV: Not So Simple Applications

$_SESSION[$k] = $v;
}
extract($result);
?>

The logout() function is one of our standard functions to handle removing a
logged-in user. When using HTTP authentication, this can be somewhat tricky.
Otherwise, we can just unset the PHP session values $_SESSION[[‘PHP_AUTH_USER’]
and $_SESSION[‘PHP_AUTH_PW’].

content/admin/user.php
This page, like many you have seen before, has many purposes. The exact portion
of the script that will run will depend on the variables sent to the page. It can do the
following:

◆ Enable an administrator to create new users

◆ Display the information specific to a single user_id, including the stages
associated with that user

◆ Grant additional stages to an existing user

◆ Revoke the rights to a stage from a user

If the page is accessed without any variable information in the querystring or
from POST, the form elements for user information will be blank. This information
must be filled in before the form is submitted. When the form is submitted the
admin_user.php page will be called again, this time holding the entered form data
and with the $submit variable equal to Save Changes.

When submitted, the condition in the if statement at the top of the page will
test true:

if ($submit == “Save Changes”)

The page will then call the write_user() function, defined in
content/admin/functions/write_user.php, to update or create the user’s record in the
database. If the user’s information must be updated, the form passes a user_id
from a hidden form element; otherwise the $user_id variable will be empty. The
result of this statement decides whether the script is to perform an update or
insert query.

The PEAR DB class provides a simulation of a “sequence” in MySQL. This works
like an auto_increment key in a table — in fact, that’s exactly what it is — but
rather than doing the insert and then discovering what the new key value is, we
first get the new key value and then use it in the insert query.

Chapter 11: Content-Management System 389

A caution about the DB::nextId() method: if the table containing the ID

values doesn’t exist when this method is called, the method will try to create

it. Since it’s common for a Web application’s user account to not have the

privilege to create tables, this is likely to result in a runtime error.You should

be sure to have created these tables ahead of time. The table names are

sequencename_seq, where sequencename is the name you pass in to

DB::nextId().

if (empty($user_id))
{

// if we don’t have an ID value, there is no record
// for this user - create one
$user_id = db_connect()->nextId(‘user’);
$query = ‘insert into users

(username, password, name, email, user_id)

values (?, password(?), ?, ?, ?) ‘
;

}
else
{

// if we have an ID value, a record for this user
// currently exists in the users table - update it
$query = ‘update users set username=?

, password=password(?), name=? , email=?
where user_id = ? ‘

;
}
$stmt = db_connect()->prepare($query);
$bind = array($username,$password,$name,$email,$user_id);
if (!db_connect()->execute($stmt,$bind))
{

$private_error = db_connect()->last_query;
user_error(‘could not update user record’, E_USER_WARNING);
return FALSE;

}

Note that when this section of the script is completed, the user_id is known:
Either it was passed from the form or it was created by the call to DB::nextId().

Next comes a series of function calls that set up normal permissions on the com-
mon tables of the application, such as the stories and authors tables, and the specific
permissions on the workflow stage tables that correspond to the stages we chose to
give this user access to.

390 Part IV: Not So Simple Applications

if (empty($user_id))
{

// if we don’t have an ID value, there is no record
// for this user - create one
$user_id = db_connect()->nextId(‘user’);
$query = ‘insert into users

(username, password, name, email, user_id)
values
(?,password(?),?,?,?) ‘

;
}
else
{

// if we have an ID value, a record for this user
// currently exists in the users table - update it
$query = ‘update users set username=?

, password=password(?), name=?
, email=? where user_id = ? ‘

;
}
$stmt = db_connect()->prepare($query);
$bind = array($username,$password,$name,$email,$user_id);
if (!db_connect()->execute($stmt,$bind))
{

$private_error = db_connect()->last_query;
user_error(‘could not update user record’, E_USER_WARNING);
return FALSE;

}

Returning to the user.php file, the code next prints out the appropriate user
information (if existing user information exists) and the stages as a series of check-
boxes. The checkboxes are checked if the user has rights for that stage.

The following query is intended to work with the checkbox_field() function
created earlier. That function takes three arguments (form name, value, and match
value). If the value and matchvalue arguments match, the checkbox will be
checked.

$query = ‘select distinct m.stage_id as matchvalue
, s.stage_id, s.stage, s.stage_dsc

from stages s
left join users u on u.user_id = ?
left join user_stage_map m on s.stage_id = m.stage_id

and m.user_id = u.user_id
‘;

Chapter 11: Content-Management System 391

This query gathers all the stages and does an outer join on the users table. If the
user has been granted access to a stage, that stage name appears in the returned
record set, in the matchvalue field. If not, a hyphen appears in the field. When the
checkbox_field() function is run later in the loop, the third argument will either
be a hyphen or have the same value as the stage field. The results of this query
might look like this:

+------------+----------+------------+-----------------+
| matchvalue | stage_id | stage | stage_dsc |
+------------+----------+------------+-----------------+
NULL	1	Writing	the words
NULL	2	Editing	fixing mistakes
3	3	Publishing	making HTML
4	4	Live	On the web
5	5	Killed	dead
+------------+----------+------------+-----------------+

This knowledge should enable you to read the rest of this script. And, of course,
further comments are included with the application on the CD-ROM.

content/story.php
At 340 lines or so, this script is long, but it isn’t especially complicated. Given the
data structure we discussed earlier, it needs to create new stories and update existing
stories after they have been through an editorial pass. Along the way the script will
need to check if the user has the rights to do the work on the story, and clean up text
that users put into the forms.

The file should be made readable by the comments within the page, which are
supplied on the accompanying CD-ROM. You must make quite a few decisions in
order to get this page to work correctly, and that adds to the length. But decisions to
be made within the file are pretty straightforward. Additionally, the page contains
quite a few insert and update statements. If you refer to Figure 11-8 while you’re
reading through the code, it shouldn’t be too tough to get through.

This chapter has spent a fair amount of space discussing how to assign rights to
a user using MySQL’s grant statements. Hopefully at this point you see how those
rights are assigned. The short piece of script that follows tests whether the current
user has the rights to work on a story, based on the rights in the grants tables. It
first gets the stage_name, based on a stage_id, and then creates the string of the
table name by appending _table to the stage name. Then a select statement runs
that includes the table name we have just created. If that query is not allowed, the
query will fail and return false. Within the query we are also involving the
user_stage_map table. That table provides our primary security, and the user must
have rights for the current stage in the user_stage_map table. If the user does not
have rights defined in that table, the query will return no rows. If the query fails or
returns nothing, an error will print and the script will exit.

392 Part IV: Not So Simple Applications

// if we have an ID value, this is an existing story -
// get information about it from the database

$result = NULL;
if (empty($modify_dt))
{

// if no timestamp value is passed in, get the
// current version of the story from the stories
// table.

$query = <<<EOQ
select m.user_id as is_ok

, s.*
, date_format(s.publish_dt, ‘%Y’) as publish_yr
, date_format(s.publish_dt, ‘%m’) as publish_mn
, date_format(s.publish_dt, ‘%d’) as publish_dy

from stories s
left join user_stage_map m on s.stage_id = m.stage_id

and m.user_id = ?
where s.story_id = ?
EOQ;

$bind = array($user_id,$story_id);
}
else
{

// if a timestamp is passed in, get the version
// of the story it identifies from the story_versions
// table.
$query = <<<EOQ

select m.user_id as is_ok
, s.*
, date_format(s.publish_dt, ‘%Y’) as publish_yr
, date_format(s.publish_dt, ‘%m’) as publish_mn
, date_format(s.publish_dt, ‘%d’) as publish_dy

from story_versions s
left join user_stage_map m on s.stage_id = m.stage_id

and m.user_id = ?
where s.story_id = ? and s.modify_dt = ?
EOQ;

$bind = array($user_id,$story_id,$modify_dt);
}

$result = db_connect()->getRow($query, $bind,
DB_FETCHMODE_ASSOC);

Chapter 11: Content-Management System 393

if (!$result[‘is_ok’])
{

// if the query has failed, the user has not been
// granted MySQL select access to the stage
// access table, and thus does not have permission
// to edit this story. print out an error and exit.
print subtitle(

‘You may not edit stories in the ‘
. stage($result[‘stage_id’])
. ‘ stage.’

);
print end_page();
exit;

}

Another item of particular interest is the extensive text-processing done in this
script. This is an example of the type of processing we might need to do if our users
are working with some sort of text-processing tool (such as an HTML editor or word
processor). Every tool has its own little quirks that we will need to account for. The
only way we are going to find out exactly what type of cleanup we need to do is by
examining the code created by the text editor in our workplace.

For instance, we are not going to want to have the beginning and ending tags of
a complete HTML page in the body text of an article. So if the user has written the
article in a WYSIWYG HTML editor, to make creating links and such easier, we’ll
want to strip out everything before and after the actual <BODY> part of the page,
and to get rid of the <BODY> and </BODY> tags themselves.

$body =
preg_replace(‘/^.*<body[^>]*>(.*?)<.body.*$/i’,’$1’,$body);

$body = preg_replace(‘/[\r\n]{1,2}/’,”\n”,$body);

Of course, PHP’s strip_tags() function could work for you, if you want to
allow a limited tag set and remove all other tags.

Starting at line 157 of the story.php file — at the comment line fix up paragraph
tags— is a nice block of code that will do a couple of neat things. If it appears the
user input the story without using <p> tags, the script will add them where it seems
appropriate, assuming the user indicated paragraphs with newlines (hard returns). If
the user did use <p> tags, the script examines the text, making sure that no funky
spaces or malformed tags are present. We recommend that you look at the code and
comments provided on the CD-ROM to get a good feel for how to do complex text
handling.

394 Part IV: Not So Simple Applications

Summary
In this chapter you saw some of the nifty tricks and techniques that can go into cre-
ating a content-management system. Of course an application such as this can be
far, far more complex. But this is a good start and presents a reasonable way to
organize your code and database tables.

We also made use of MySQL’s grant statements when creating this application.
As we’ve said throughout, the grant scheme that we’ve used here may not be terri-
bly practical. However, it does provide a good example of how you could go about
setting up a system where one login name and password isn’t enough for the entire
application.

Also, make sure to take a look at some of the text-handling code in edit_story.
php. Some of the code provides an excellent example of what you can do with PHP’s
string-handling functions and regular expressions.

Chapter 11: Content-Management System 395

Chapter 12

Catalog
IN THIS CHAPTER

◆ Working with object-oriented code

◆ Looking at database schemas

IN THE COURSE OF THIS CHAPTER we are going to show one way of creating an online
catalog. You’ll see how to present and administer an application that presents some
typical retail items.

We, the authors of this book, feel that you are an intelligent person, as well as
someone with great taste in technical literature. We also believe that you picked up
this book because you want to learn as much as you can about applications devel-
opment with PHP and MySQL. That’s why we’re not wasting any time. Each chap-
ter introduces additional challenges, or at least presents something new and
different. This chapter is no exception.

If this chapter were to use the functions presented in the survey application in
Chapter 9, we would have little new material to present here. The application would
need nothing but a simple database schema, a few queries with some joins, and
calls to the HTML functions in the /functions/ folder.

To keep things interesting, we’re going to write this example using an object-
oriented programming style, and use a few of the OOP techniques we covered in
Chapter 7.

Chapter 7 covers the concepts and nomenclature associated with object-

oriented programming. In this chapter, we assume that you have read and

understood that information.

397

Determining the Scope and Goals of
the Application
The goals we have in mind for this application are pretty modest. Imagine for a
moment that you own some sort of retail establishment that has goods you wish to
hawk. Further, assume that you have no interest in actually conducting transac-
tions over the Web. Maybe you are just paranoid about this newfangled method of
processing credit cards. Or perhaps you are running an elaborate tax-fraud scheme
that requires you to deal solely in unmarked twenties.

The code used in this catalog is reused in the creation of shopping-cart

application, where we show how to process credit-card transactions. See

Chapter 14 for the shopping cart.

Whatever the circumstance, all this site needs to do is show your wares in logi-
cal categories and breakdowns. You will hear more about the breakdown of the
information when we discuss the database schema.

The chief purpose of this chapter is to show how to create code that makes the
best use of the object-oriented approach. The classes must make use of inheritance
and encapsulation and should make the task of writing individual scripts a whole
lot easier. It’s also important to think about modularity. As indicated in the preced-
ing note, the code created here is reused in Chapter 14, so we want to write code in
such a way that it becomes easily reusable elsewhere.

Necessary pages
The pages that display the catalog aren’t very extravagant. For navigational pur-
poses a simple page displays a list of general product categories. Figure 12-1 shows
the category list.

From the list of categories, the viewer of the page clicks through to see a listing
of specific types of products available within the general product category. (For
example, the category Shirts contains T-shirts, dress shirts, and polo shirts.) Figure
12-2 shows this rather underwhelming page.

398 Part IV: Not So Simple Applications

Figure 12-1: General category page

Figure 12-2: Product types page

Chapter 12: Catalog 399

As a moment’s glance at my laundry can tell you, lots of different kinds of
T-shirts exist. Descending down into that product type shows a listing of the cata-
log’s selection, as shown in Figure 12-3.

Figure 12-3: Product page

Finally, there is a page that lists an actual item for sale. Notice that a thumbnail
of the item is shown, and that under the item is a listing of the various styles in
which the item is available. In Figure 12-4 the item is one of the T-shirts, which
comes in several sizes and colors.

Like all the applications in this book, this one has a series of administrative
pages. Given what you have seen in the previous paragraphs and figures, it should
be no surprise that the administrative pages create, delete, and alter information on
product groups, individual products, and styles (which can be applied to either
product groups or individual products). Some samples of these pages are shown in
Figures 12-5, 12-6, and 12-7 respectively.

400 Part IV: Not So Simple Applications

Figure 12-4: Items page

Figure 12-5: Administration home page

Chapter 12: Catalog 401

Figure 12-6: Product administration page

What do we need to prevent?
Unlike in the survey and the guestbook, no user interaction exists in this applica-
tion. To the world at large the catalog is read-only. So you don’t need to be quite as
concerned with bored people adding unwanted tags and scripts to the pages.

Instead, what you want to be most concerned about preventing is inaccurate and
duplicated data. You want to store one fact — that no dress shirts are available in
orange, for instance — one time, and have it be applied whenever necessary. If you
have to change 50 product entries to remove one style, you’re bound to miss some.

402 Part IV: Not So Simple Applications

Figure 12-7: Style administration page

The Data
From what we’ve said about the application so far, you might think that you need
at least four main tables in the database: a general product category table, a prod-
uct types table, an individual products table, and a styles table. But think about
how you would naturally describe the data. If someone asked what the store sold,
your first answer would be something like “We sell shirts and rocks.” What kinds of
shirts? T-shirts, dress shirts, and polo shirts. What kinds of T-shirts? You get the
idea — in each answer, we’re talking about our products — just more specifically
each time.

The same applies to styles. A product might come in lots of flavors. Some of the
flavors are fruit flavors. Some of the fruit flavors are banana, cherry, and orange. If
you tried to make a different table for each level, you’d have big problems when
you needed to add a new level; the whole application would need to be rewritten.

So the database has just three main tables: a products table, a styles table, and a
mapping table to link products and styles together. The following shows the com-
plete schema.

Chapter 12: Catalog 403

+------------------------------------+
| +----------------------------+ |
| | +----------+ | | +--------+
| +--o<| products |-|--+ | +--o|-| images |
| | | | | | |
+----o<| | | | +--------+

| | | |
+--|-| |>0--+ |
| +----------+ |
| |
| +-------------------+ | +-------------+
+-o<| product_style_map | +-o|-| price_types |

| | | |
| |>o----o|-| |

+-o<| | +-------------+
| | | +--------+
| | |>o---|-| status |
| +-------------------+ +--------+
|
| +----------+
+--|-| styles |-|--+

| | |
| |>0--+
+----------+

Just ignore price_types for now. It’s a table we use in the shopping-cart

example (which uses this same database) in Chapter 14.

If you remember the discussion-board example in Chapter 10, you have a sense
of how the products and styles tables work. Each product can either be a root-level
product or belong to another product “above” it in the hierarchy. Shirts are a root-
level product, T-shirts belongs to Shirts, Plain belongs to T-shirts, and so on. You
use the same structure in the styles table.

It’s worth spending a few minutes talking about product_style_map — the table
that glues products and styles together. Our T-shirts come in multiple sizes (and dif-
ferent sizes for men’s and women’s shirts, to boot). They’re also available in several
different colors. In the most simple approach, product_style_map would contain a
row linking every different individual kind of T-shirt to every size and every color
in which it’s available. But remember what we said about wanting to avoid dupli-
cating data. If you know that you’re out of stock in the husky size for all of your
T-shirts, or if you add a new color, you don’t want to have to change dozens of
rows to record that.

404 Part IV: Not So Simple Applications

Instead, product_style_map has only the minimal number of records needed to
represent your actual stock. If there’s a standard set of colors for all shirts, you can
just map Shirts to Colors. That way when you add a new color it automatically
shows up as available for all your shirts. If you don’t want the color to apply to
plain V-neck T-shirts you can go to that product and mark it “not available” there.

As you’ll see, this puts the onus on the application code to interpret the data cor-
rectly. You can take an alternate approach to this kind of data that can make cod-
ing a bit simpler, but that carries a correspondingly increased risk of inaccurate
information showing up on your Web pages. You can add another table to the data-
base — something like derived_product_style_map, for example, that never gets
directly updated by the administrators of the site. Instead, the application rebuilds
it every time the main tables change. You can think of this kind of table as some-
thing like a cache — it stores the results of applying all the varying hierarchies of
styles to all of the products, and ends up looking like the very simple mapping table
described earlier. The advantage of this approach is probably clear: All the work has
been done, and all the Web site has to do is go read the database. The disadvantage
is in the process of building it. If anything goes wrong in that process, you end up
displaying different information on the site than you see in your administration
screens, which is the kind of thing that drives site administrators nuts. Plus, while
you’re rebuilding it, what do your pages show? There are ways to solve those prob-
lems, of course. It’s a perfectly legitimate approach to take.

The thing is, every problem we had to solve in our example, which displays

pages directly from the source products and styles tables, is one you’d have

to solve to create those kinds of derived tables anyway. So if it sounds like a

good approach, consider it left as an exercise for you.

The code in Listing 12-1 shows how the Catalog application’s database tables are
set up. Pay attention to the datatypes — they restrict what we can do later.

Listing 12-1: create Statements for the Catalog Application

--
create table products
(

product_id integer not null auto_increment
, parent_id integer not null default 0
, product varchar(255) not null
, description text null
, price decimal(10,2) null
, price_type_id smallint null

Continued

Chapter 12: Catalog 405

Listing 12-1 (Continued)

, image_id integer null
, primary key (product_id)
, key (parent_id)
, key (price_type_id), foreign key (price_type_id) references
price_types (price_type_id) on delete set null
, key (image_id), foreign key (image_id) references images
(image_id) on delete set null
)
type = InnoDB
;

create table styles
(

style_id integer not null auto_increment
, parent_id integer not null default 0
, style varchar(255) not null
, description text null

, primary key (style_id)
, index (parent_id)
)
type=InnoDB
;
create table product_style_map
(

map_id int not null auto_increment
, product_id int not null
, style_id int not null
, status_id smallint null
, price decimal(10,2) null
, price_type_id smallint null
, image_id int null

, primary key (map_id)
, unique key (product_id, style_id)
, foreign key (product_id) references products (product_id) on
delete cascade
, key (style_id), foreign key (style_id) references styles
(style_id) on delete cascade
, key (status_id), foreign key (status_id) references status
(status_id)
, key (price_type_id), foreign key (price_type_id) references
price_types (price_type_id)
, key (image_id), foreign key (image_id) references images
(image_id)
)

406 Part IV: Not So Simple Applications

type=InnoDB
;
create table status
(

status_id smallint not null
, status varchar(255) not null
, description text null

, primary key (status_id)
)
type = InnoDB
;
insert into status (status_id,status,description) values
(0,’Inherited’,’derived from parent’);
insert into status (status_id,status,description) values
(1,’Available’,’ok to show’);
insert into status (status_id,status,description) values (2,’Not
Available’,’not ok to show’);
insert into status (status_id,status,description) values (3,’Out of
Stock’,’temporarily unavailable - ok to show, with warning’);
create table images
(

image_id integer not null auto_increment
, image varchar(255) not null
, width integer null
, height integer null
, alt text null

, primary key (image_id)
)
type = InnoDB
;
create table admin
(

username varchar(50) not null,
password varchar(255) not null

)
type=InnoDB
;
insert into admin values (‘jay’, sha1(‘rules’));

A note on this last line: sha1() is an encryption function like md5() or
password(). It stores the password in an encrypted format so that we can still use
it for login verification, but anyone looking at the contents of the table would not
be able to see the actual password string.

Chapter 12: Catalog 407

Code Overview
The code in this section is going to look substantially different from that in the
chapters you have seen so far.

The object-oriented approach
In the preceding applications we made use of a procedural approach. That is, there
is a series of functions, and each function performs a fairly specific procedure. In
the actual application, little remains to be done but to call these functions. But in
an application such as this, in which the data are largely hierarchical, it’s helpful to
make use of OO programming’s inheritance. It enables you to solve some
problems — like how to upload an image file — once, not just for this application, but
for subsequent ones as well, by creating a common library of classes much like the
sets of functions we’ve used up until now. In fact, you can even let other people
solve your problems for you, by using publicly available class libraries like the ones
available from PEAR.

Problems more specific to this application are handled by a single common
class, and those specific to each set of data — here, products and styles — are
addressed in individual classes. Your code maps more directly to your data.

If you use objects, the contents within the files called by URLs will be even
sparser. Almost all the work is performed within the classes. Once you understand
what actions the class files perform, there is little else for you to do.

To advocates of OO programming, this is a major advantage. You, the program-
mer, can get a class file and not really know what happens inside it. All you need to
know is what attributes it has and what its methods do. Then you can just include it
in your application and painlessly make use of its sophisticated functionality.

We said it in Chapter 7, but it’s worth repeating here: You can write proce-

dural code that encompasses most of the benefits discussed here. If you’re

not careful with OO programming, your code can end up being much more

difficult to maintain and use.

Accessing the file system
You have probably noticed by now that in this book almost all of our data are
stored within the MySQL database. But even when you’re using MySQL you are
sometimes better off using the file system for storage. Images (.jpegs, .gifs, .pngs)
are a perfect example. Even if your database supports binary data, there’s little
advantage in putting an image in a database. You need a database for storing and
querying normalized data. In your database you are much better off maintaining
the path to the image stored in your file system. That way it is easy enough to fill
in the src attribute in your tag.

408 Part IV: Not So Simple Applications

Uploading files
This is the first application that enables users to upload files; specifically, the
administrators of the catalog need to be able to upload images of their products.
Uploading files is easy enough in PHP, but before you understand how the upload
works you need to know how PHP handles uploaded files.

In your HTML page you have a form like the following:

<form action=”admin_product.php” method=”post”
enctype=”multipart/form-data” >
<input type=file name=”imagefile”>
</form>

When you allow file uploads, you open yourself up to denial-of-service (DoS)

attacks. If you’re not careful, someone could send many multi-megabyte

files to your system simultaneously, which could bring your machine to a

crashing halt.There are two things you can do about this.The first is to put a

hidden form field before your <INPUT TYPE=”file”> tag. The hidden

field should look like this:

<INPUT TYPE=”hidden” name=”MAX_FILE_SIZE” value=”1000”>

where value indicates the maximum size allowed, in bytes.This is a reason-

able first step and can be of help in stopping someone who didn’t know you

have a size limit. However, this measure will not stop anyone with stronger

malicious intent. All that person has to do is look at the source code of your

page and make the needed changes.

The other security measure has to do with altering the php.ini file, which

contains the upload_max_filesize item. If you have access to your

php.ini, you can set the value of this item to a number that you think is rea-

sonable. (By default php.ini will allow 2MB uploads.) By making the change

in the php.ini file you prevent the attacker from altering it.

When a file is specified and this form is submitted, PHP automatically creates a
few variables. They are as follows:

◆ $_FILES[yourfieldname][tmp_name]— The name of the file as stored in
the temporary directory on the server

◆ $_FILES[yourfieldname][name]— The name of the file as it was on the
user’s machine

Chapter 12: Catalog 409

◆ $_FILES[yourfieldname][size]— The size of the file, in bytes

◆ $_FILES[yourfieldname][type]— The MIME type, in this case
image/gif, image/png, or image/jpg (if it was provided by the browser)

The image is stored in the temp directory specified in the php.ini file; if no temp
directory is specified in php.ini, the operating system’s default temporary directory
is used.

The Paths and Directories category of php.ini controls many of the file-

upload options.

Code Breakdown
In OO coding, good documentation is your best friend because, as has already been
stated, it almost shouldn’t matter how the classes you are using accomplish their
tasks. You just need to know that they work.

PHPBuilder has an excellent article on software that can help document

classes:http://www.phpbuilder.com/columns/stefano20000824.
php3.

Objects in theory
For example, if we were to tell you about a class named Product, we could just tell
you the following:

Class Product:

Inherits CatalogBase

Properties:

◆ product_id

◆ product

◆ description

410 Part IV: Not So Simple Applications

Methods:

◆ fetch_from_db: Retrieve all data about this product from the database

◆ write_to_db: Write a new or updated product record to the database

◆ delete_from_db: Remove a product from the database

◆ print: Display a product to the browser

Knowing this information, and really nothing else, you could write a new script
that displayed a product. The script that follows assumes that a product_id was
passed through the querystring or via a POST.

$p = new Product(array(‘product_id’=>$product_id));
$p->fetch_from_db();
$p->print();

But if we left it at this, your learning experience would be only a fraction of
what it should be. Of course, in the next section, we go over the code in depth. For
one thing, in this application the display of an object is left to the user of the
object — we use regular functions, rather than having a print method in each object.

Classes
We designed the classes in this application so that most of them look and behave
similarly. As you look at the classes, you should notice that all but the Base class
have methods with similar names. Our hope is that once you understand one class,
the workings of the others will be pretty clear. For this reason, we’re only going to
break down two classes in this chapter. Note that the each method in each class is
extensively commented on the CD. If you have a specific question as to the work-
ing of a snippet of code, you will likely find the answer within the comments.

In the following pages we break down code in the following classes: Base and
Product. For the other classes we describe only how to use the methods and prop-
erties. But once you understand the Product class, the other classes should be easy
enough to figure out.

Please be sure that you have mastered the concepts in Chapter 7 before

reading this section.

Breaking the classes into includes also enables you to selectively reuse specific
classes when you need them. This becomes important in Chapter 14, when we reuse
some of these classes in creating the shopping cart.

Chapter 12: Catalog 411

PHP 5 also has a new feature that gives objects a bit of an advantage over func-
tions. You can create a function named __autoload () that PHP calls whenever
you reference a class that you have not yet declared. This function can then include
the file that declares that class. What this means is that you don’t have to include a
whole raft of class declarations just because you might use them in your script.
Neither do you have to do the bug-prone work of spreading the include statements
throughout your code. We use the __autoload() feature in these examples, but
files that include the class definitions, like the preceding one, are included in a
commented-out version as well — you can use them if you wish.

BASE
There is usually a base class on which your other classes are built (though it’s not
always named Base). In this application Base contains a set of utilities that all of
the other classes make use of. The class is declared with the following statement:

class Base
{

Next you declare a couple of constants used by methods of the class. They’re not
exactly the most original or purposeful constants you’ll ever see, but are mostly
here as examples:

const ON = TRUE;
const OFF = FALSE;

Now on to the properties. Most of the classes are built to handle reading, writing,
and manipulating data pertaining to a single table in a database. Those common
functions are what the Base class is built to handle, and its properties show that:

var $table = NULL;
var $idfield = NULL;
var $id = NULL;
var $what = NULL;
var $fields = NULL;
var $appname = ‘test’;

var $error = NULL;

The properties are all assigned values of NULL in Base because it’s up to each
child class to fill them in with the values specific to the table it will be handling.
For example, the Product class sets the $table property to products and the
$idfield property to property_id.

412 Part IV: Not So Simple Applications

The $appname property is typically set in the base class of an application — in
this example, CatalogBase— because it’s what you use to determine what database
to use when connecting to MySQL.

__construct() In earlier versions of PHP a class’s constructor method — the
method that is run every time you instantiate a new object of that class — had to be
given the same name as the class itself. In PHP 5 constructor methods can all be
given the same name, __construct(). Here you are taking any arguments passed
into the class in a new Classname() statement and handing them off to the build()
method, and then setting up the $idfield and $id properties and connecting to the
database:

function __construct()
{

$args = func_get_args();
call_user_func_array(array($this,’build’), $args);
if (!empty($this->idfield))
{

$f = $this->idfield;
$this->id =& $this->$f;

}
if ($this->table !== null)

$this->dbh();
}

dbh() This method shows the use of static variables in methods. As with regular
functions, a static variable retains its value from one call to the next. In the context
of a class method, what that means is that two objects of the same class — or of
classes that inherit the same class — make use of the same single static value. This
makes good sense for something like a database connection, as shown in the fol-
lowing code. If you have four objects in your script, after all, they’re all still talking
to the same database (probably), and so they need only the one connection.

function dbh()
{

static $dbh = NULL;
if ($dbh === NULL)
{

$dbh = db_connect($this->appname);
if ($dbh === NULL) {

user_error(
‘Received NULL db connection’
, E_USER_ERROR

);

Chapter 12: Catalog 413

return FALSE;
}
$dbh->setFetchMode(DB_FETCHMODE_ASSOC);

}
return $dbh;

}

build() This method takes a list or array of arguments and uses them to set values
for the properties of the object. We have a couple of points to make here:

◆ You can use built-in PHP functions to figure out what your objects’
property names are at runtime, and use that information to pay attention
only to incoming values that match those properties. This enables you do
things like

$product->build($_POST);
$style->build($_POST);

knowing that each object picks out from $_POST only the fields that it
needs.

◆ You can check to see if your class has a method with the same name as
the property you’ve been given a value for. If it does, you can hand that
new value off to that method. This capability makes it easier to ensure
that only legal values are assigned to an object’s properties — that a
$quantity property is never set to a negative number, for example.

function build()
{

$args = func_get_args();
if (count($args) == 0)
{

return;
}
$simple = array_keys(get_object_vars($this));
$p = parse_arguments($args, $simple);
$args = array_key_remove($p, $simple);
foreach ($args as $k => $v)
{

if (method_exists($this, $k))
call_user_func(array($this,$k),$v);

else
$this->$k = $v;

}
}

414 Part IV: Not So Simple Applications

fetch_simple_query() This method lives to be overwritten. The default is about as
simple as the code here gets. Anticipating the ability of the database to substitute
values into the text of a query, it just returns a query getting everything from a
table to be named later. The purpose of the method is to allow child classes to sub-
stitute less simple queries in their place. Subsequent methods of the Base class can
use these queries. Consider a common example: If you have a table that has multi-
ple lookup values, like a product_type_id field, you can use a query that joins your
main table with the lookup table and returns the appropriate product_type for stor-
age in a property of the object:

function fetch_simple_query()
{

return ‘select * from !’;
}

fetch_simple() Using this method is another step along the path to retrieving a
record from the database and storing it in the object, but fetch_simple() can have
other uses as well. The method requires a table name and optionally accepts a field
name, a value, and an operator (usually just an equals sign). It runs the query sup-
plied by fetch_simple_query() and returns the result. Normally the table name
will be the value from the $table property of the object, but you can also call this
method directly, on any table, querying the value of any single field. That lets you
do something like

$result = $p->fetch_simple(‘products’,’product’,’S%’,’like’);

to get a DB result handle for all of the rows in the products table wherein the
product name begins with s. If nothing else, it saves typing.

Notice that you can use the result of the dbh() method as if it were a property.
Because it returns an object of the DB class (one of DB’s subclasses, to be exact), it
has its own properties and methods you can use, as shown in this example in which
we populate an array with pieces of what will become (thanks to the dbh() func-
tion) a database query:

function fetch_simple($table,$idfield=NULL,$id=NULL,$op=’=’)
{

$result = FALSE;
$bind = array($table);
$query = $this->fetch_simple_query();
if ($idfield !== NULL)
{

$query .= ‘ where ! ! ?’;
$bind[] = $idfield;
$bind[] = nullop($id,$op);

Chapter 12: Catalog 415

$bind[] = $id;
}
$result = $this->dbh()->query($query,$bind);
return $result;

}

fetch_record() This method uses fetch_simple() to get a single record from a
table in the database and return it:

function fetch_record($table=NULL,$idfield=NULL,$id=NULL)
{

if (empty($table))
$table = $this->table;

if (empty($idfield))
$idfield = $this->idfield;

if (empty($id))
$id = $this->id;

$result = $this->fetch_simple($table,$idfield,$id);
if (!$result)
{

return FALSE;
}
$row = $result->fetchRow();
$result->free();
return $row;

}

fetch_from_db() Finally, we come to the method you’ll see most frequently used
in the actual child classes that work with a particular table. This method enables
you to get the record corresponding to a supplied unique ID value, or the ID value
already specified by the $id property of your object, and to assign the values from
that record to the properties of your object using the building-block methods
described in the beginning of the section on object-orientation in this chapter:

function fetch_from_db($id=NULL)
{

if ($id !== NULL)
{

$this->id = $id;
}
$row = $this->fetch_record(

$this->table
, $this->idfield
, $this->id

416 Part IV: Not So Simple Applications

);
if (!$row)

return FALSE;
$this->build($row);

}

fetch_all() This is just a shortcut method for getting all the records from a table
that match a particular field value. In practice, using DB’s getAll() method is about
as easy.

function fetch_all($table=NULL,$idfield=NULL,$id=NULL,$op=’=’)
{

if (empty($table)) { $table = $this->table; }
$result = $this->fetch_simple($table,$idfield,$id,$op);
if (!$result)
{

return FALSE;
}
$rows = array();
while ($row = $result->fetchRow())
{

$rows[$row[$this->idfield]] = $row;
}
$result->free();
return $rows;

}

delete_from_db() This method deletes a record from the database:

function delete_from_db($id=NULL)
{

if ($id === NULL)
{

$id = $this->id;
}
$result = $this->dbh()->query(

‘delete from ! where ! = ?’
, array($this->table, $this->idfield, $id)

);
return $result;

}

fieldlist() Now we begin building up to the other main purpose of a class, writing
its values to the database. This method hands back a list of fields that, in theory,

Chapter 12: Catalog 417

correspond to the fields of the table the object represents. If the list is not
predefined — as it generally is — the method gets a list of fields from the database.
(Note that this is a very MySQL-specific query in that it uses the MySQL reserved
word describe.)

function fieldlist()
{

if (is_array($this->fields) && count($this->fields) > 0)
{

return $this->fields;
}
if ($this->dbh() && $this->table)
{ $this->fields = $this->dbh()->getCol(

“describe {$this->table}”
);
return $this->fields;

}
return NULL;

}

data_fields() You might have a table with 25 fields defined, but use only three of
them in a form. When you write the record out to the database you don’t want to
unwittingly change the other 22 fields. This method returns an associative array of
field names and values built from the properties of the object, leaving out proper-
ties that are NULL or set to empty strings when the corresponding fields in the table
are integers:

function data_fields()
{

$fields = array();
foreach ($this->fieldlist() as $f)
{

if (!isset($this->$f))
continue;

$v = $this->$f;
if ($v === NULL)

continue;
if ($v === ‘’ && strstr($f, ‘_id’))

continue;
$fields[$f] = $v;

}
return $fields;

}

418 Part IV: Not So Simple Applications

create_record() This method inserts into the database a new record corresponding
to the value stored in the properties of the object. It uses the PEAR DB class’
nextId() function to get the next ID value for the table (rather than letting MySQL
automatically assign it — though in practice PEAR itself is using MySQL’s
auto_increment feature to come up with the new ID value). Generating ID values
is dead simple thanks to DB’s autoPrepare() method, which takes a table name
and an array of column names and values and gives you back a fully-baked insert
query.

function create_record()
{

if ($this->what)
$this->id = $this->dbh()->nextId($this->what);

$data_fields = $this->data_fields();
$stmt = $this->dbh()->autoPrepare(

$this->table
, array_keys($data_fields)
, DB_AUTOQUERY_INSERT

);
$result = $this->dbh()->execute(

$stmt
, array_values($data_fields)

);
return $result;

}

update_record() This method updates the record in the database that corresponds
to the current object, as indicated by the unique ID value in the $id property. Once
again, DB makes it easy.

function update_record()
{

$data_fields = $this->data_fields();
$stmt = $this->dbh()->autoPrepare(

$this->table
, array_keys($data_fields)
, DB_AUTOQUERY_UPDATE
, ‘ ! = ? ‘

);
$bind = array_values($data_fields);
$bind[] = $this->idfield;
$bind[] = $this->id;
$result = $this->dbh()->execute($stmt,$bind);
return $result;

}

Chapter 12: Catalog 419

write_to_db() This method ties it all together, taking the values in the object and
saving them to the database as a new record or as an update to an existing one:

function write_to_db()
{

$args = func_get_args();
call_user_func_array(array($this,’build’), $args);
$result = FALSE;
$this->id = $this->{$this->idfield};
if ($this->id)
{

$result = $this->update_record();
}
else
{

$result = $this->create_record();
}
return $result;

}

legal_values() You frequently have tables, like status or product_type, that trans-
late a unique ID value to an English word or phrase. This method makes it easy to
use an inherited class built on such a table to get the name for a particular ID
within a script (or vice versa). Note that it stores all the values from the object’s
table in a static variable in the method.

You wouldn’t want to use this method with a million-record table, where

you’d see a big performance problem. Ten is more like it. For large tables,

you’ll need to run individual queries for each validation.

function legal_values($id=NULL, $use_values=NULL)
{

static $values = NULL;
if ($use_values !== NULL)

$values = $use_values;
if ($values === NULL)

$values = $this->fetch_all();
if ($id !== NULL)
{

if (isset($values[$id]))
return $values[$id];

420 Part IV: Not So Simple Applications

elseif (($value = array_search($id, $values)) !== FALSE)
return $value;

else
return FALSE;

}
return $values;

}

transaction() This method enables you to set up a multi-statement transaction
that can span multiple method calls, even when each of those calls is itself normally
a multi-statement transaction. Rather than directly issuing begin and commit
queries to MySQL, the methods call the transaction() method (through a series of
front methods, which we’ll see in the next section), specifying what they want they
want to do and how. If they want to begin a transaction, and one is already in
progress, nothing happens; otherwise a transaction is begun. Similarly, if they want
to commit a transaction that hasn’t begun, nothing happens; otherwise the transac-
tion is committed. If called for, a rollback is always performed immediately, of
course.

function transaction($what=NULL,$how=NULL)
{

static $states = array();
static $state = NULL;

if ($what === self::ON)
{

if ($state !== self::ON)
{

$this->dbh()->query(‘begin’);
$state = self::ON;

}
array_push($states, self::ON);

}
elseif ($what === self::OFF)
{

if ($how !== ‘commit’)
$how = ‘rollback’;

if ($how === ‘rollback’)
$states = array();

else
array_pop($states);

if ($state !== self::OFF && count($states) == 0)
{

Chapter 12: Catalog 421

$this->dbh()->query($how);
$state = self::OFF;

}
}
return $state;

}

begin(), commit(), and rollback() These are the methods actually called by other
methods in the child class. To prevent any more queries from being executed, the
rollback() method issues a fatal error after rolling back the transaction.

function begin()
{

self::transaction(self::ON);
}

function commit()
{

self::transaction(self::OFF,’commit’);
}

function rollback($error=NULL)
{

self::transaction(self::OFF,’rollback’);
if ($error === NULL && isset($this) && isset($this->error))

$error = $this->error;
if ($error)

user_error($error, E_USER_ERROR);
}

PRODUCTS
Before we get started explaining this class, we want to restate that it is very similar
to the other classes in this application. If you understand how this class works, the
rest of the classes should be relatively easy to figure out.

__construct() This is the constructor of the class. It is very brief.

function __construct()
{

parent::__construct();
$args = func_get_args();
call_user_func_array(array($this, ‘build’), $args);
$this->id =& $this->product_id;

}

422 Part IV: Not So Simple Applications

Note that this constructor runs if a Product object is instantiated within a script.
But after the object is instantiated, the information associated with the product_id
is not automatically loaded. The fetch_from_db() method, which you saw in the
Base class, is needed for that.

price() You only want to store prices greater than zero. This method takes care of
that. Remember that in the Base class’s build() method, if your object has a
method defined with the same name as an incoming property value, that new value
is passed to the method rather than just being assigned to the property. So if you
have a form with a field named price, it is submitted to your script with the POST
method; when you call $product->build($_POST), you end up calling $product
->price($_POST[‘price’]).

function price($newprice=NULL)
{

if ($newprice !== NULL)
$this->price = $newprice;

if ($this->price == 0)
$this->price = NULL;

return $this->price;
}

list_all_children() and list_children() These methods override methods of the
CatalogBase class, the parent class of Product and itself a child class of the main
Base class we looked at earlier. Here, we are overriding the parent class’ methods to
call an additional method of our own, add_notes() (described in the next section).

function list_all_children()
{

parent::list_all_children();
if (count($this->child_ids) > 0)
{

$this->add_notes(
$this->all_children
, array_keys($this->child_ids)

);
}
return $this->all_children;

}

function list_children()
{

parent::list_children();

Chapter 12: Catalog 423

if (count($this->child_ids) > 0)
{

$this->add_notes(
$this->children
, array_keys($this->child_ids)

);
}
return $this->children;

}

add_notes() This method checks the database to see if any of the children of this
product are mapped to a status other than “Available.” If so, it adds a notes element
to the array entry for those children describing that status (for example, “Not avail-
able in orange”).

function add_notes(&$kids,$ids)
{

if (empty($kids) or empty($ids))
return;

$query = ‘select m.product_id, t.status, s.style
from product_style_map m, styles s, status t
where m.product_id in (!)

and m.style_id = s.style_id
and m.status_id in (?,?)
and m.status_id = t.status_id’

;
$stmt = $this->dbh()->prepare($query);
$result = $this->dbh()->execute(

$stmt
, array(

implode(‘,’, $ids)
, Product::NotAvailable
, Product::OutOfStock

)
);
$notes = array();
while ($r = $result->fetchRow())

$notes[$r[‘product_id’]][$r[‘status’]][] = $r[‘style’];
$result->free();

foreach ($kids as $i => $c)
{

$cnotes = array();

424 Part IV: Not So Simple Applications

if (isset($notes[$c[‘product_id’]]))
{

foreach ($notes[$c[‘product_id’]] as
$status=>$styles)
{

$cnotes[] = $status.’ in ‘.implode(‘,’,$styles);
}

}
$c[‘notes’] = implode(‘; ‘, $cnotes);
$kids[$i] = $c;

}
return;

}

list_unmapped_styles() This method retrieves all root-level styles that are not
mapped to the current product (or one of its parents). It is used in the administra-
tion page for the Product class to display a list of styles available to be mapped to
the product.

function list_unmapped_styles()
{

$query = ‘select distinct s.style_id, s.parent_id
, s.style, s.description, m.product_id as map_id

from styles s
left join product_style_map m
on s.style_id = m.style_id and m.product_id in (!)

where ifnull(s.parent_id,0) = 0
having map_id is null’

;
$stmt = $this->dbh()->prepare($query);
$ids = $this->get_parent_ids();
$ids[] = $this->product_id;
$result=$this->dbh()-
>execute($stmt,array(implode(‘,’,$ids)));
$styles = array();
while ($row = $result->fetchRow())
{

unset($row[‘map_id’]);
$styles[] = $row;

}
$result->free();
return $styles;

}

Chapter 12: Catalog 425

list_mapped_styles() This method retrieves all the product-style mappings for
the current product and its children, whether those mappings are explicitly stored
in the database or are inherited. You use it by running a query against the style
table, with a left join to the product_style_map table to get any mappings to the
current product or one of its parents. If a style is not explicitly mapped to any of
those products, the product ID field from the query (aliased to the column name
map_product_id) will be null. When you come upon such a row as you walk
through the results of the query, you check to see if there was an explicit mapping to
the parent of the style. If there was, you copy the status from that mapping. Because
you can’t create a child record without having created its parent first, parent style ID
values are always smaller than those of child IDs. By sorting by parent ID and then
child ID, you know that you will run into the parents first — and so the records will
be there for the child style to find.

function list_mapped_styles()
{

$this->styles = array();
$this->mapped_styles = array();
$ids = $this->get_parent_ids();
$ids[] = $this->product_id;
$idlist = implode(‘,’, $ids);
$bind = array($idlist);

// we could omit this part and the rest of this
// function would still run correctly. but if you
// had a large number of styles, only a few of which
// applied to any one product line, you’d end up
// throwing away more rows than you used. so let’s
// narrow the search down a bit by limiting it to
// only descendants of root styles mapped to this
// product or one of its parents

$stylewhere = ‘’;
if ($this->product_id)
{

$style_ids = $this->dbh()->getCol(
‘select m.style_id from product_style_map m, styles
s
where m.product_id in (!) and m.style_id =
s.style_id
and ifnull(s.parent_id,0) = 0 ‘
, 0
, array($idlist)

);
$style_ids = $this->get_child_ids(

426 Part IV: Not So Simple Applications

‘style_id’
, ‘styles’
, $style_ids

);
if (count($style_ids) > 0)
{

$bind[] = implode(‘,’, $style_ids);
$stylewhere = ‘where s.style_id in (!)’;

}
}

$query = <<<EOQ
select distinct s.style_id as id, s.style_id

, ifnull(s.parent_id,0) as parent_id
, s.style, s.description
, m.product_id as map_product_id
, m.status_id, m.price, m.price_type_id

from styles s
left join product_style_map m

on s.style_id = m.style_id
and m.product_id in (!)

$stylewhere
order by parent_id, style_id, map_product_id
EOQ;

$result = $this->dbh()->query($query, $bind);
$values = array();

// what we want to end up with:
// values = array(
// parent_id => array(style_id=>row,style_id=>row)
// , parent_id => array(style_id=>row,style_id=>row)
//)

while ($row = $result->fetchRow())
{

if (empty($row[‘map_product_id’]))
{

// throw out unmapped root styles
if ($row[‘parent_id’] == 0)

continue;

// throw out children of unmapped parents
if (!isset($this->styles[$row[‘parent_id’]]))

// inherit values from parent
$prow = &$this->styles[$row[‘parent_id’]];

Chapter 12: Catalog 427

$row[‘map_product_id’] = $prow[‘map_product_id’];
$row[‘price’] = $prow[‘price’];
$row[‘price_type_id’] = $prow[‘price_type_id’];
if ($prow[‘status_id’] == Product::NotAvailable
|| $prow[‘status_id’] == Product::OutOfStock
|| $prow[‘status_id’] == Product::ParentUnavailable
)
{

$row[‘status_id’] = Product::ParentUnavailable;
}
else
{

$row[‘status_id’] = Product::Inherited;
}

}
$values[$row[‘parent_id’]][$row[‘id’]] = $row;
$this->styles[$row[‘style_id’]] = $row;

}
$result->free();

$this->mapped_styles = $this->sort_list($values);
return $this->mapped_styles;

}

write_to_db() This method overwrites the write_to_db() method from the Base
class. It’s derived from the multi-statement transaction methods defined in Base,
because writing a product to the database means not just storing information about
the product as a record in the products table, but also storing mappings of that
product to a style or set of styles.

After setting empty numeric properties to NULL, this method calls the parent
write_to_db() method to save the product record itself. It then deletes all existing
mappings between the current product and any styles and recreates them based on
the values in the $status_id property (which is an array passed in from a form).

function write_to_db()
{

static $numeric_fields = array(
‘price’,’price_type_id’,’image_id’,’parent_id’

);
$this->dbh()->query(‘begin’);
foreach ($numeric_fields as $f)
{

if (empty($this->$f))
$this->$f = NULL;

428 Part IV: Not So Simple Applications

}
parent::write_to_db();
$this->dbh()->query(

‘delete from product_style_map where product_id = ?’
, array($this->product_id)

);
foreach ((array)$this->status_id as $style_id => $status_id)
{

$this->map_style($style_id,$status_id);
}
foreach ((array)$this->new_style_id as $nid)
{

$this->map_style($nid, Product::Available);
}
$this->dbh()->query(‘commit’);

}

MAP_STYLE() You saw this method called from the write_to_db() method. It
does a simple insert into the product_style_map table, after checking that the status
of the mapping is not one derived from a parent of the current product:

function map_style($style_id=0,$status_id=Product::Available)
{

if (!$style_id)
{

return;
}
$this->dbh()->query(

‘insert into product_style_map
(product_id,style_id,status_id)
values (?,?,?)’

, array($this->product_id,$style_id,$status_id)
);

}

IMG() This method creates an instance of the CatalogImage class and stores it in
the $img property of the current object:

function img()
{

if (!isset($this->img))
{

$this->img = new CatalogImage(array(
‘image_id’=>$this->image_id

Chapter 12: Catalog 429

));
}
return $this->img;

}

upload() This method is a front end to the upload() method of the CatalogImage
object created by the img() method. It passes on any arguments received to the
image’s upload() method, getting back the ID value of the new record created in
the images table (if there is one), which it then stores in the $image_id property of
the current product:

function upload()
{

$args = func_get_args();
$func = array($this->img(), ‘upload’);
$image_id = call_user_func_array($func, $args);
if ($image_id)
{

$this->image_id = $image_id;
}
return $image_id;

}

thumbnail() This is another front end method to the CatalogImage object. It sets
the $alt property of the image to the name of the current product, so that the alt
attribute of the tag, which will ultimately be returned, matches the product
being displayed:

function thumbnail($href=NULL)
{

$this->img()->check();
$this->img()->alt = $this->product;
return $this->img()->thumbnail($href=NULL);

}

__get() and __call() These are special methods, called “overloading” methods.
Their names are predefined by PHP. If you access an undefined property of an
object, the __get() method is called. Similarly, accessing an undefined method
causes __call() to be run. These methods enable you to use the properties and
methods of the CatalogImage object directly, as if they were properties and methods
of the Product object.

function __get($property)
{

return $this->img()->$property;

430 Part IV: Not So Simple Applications

}
function __call($method, $args)
{

$img = $this->img();
return call_user_func_array(array($img,$method),$args);

}

OTHER CLASSES
Now that you have seen one class in its entirety, and have a feel for how the data
structures are created, it would be a waste of paper, as well as your time, to lay out
all the other classes here. As we’ve said, they’re designed to work similarly. If you
understand one, you really understand all of them.

If you’d like more detail on any of the remaining classes, see the comments

within the files on the CD.

In this section we’re going to tell you what you need to know to make use of the
remaining classes. (Note that the Catalog class was described earlier.)

Class Name:

CatalogBase— Extends Base

Default Properties:

◆ $parents;

◆ $parent_ids;

◆ $children;

◆ $child_ids;

◆ $depth = 0;

◆ $appname = ‘catalog’;

Methods:

◆ get_parent— Retrieves the parent record from the table specified in the
$table property for the ID specified in the $id parameter. If it finds a
parent record, it calls itself to get the parent of that record, walking back
up the tree of ancestors until it comes to a root-level record (one where

Chapter 12: Catalog 431

the parent_id field is zero or NULL). The record is then stored in the
$parent_ids property, indexed by ID value, and returned. The result is
a sequential list of parent records in inheritance order.

◆ list_parents— Calls get_parent() on the current record and stores the
result in the $parents property. Also sets the $depth property to reflect
how far down the current record is (for example, a depth of zero means
this is a root-level record, a depth of two means this is the child of a child
of a root-level record, and so on).

◆ get_parent_ids— Returns the ID values of the parent records retrieved
by list_parents().

◆ get_child_ids— A similar method to get_parent, except in the other
direction. This method gets the ID values of all the records descended
from the current one and returns them as an array.

◆ get_child— Gets descendant records (as opposed to just ID values) of
the current record. Optionally stops at a specified maximum depth — for
example, setting a maximum depth of zero results in the retrieval of only
the first generation of child records.

◆ list_children— Calls get_child, limiting the result to the immediate
children of the current record.

◆ list_all_children— Calls get_child with no maximum depth, retriev-
ing all descendant records of the current record.

◆ sort_list— Turns a nested associative array into a flat list, setting a
depth element in each record to indicate how far into the original array’s
nesting it was found.

Class Name:

CatalogImage— Extends Image

Default Properties:

◆ $table = ‘images’;

◆ $idfield = ‘image_id’;

◆ $what = ‘image’;

◆ $fields = array(‘image_id’,’image’,’width’,’height’,’alt’);

◆ $id = NULL;

432 Part IV: Not So Simple Applications

◆ $image_id = NULL;

◆ $appname = ‘catalog’;

◆ $src_dir = ‘/book/catalog/images’;

Methods:

◆ __construct— Sets the $file_dir property (inherited from Image) to the
full file system path of the /images directory of the Catalog application. It
then calls the __construct and build methods of its parent classes and
sets the $id property as a reference to the $image_id property.

◆ upload— Calls the upload() method of the Image class, with a default
field name of imagefile. If the upload succeeds, the upload() method
writes itself to the images table in the database and returns the ID value of
the database record.

◆ check— Fetches information from the database for the current image and
then calls the check() method of the parent Image class.

Class Name:

Style— Extends CatalogBase

Default Properties:

◆ $table = ‘styles’;

◆ $idfield = ‘style_id’;

◆ $what = ‘style’;

◆ $fields = array(‘style_id’,’parent_id’,’style’,’description’);

◆ $id = 0;

◆ $style_id = 0;

◆ $parent_id = 0;

◆ $style = ‘’;

◆ $description = ‘’;

◆ $price = NULL;

◆ $price_type_id = NULL;

Chapter 12: Catalog 433

Methods:

◆ __construct— Calls the __construct and build methods of the parent
CatalogBase and Base classes, and then sets the $id property as a refer-
ence to the $style_id property.

Sample script
Now that you understand the classes available, we show you how they are put to
work in one of the scripts. We give you a look at display.php. This page is looking
for a product ID value to be passed in. If none is given, it displays some default val-
ues for the main page of the catalog.

<?php
require_once(‘header.php’);

// if no product_id value is supplied, display the main page
// of the catalog
$product_id = (int)array_key_value($_REQUEST,’product_id’,0);
$p = new Product(array(‘product_id’=>$product_id));

if (empty($p->product_id))
{

$p->description = <<<EOT
Here at Bag’O’Stuff, we’ve got so much stuff
we don’t know what to do with it. So buy some
and help us clear out some space.
EOT;

$p->subproduct_title = “What’ve We Got?”;
$page_title = “Bag’o’Stuff”;

}

If you do get a product ID, you retrieve it from the database. You are going to be
using breadcrumbs for navigation, so you use the list_products() method to get
the list of parent products above the current one and convert the list of parent
products into a series of anchor tags.

else
{

$p->fetch_from_db();
// begin constructing the page title with a link to the main

page
// of the catalog

// add a link back to the product level to the page title,

434 Part IV: Not So Simple Applications

// followed by the name of this product, and print out the
// top of the page

$titlebits = array(anchor_tag(‘index.php’, “Bag’O’Stuff”));
foreach ($p->list_parents() as $t)
{

$titlebits[] = anchor_tag(
‘display.php?product_id=’.$t[‘product_id’]
, $t[‘product’]

);
}
$page_title = implode(‘ > ’, $titlebits);

}
print start_page($page_title);

Then all you do is hand off the Product object to the print_product() function
and call the usual end_page() function, and the page is ready to go:

// print out information about this product, and any styles and
// substyles it contains
print_product($p);

// print out the bottom of the page
print end_page();

?>

Now we want to take a look at the print_product() function and the functions
it uses to display the product.

print_product()
This function does only a few things. It prints out a description of the product,
including a thumbnail image if one exists. Then it prints out the available styles for
the product and any child products, using the other two main display functions of
the application.

function print_product($p)
{

$image_tag = $p->thumbnail();
if (!empty($image_tag))
{

// if an image has been uploaded for the product,
// include the thumbnail version of the image,
// displayed as a link to the full-size version.

Chapter 12: Catalog 435

$image_tag = anchor_tag($p->img->src, $image_tag);
}
print paragraph(‘’.$p->product.’’);
print paragraph($image_tag, nl2br($p->description));

print_styles($p);

print_children($p);
}

print_styles()
This function is a lot longer than print_product(), but really, not that much more
is going on here. Mostly what it’s doing is building up an array of the styles that
apply to the product, in such a way that you can turn that array into an HTML table
on the page. If a style is marked as “Not available,” you don’t even mention it. If it’s
only “Out of stock,” you want people to know that you’ll have it eventually, so you
go ahead and display it, with a warning flag. The result looks something like this:

Colors Red, Blue, Green, Yellow, Orange, Black, White, Tie-Dye

Sizes Men’s Peewee, Junior, Medium, Large, Husky (Out of stock)

Women’s Petite, Small, Medium, Large

function print_styles(&$p)
{

$styles = $p->list_mapped_styles();

$style_table = array();
$row = 0;
$last_depth = 0;
$max_depth = 0;
foreach ($styles as $s)
{

$style = $s[‘style’];
if ($s[‘status_id’] == Product::NotAvailable)

continue;
if ($s[‘status_id’] == Product::OutOfStock)

$style .= ‘ <b style=”color:red”>(Out of Stock)’;
settype($s[‘depth’], ‘int’);
if ($s[‘depth’] < $last_depth) {

$row++;
for ($cell = 0; $cell < $s[‘depth’]; $cell++)

$style_table[$row][$cell] = ‘’;
}
$last_depth = $s[‘depth’];

436 Part IV: Not So Simple Applications

$style_table[$row][$last_depth][] = $style;
$max_depth = max($last_depth, $max_depth);

}
foreach ($style_table as $r => $cells)
{

$i = 0;
foreach ($cells as $k => $v)
{

if (is_array($v))
$v = implode(‘, ‘, $v);

if ($k == 0 && $v != ‘’)
$v = “$v”;

$style_table[$r][$k] = $v;
$i = $k;

}
if ($i < $max_depth)
{

$style_table[$r][$i] = table_cell(array(
‘value’=>$style_table[$r][$i]
, ‘colspan’=>(($max_depth - $i)+1)

));
}

}
print paragraph(table(array(

‘rows’ => $style_table
, ‘border’ => 0
, ‘cellpadding’ => 3

)));
}

print_children()
This function is similar to print_styles(). It displays the list of immediate child
products of the current product, with each product name displayed as a link to
display.php for more detailed information about that product:

function print_children(&$p)
{

$child_price_count = 0;
$child_rows = array();
$children = $p->list_children();
if (count($children) > 0)
{

$child_url = ‘display.php?product_id=’;
foreach ($children as $c)
{

Chapter 12: Catalog 437

if ((int)$c[‘price’] > 0 && $c[‘price’] != $p->price)
$child_price = $c[‘price’];

else
$child_price = ‘ ’;

if (!empty($c[‘description’])
&& $c[‘description’] != $p->description

)
{

$child_description = nl2br($c[‘description’]);
}
else
{

$child_description = ‘’;
}
if (!empty($c[‘notes’]))
{

$child_description .= “ <b
style=’color:red’>({$c[‘notes’]})”;

}
$child_rows[] = table_row(

anchor_tag(
$child_url.$c[‘product_id’], $c[‘product’]

)
, $child_price
, $child_description

);
}

}

if (!$child_price_count)
{

// if no child of this product has its own separate price,
// print out the product’s price now, and set the title of
// the price column to blank. (this will make that column
// essentially invisible.)
if ((int)$p->price > 0)
{

print paragraph(‘Price: ‘.$p->price);
}
$price_label = ‘ ’;

}
else
{

$price_label = ‘Price’;
}

438 Part IV: Not So Simple Applications

if (count($child_rows) > 0)
{

// print out products belonging to this product
array_unshift(

$child_rows
, table_row(‘Product’

, $price_label
, ‘Details’

)
);
print paragraph(

table(array(‘rows’=>$child_rows,’border’=>0))
);

}
}

Summary
You might have found this chapter to be quite a handful. In addition to adding code
for file uploads, we have used a completely different method for the organization of
the code.

The object-oriented approach used in this chapter might not be your cup of tea.
And if it’s not, you’re in good company. Many people who work with PHP feel that
object-oriented programming makes little sense in a Web-development environ-
ment. But it has its advantages. And the object model in the new version of PHP is
greatly enhanced over that of previous versions, too.

As you can see in this application, once the classes are created you don’t need to
do much to get great functionality within your scripts. Further, in Chapter 14, you
can see how we take the code created here and build on it.

Chapter 12: Catalog 439

Chapter 13

Problem-Tracking System
IN THIS CHAPTER

◆ Designing a problem-tracking system

◆ Protecting yourself from redundant data

◆ Using the IntegratedTemplate class from the PEAR class libraries

◆ Creating a site that has both public and private portions

GOT PROBLEMS? Don’t worry, we’ve all got problems. Relationships falter, bosses
make capricious demands, and family — oh, we all know about family. Sadly, in the
crazy lives that we all live, PHP and MySQL can do nothing to make your girl/
boyfriend love you more or make your dealings with your parents or in-laws any
easier. But no scripting language or relational database is better equipped in these
areas.

But if you’re working for a company that sells or otherwise dispenses goods, it is
a virtual guarantee that someone somewhere is going to be unhappy with what he
or she has received. When that person complains, you are going to want to have a
place in which to record the problems and the steps required for resolution.

The problem-tracking application in this chapter can be used for that purpose.
What we have here is fairly generic, and depending on the goods involved with
your business, it is likely that you are going to want some fields that apply to your
specific products. Anyhow, this application should get you moving in the right
direction.

Determining the Scope and Goals of
the Application
This problem-tracking system should have aspects that are publicly available and
others that only someone with the proper authorization can view. It makes sense to
have a form that users can access over the Web in order to report their problems.
Alternatively, someone on the support staff should be able to report problems — for
example, while taking a phone call from a dissatisfied customer.

Once the problem is entered, it should be tracked by the staff. Each action taken
in the attempt to solve the problem should be noted. And the tracking should have 441

a public and a private realm — actions that you want the user to see must be differ-
entiated from those that you do not want the user to see.

Those with problems should be able to keep track of them in two ways. They
should be emailed whenever a publicly viewable update is made to their case, and
a Web page detailing their problem should be available.

What do you need?
The first thing you need is a form into which people can enter their complaints.
What we present in Figure 13-1 is fairly generic; remember that for your own appli-
cations you will probably want to add information regarding specific products.

Figure 13-1: Problem entry form

Once a problem is entered, there must be a place for the staff to work on the
complaint. It should include all the information about the user, the history of the
complaint, and a place to enter new information. This problem-update form would
look something like the one in Figure 13-2.

The support-staff members need a home, a place where they can log in and see
both unassigned tasks and those that are assigned to them and are still open. The
staff page would look something like the one in Figure 13-3.

442 Part IV: Not So Simple Applications

Figure 13-2: Problem update form

Figure 13-3: Staff page

Chapter 13: Problem-Tracking System 443

If you want to see if any of your users are hypochondriacs, you can use the user-
history page shown in Figure 13-4, which lists all problems associated with a user.

Figure 13-4: User history page

What do you need to prevent?
In setting up this part of the application, you’re concerned with gathering informa-
tion efficiently and in a way that’s pleasant for the user. Therefore, your worries are
more of an interface-design nature, and thus more in the realm of Web design than
application development.

Developers, though, are concerned with making sure that the data collected is
valid, and complies with database limitations. You might want to endow your
forms with some client-side scripting that checks values for obvious problems
before sending them in.

Designing the Database
As you can see from Figure 13-5, the problems table is at the center of the schema.

444 Part IV: Not So Simple Applications

Figure 13-5: Tracking system schema

admin

username
password

problems

problem_id
customer_id
status_id
staff_id
summary
problem
entered_by
source_id
entry_dt
modify_dt
last_public_entry
last_entry_id

history

entry_id
problem_id
entry_type_id
entered_by
source_id
entry_dt
notes

status

status_id

customers

customer_id
customer_code
firstname
lastname
address
address2
city
state
zip
zip4
email
day_area
day_prefix
day_suffix
day_ext
day_start
day_end
eve_area
eve_prefix
eve_suffix
eve_ext
eve_start
eve_end

staff

staff_id
username
password
staff_name
active

entry types

entry_type_id
entry_type

sources

source_id
source

Chapter 13: Problem-Tracking System 445

Here are some design considerations we had to keep in mind as we designed our
database:

◆ Each customer can have one or many problems. The history table records
the steps taken to remedy the problem or problems.

◆ The status table is a lookup table, containing the possible states of a
problem, notably open, closed, in processing, and so on.

◆ The sources table is another lookup table, which records where the prob-
lem was originally recorded. If a user enters a complaint over the Web, the
sources table will record that; complaints received by the support staff
might originate from a phone call, email, or flaming arrow.

◆ The entry_types table notes whether a specific item in the history table
should be public or private. If it is private, it will not be available on the
Web page when the user comes to view the progress of the problem, and
an email will not be sent to the user when an update takes place. The pub-
lic updates will be viewable and the user will receive email notification.

Now for a couple of notes on this schema and the create statements that follow.
Depending on how you plan on running your site, you may wish to add a table or
change a column definition or two.

Notice that we have a problem_code column in the problems table. However, if
you will be emailing users regarding the status of problems, you may want some-
thing a little less transparent than the following: http://yoursite.com/tracking/
problems.php?problem_id=7.

In Chapter 9 we take some precautions when we run into a similar situation. We
didn’t want people to gain access to restricted parts of our data simply by guessing
at variable names in the URL. Here we adopt the same technique we used there in
the survey application, creating a random 8-character alphanumeric string from the
md5() and uniqueid() functions. It’s true that we run a risk of the same random
number coming up twice, and in fact this approach might not be right for a very
large application. But it works here.

Listing 13-1 shows the create statements for the tables we used in this applica-
tion. In addition to the create statements, this listing includes some of the default
data you will need to start the application. Note that if you install this application
from the CD-ROM you will have a full set of dummy data you can play with.

Listing 13-1: create Statements Used in the Problem-Tracking System

drop table if exists status;
create table status
(

status_id tinyint not null auto_increment
, status varchar(20) not null

, primary key (status_id)

446 Part IV: Not So Simple Applications

)
type=InnoDB
;
insert into status (status) values (‘Opened’);
insert into status (status) values (‘In Progress’);
insert into status (status) values (‘Closed’);
insert into status (status) values (‘Re-opened’);
drop table if exists status_seq;
create table status_seq
(
id tinyint not null auto_increment

, primary key (id)
)
type=InnoDB
;
insert into status_seq (id) select max(status_id)+1 from status;
drop table if exists sources;
create table sources
(

source_id tinyint not null auto_increment
, source varchar(10) not null

, primary key (source_id)
)
type=InnoDB
;
insert into sources (source) values (‘web’);
insert into sources (source) values (‘email’);
insert into sources (source) values (‘phone’);
insert into sources (source) values (‘in-store’);
insert into sources (source) values (‘staff’);
insert into sources (source) values (‘program’);
drop table if exists source_seq;
create table source_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB
;
insert into source_seq (id) select max(source_id)+1 from sources;
drop table if exists entry_types;
create table entry_types
(

Continued

Chapter 13: Problem-Tracking System 447

Listing 13-1 (Continued)

entry_type_id tinyint not null auto_increment
, entry_type varchar(10) not null

, primary key (entry_type_id)
)
type=InnoDB
;
insert into entry_types (entry_type) values (‘private’);
insert into entry_types (entry_type) values (‘public’);

drop table if exists entry_type_seq;
create table entry_type_seq
(
id tinyint not null auto_increment

, primary key (id)
)
type=InnoDB
;
insert into entry_type_seq (id) select max(entry_type_id)+1 from
entry_types;

drop table if exists staff;
create table staff
(

staff_id int not null auto_increment
, username varchar(20) not null
, password varchar(255) not null
, staff_name varchar(50) not null
, active tinyint default 1

, primary key (staff_id)
, unique (username)
)
type=InnoDB
;
insert into staff (username,password,staff_name) values
(‘fred’,password(‘fred’),’Fred Flintstone’)
, (‘barney’,password(‘barney’),’Barney Rubble’)
;

drop table if exists staff_seq;
create table staff_seq
(

id int not null auto_increment

448 Part IV: Not So Simple Applications

, primary key (id)
)
type=InnoDB
;
insert into staff_seq (id) select max(staff_id)+1 from staff;

drop table if exists customers;
create table customers
(

customer_id integer not null auto_increment
, customer_code varchar(8)
, firstname varchar(40)
, lastname varchar(40)
, address varchar(40)
, address2 varchar(40)
, city varchar(20)
, state char(2)
, zip char(5)
, zip4 char(5)
, email varchar(255)
, day_area char(3)
, day_prefix char(3)
, day_suffix char(4)
, day_ext char(5)
, day_start char(8)
, day_end char(8)
, eve_area char(3)
, eve_prefix char(3)
, eve_suffix char(4)
, eve_ext char(5)
, eve_start char(8)
, eve_end char(8)

, primary key (customer_id)
)
type=InnoDB
;

drop table if exists customer_seq;
create table customer_seq
(
id int not null auto_increment

, primary key (id)
)

Continued

Chapter 13: Problem-Tracking System 449

Listing 13-1 (Continued)

type=InnoDB
;

drop table if exists problems;
create table problems
(

problem_id integer not null auto_increment
, customer_id integer not null
, problem_code char(8) not null
, status_id tinyint null
, staff_id integer null
, summary text
, problem text
, entered_by varchar(20) null
, source_id tinyint null
, entry_dt datetime
, modify_dt timestamp
, last_public_entry_id int null
, last_entry_id int null

, primary key (problem_id)
, key (customer_id)
, foreign key (customer_id) references customers (customer_id) on
delete cascade
, key (status_id)
, foreign key (status_id) references status (status_id) on delete
set null
, key (source_id)
, foreign key (source_id) references sources (source_id) on delete
set null
, key (staff_id)
, foreign key (staff_id) references staff (staff_id) on delete set
null
, unique (problem_code)
)
type=InnoDB
;
drop table if exists problem_seq;
create table problem_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB

450 Part IV: Not So Simple Applications

;

drop table if exists history;
create table history
(

entry_id integer not null auto_increment
, problem_id integer not null
, entry_type_id tinyint not null
, entered_by varchar(20) null
, source_id tinyint not null
, entry_dt timestamp
, notes text

, primary key (entry_id)
, key (problem_id), foreign key (problem_id) references problems
(problem_id) on delete cascade
, key (entry_type_id), foreign key (entry_type_id) references
entry_types (entry_type_id) on delete cascade
, key (source_id), foreign key (source_id) references sources
(source_id) on delete cascade
)
type=InnoDB
;
drop table if exists history_seq;
create table history_seq
(
id int not null auto_increment

, primary key (id)
)
type=InnoDB
;
drop table if exists admin;
create table admin
(

username varchar(50) not null
, password varchar(255) not null

, primary key (username)
)
type=InnoDB
;
insert into admin values (‘jay’,password(‘rules’));

delete from mysql.db where Db = ‘tracking’;

Continued

Chapter 13: Problem-Tracking System 451

Listing 13-1 (Continued)

grant delete, insert, select, update
on tracking.*
to nobody@localhost identified by ‘ydobon’

;

flush privileges;

Code Overview
The only really new part of this example is that it uses the PEAR Integrated
Template class. Templates are a common and useful way to separate an applica-
tion’s code from its design. Since these are frequently built by two different sets of
people, working on different schedules, keeping these two parts of your application
(not to mention the designers and the coders) at a distance from each other can make
your life a lot easier. Plus, looking ahead, a site’s design is something that is going
to change much more frequently than its basic functionality, so maintenance
becomes easier as well.

The idea behind a template is pretty easy to pick up. In one file you write all the
HTML for a page (or part of a page — such as the navigational elements). Elements
of the page that will be filled in with data from a database, or with values resulting
from a calculation like “Total Amount Due,” are represented by some kind of stan-
dardized placeholder, like so:

<tr>
<td>Total Amount Due:</td>
<td align=”right”>{total_due}</td>
</tr>

We’ve picked the simplest templating system readily available, the
IntegratedTemplate (or IT) class from PEAR. It looks just like the preceding exam-
ple, shockingly enough, and also has some capacity for loops so you can repeat part
of a template, like a row in a parts table, as many times as you have rows of data to
fill it. There are lots of other, more advanced and complicated templating systems
out there. Try changing this example around some until you get frustrated at not
being able to do something — that’s how you’ll know what to look for.

You’ll find IntegratedTemplate and its documentation here:

http://pear.php.net/package-info.php?pacid=108.

If IT isn’t to your liking, you may want to investigate FastTemplate and

Smarty, two other template engines.

452 Part IV: Not So Simple Applications

Code Breakdown
This application makes more liberal use of includes than some of the previous ones
you have seen. It contains a couple of very long forms that could really clutter up
a page. They have been pushed off to templates.

Reusable functions from /book/tracking/
functions.php
The base function set, described in Chapter 9, will be used here once again. The first
few of these functions are for convenience. The ones a little further down do some
pretty heavy and cool work.

fetch_staff()
If you’ve looked at some of the other applications in this book, this type of function
should be clear. Basically, this function takes a series of parameters that it uses to
modify a generic SELECT query that’s run against the staff table. If no parameters
are sent to this function, the most basic SELECT is run:

SELECT * FROM staff;

If arguments exist, the code uses them to modify the SELECT statement. It
employs a bit of intelligence here. If the arguments are numeric — the function uses
is_numeric to figure this out — the code adjusts the SELECT statement to examine
the staff_id field, like this:

SELECT * FROM staff; WHERE staff_id LIKE argument_value;

Alternatively, if the argument is a string (is_string comes into play for the job)
the SELECT statement looks at the username field. For example:

SELECT * FROM staff; WHERE username LIKE argument_value;

Here’s the full function.

function fetch_staff()
{

$params = func_get_args();
$wheres = array();
$bind = array();
foreach ($params as $arg)
{

if (is_string($arg))
{

Chapter 13: Problem-Tracking System 453

$wheres[] = ‘ username like ? ‘;
$bind[] = $arg;

}
elseif (is_numeric($arg))
{

$wheres[] = ‘ staff_id like ? ‘;
$bind[] = $arg;

}
else
{

user_error(
‘Invalid argument to fetch_staff()

:’.var_export($arg,TRUE)
, E_USER_NOTICE

);
}

}
$query = ‘select * from staff ‘;
if (count($wheres) > 0)
{

$query .= ‘ where ‘.implode(‘ or ‘, $wheres);
}
$result = db_connect()->getAll($query, $bind,

DB_FETCHMODE_ASSOC);
if (is_array($result) && count($result) == 1)
{

$result = array_shift($result);
}
return $result;

}

fetch_customer()
This function works very much like fetch_staff(), except that there’s no need to
determine whether the argument is a string or a numeric value. Because we are
building the query based on named parameters from the $params argument, we can
look explicitly for the column values we need. So if we’ve been given a customer ID
value, we use that. If not, we check for a customer code string, and if we have one,
use that. If we don’t have values for either of these columns, then we can’t run the
query, and we just error out of the function. DB lets us supply the column name
we’re using as a parameter by using the ! token character in its place in the query.

Here’s the full function.

function fetch_customer(&$params)
{

$query = ‘select * from customers where ! = ?’;

454 Part IV: Not So Simple Applications

if (!empty($params[‘customer_id’]))
{

$bind = array(‘customer_id’, (int)$params[‘customer_id’]);
}
elseif (!empty($params[‘customer_code’]))
{

$bind = array(‘customer_code’, $params[‘customer_code’]);
}
else
{

user_error(
‘Could not fetch customer - no ID or code specified’
, E_USER_ERROR

);
return FALSE;

}
$dbh = db_connect();
$record = $dbh->getRow($query, $bind, DB_FETCHMODE_ASSOC);
if ($record === FALSE)
{

$private_error = ‘fetch_customer: error in query: ‘
. $dbh->last_query

;
user_error(

‘Could not fetch customer from database’
, E_USER_ERROR

);
return FALSE;

}
$params = array_merge($params, $record);
return TRUE;

}

fetch_problem()
The difference between fetch_problem() and fetch_customer() is at the end of
the function. When you get a problem from the database, you want more than the
problem record itself. You want information about the customer who has the prob-
lem, and about the history of our work on the problem to date. So in addition to the
usual query against the problems table, fetch_problem() also runs the
fetch_customer() and fetch_history() functions. Here’s the code:

function fetch_problem(&$params)
{
$query = ‘select * from problems where ! = ?’;
if (!empty($params[‘problem_id’]))

Chapter 13: Problem-Tracking System 455

{
$bind = array(‘problem_id’, $params[‘problem_id’]);

}
elseif (!empty($params[‘problem_code’]))
{
$bind = array(‘problem_code’, $params[‘problem_code’]);

}
else
{
user_error(
‘Could not fetch problem: no ID or code specified’
, E_USER_ERROR
);
return FALSE;

}

$dbh = db_connect();

$record = $dbh->getRow($query, $bind, DB_FETCHMODE_ASSOC);
if (!$record)
{
$private_error = ‘fetch_problem: error with query: ‘
. $dbh->last_query

;
user_error(
‘Could not fetch problem from database’
, E_USER_ERROR

);
return FALSE;

}
$params = array_merge($params, $record);
if (empty($params[‘source’]) && !empty($params[‘source_id’]))
{
$params[‘source’] = source($params[‘source_id’]);

}

if (!fetch_customer($params) or !fetch_history($params))
{
return FALSE;

}

return TRUE;
}

456 Part IV: Not So Simple Applications

find_customer()
Remember that you would like to enable users to report their problems over the
Web. In this application, we’ve decided that while a numeric primary key exists for
each user, the application should be able to identify the user by either a phone
number or an email address. So when a user enters information, you will need to
check if someone with an identical email address or phone number has come along.

function find_customer($email=””
,$day_area=’’,$day_prefix=’’,$day_suffix=’’
,$eve_area=’’,$eve_prefix=’’,$eve_suffix=’’

)
{

$wheres = array();
$bind = array();
if ($day_prefix != ‘’)
{

// there must be a prefix for this to be a valid phone
number

$wheres[] = ‘(day_area like ? and day_prefix like ? and
day_suffix like ?)’;

$bind[] = $day_area;
$bind[] = $day_prefix;
$bind[] = $day_suffix;

}
if ($eve_prefix != ‘’)
{

// there must be a prefix for this to be a valid phone
number

$wheres[] = ‘(eve_area like ? and eve_prefix like ? and
eve_suffix like ?)’;

$bind[] = $eve_area;
$bind[] = $eve_prefix;
$bind[] = $eve_suffix;

}
if ($email != ‘’)
{

$wheres[] = ‘(email like ?)’;
$bind[] = $email;

}
if (count($wheres) == 0)
{

// nothing to look for
user_error(

‘find_customer: no wheres supplied’

Chapter 13: Problem-Tracking System 457

, E_USER_NOTICE
);
return FALSE;

}

// run a query with the constructed qualification
// and return the result.
// separate each part of the qualification with OR -
// any part constitutes a valid match.
$query = ‘select * from customers where ‘

. implode(‘ or ‘, $wheres)

. ‘ order by customer_id ‘
;
$results = db_connect()->getAll($query, $bind,

DB_FETCHMODE_ASSOC);
return $results;

}

With this function you will know if the user has an existing record that can be
used or that might need to be updated. Figure 13-6 shows the form for updating
customer data.

Figure 13-6: Form for updating customer information

458 Part IV: Not So Simple Applications

If you are interested, you can set a cookie to make identifying the user a bit

easier.

history_entry()
When a staff member enters an update on a problem, the step is stored in the his-
tory table. If the entry is public the user will be informed of the update by email; if
not, no email will be sent.

function history_entry($problem_id=NULL
, $entry_type_id=NULL
, $entered_by=NULL
, $source=NULL
, $notes=NULL

)
{

if (empty($problem_id))
{

user_error(‘Error: no problem ID for history entry’,
E_USER_ERROR);

return FALSE;
}

if (empty($entered_by)) { $entered_by = ‘customer’; }

$entry_type = entry_type($entry_type_id);
$source_id = source_id($source);

// create a record in the history table

$dbh = db_connect();
$entry_id = $dbh->nextId(‘history’);
$query = ‘insert into history

(entry_id,problem_id,entry_type_id,entered_by,source_id,notes)
values (?,?,?,?,?,?)

‘;
$bind = array($entry_id,$problem_id,$entry_type_id,$entered_by

,$source_id,$notes
);
$result = $dbh->query($query,$bind);
if (!$result)

Chapter 13: Problem-Tracking System 459

{
$private_error = ‘error: could not create history entry: ‘

.’query=’.$query

.’result=’.var_export($result,TRUE)

.’last_query=’.$dbh->last_query
;
user_error(‘Error: could not create history entry’,

E_USER_ERROR);
return FALSE;

}

// update the problem record
$query = ‘update problems set last_entry_id=? ‘;
$bind = array($entry_id);
if ($entry_type == ‘public’)
{

$query .= ‘, last_public_entry_id=? ‘;
$bind[] = $entry_id;

}
$query .= ‘ where problem_id = ? ‘;
$bind[] = $problem_id;
$dbh->query($query,$bind);

// get the email address of the customer who opened this call
// if this was a public history entry, and if the email address
// is not empty
if ($entry_type == ‘public’)
{

$query = ‘select c.email, p.problem_code from problems p,
customers c

where p.problem_id = ? and p.customer_id = c.customer_id
and trim(ifnull(c.email,””)) <> “”

‘;
$email = NULL;
list($email,$problem_code) = $dbh->getRow(

$query
, array($problem_id)
, DB_FETCHMODE_ORDERED

);
if ($email)
{

// we have a valid email address - use it to
// notify the customer that the call record
// has been updated.

460 Part IV: Not So Simple Applications

notify_customer($problem_id,$email,$notes,$problem_code);
}

}
return TRUE;

}

notify_customer()
This function constructs an email and sends it. The email informs the user that his
or her problem is being tracked and provides a link to the page that gives the status
of the problem in the system.

function notify_customer (
$problem_id=NULL
, $email=NULL
, $notes=NULL
, $problem_code=NULL

)
{

// remove any HTML tags from $notes.
$notes = cleanup_text($notes);

$dbh = db_connect();

if (!$problem_code)
{

$problem_code = $dbh->getOne(
‘select problem_code from problems where problem_id = ?’
, array($problem_id)

);
if (!$problem_code)
{

$problem_code = create_problem_code();
$dbh->query(

‘update problems set problem_code = ? where
problem_id = ?’

, array($problem_code, $problem_id)
);

}
}

// build an absolute URL calling the problem_status.php page
// to check on this problem
$problem_url = regular_url(

‘problem.php?problem_code=’.$problem_code

Chapter 13: Problem-Tracking System 461

);
if (strpos($problem_url, ‘/staff’) !== FALSE)

$problem_url = str_replace(‘/staff’, ‘’, $problem_url);

// set the body of the email
$msgtext = <<<EOQ

Problem Update:

$notes

You can check the current status of this problem at

$problem_url

Thanks for your patience.

EOQ;

// set the headers of the email
// the Apache variable $_SERVER[‘SERVER_NAME’] is the name
// of the server we’re running on, minus any port number.

$headers = ‘From: webmaster@’.$_SERVER[‘SERVER_NAME’].”\n”
. ‘Reply-To: webmaster@’.$_SERVER[‘SERVER_NAME’].”\n”
. ‘X-Mailer: PHP/’.phpversion()
. ‘Bcc: webmaster@’.$_SERVER[‘SERVER_NAME’].”\n”

;

// send the email
return mail($email, ‘Problem Update’, $msgtext, $headers);

}

PHP will have to be able to find sendmail or another SMTP-compliant mail

server in order for this to work. Check your php.ini file if you’re having

problems.

status_change()
The status of a problem is going to be something like “open,” “closed,” or “pending.”
If it changes you are going to want to mark the exact change and record something
like “Status changed to closed by John.” The change should be recorded in the his-
tory table.

462 Part IV: Not So Simple Applications

function status_change($problem_id=NULL
, $entered_by=’customer’
, $new_status_id=NULL
, $old_status_id=NULL

)
{

$error = NULL;
if (empty($problem_id))
{

$error = ‘No problem ID supplied for status change’;
}
elseif (empty($new_status_id))
{

$error = ‘No new status ID supplied for status change’;
}
elseif (!($new_status = status($new_status_id)))
{

$error = “New status ID $new_status_id is not valid.”;
}

if ($error)
{

user_error($error, E_USER_WARNING);
return FALSE;

}

// just return if no change - not an error condition,
// just a no-op
if ($old_status_id == $new_status_id)
{

return TRUE;
}

if (empty($entered_by)) { $entered_by = ‘customer’; }

// get the ID of the entry_type ‘public’, and construct
// a string containing the new status value and either
// the real name of the staff member who made the change,
// or the value of $entered_by if no matching staff
// member is found. for example, if the staff member Joe Blow
// closes a call, the notes field will be set to
// ‘Status set to Closed by Joe Blow’. if a customer
// re-opens a call, notes will be set to

Chapter 13: Problem-Tracking System 463

// ‘Status set to Re-opened by customer’.

$entry_type_id = entry_type_id(‘public’);
$notes = “Status set to $new_status by “;
if ($entered_by != ‘customer’ && isset($GLOBALS[‘staff_name’]))
{

$notes .= $_GLOBALS[‘staff_name’];
}
else
{

$notes .= $entered_by;
}

history_entry($problem_id, $entry_type_id, $entered_by,
‘program’, $notes);
}

create_problem_code()
This function creates a unique and highly random 8-character alphanumeric code.

function create_problem_code()
{

return substr(md5(uniqid(rand())),0,8);
}

Scripts
Here are the pages that are actually called by URLs and include statements.

problem.php
This page does little but call either the enter_problem() or update_problem()
function.

require_once(‘header.php’);

$params = $_REQUEST;
$params[‘entered_by’] = ‘customer’;
$params[‘source’] = ‘web’;

if (empty($params[‘problem_code’]))
{

enter_problem($params);
}

464 Part IV: Not So Simple Applications

else
{

update_problem($params);
}

problem_entry_form.php
Mostly this form makes calls to the functions in your /book/functions/ folder. It
prints the form shown in Figure 13-1 and determines the default information in the
form. The call_entry.php page will include this page.

The interesting part of this script is its use of a template class to define the
appearance of the generated HTML document. The variable $tpl is defined as a
template_object():

$tpl = template_object();

It is then loaded with an HTML template (problem_entry.html) that includes sev-
eral named variables in its code.

These named variables come in handy when it’s time to enter dynamic informa-
tion into the HTML document. The general procedure for writing to a named block
is this:

$tpl->setCurrentBlock(block_name’);
$tpl->setVariable(‘template_variable_name’,$local_variable_name);
$tpl->parseCurrentBlock();

This strategy enables you to enter programmatically determined values — typi-
cally from database lookups — into templates, and to have the templates apply stan-
dardized formatting. It insulates you from formatting issues, which can be no end
of trouble. Here is the complete listing:

function problem_entry_form(&$params)
{

global $default_page_title;

$tpl = template_object();

if ($tpl->loadTemplatefile(‘problem_entry.html’) === FALSE)
{

user_error(
‘Could not load problem entry template’
, E_USER_ERROR

);

Chapter 13: Problem-Tracking System 465

}

if (!empty($params[‘error_messages’]))
{

foreach ((array)$params[‘error_messages’] as $error_message)
{

$tpl->setCurrentBlock(‘error_messages’);
$tpl->setVariable(‘error_message’,$error_message);
$tpl->parseCurrentBlock();

}
}

if (!empty($params[‘dup_results’]))
{

foreach ((array)$params[‘dup_results’] as $result)
{

$tpl->setCurrentBlock(‘dup_row’);
foreach ($result as $f => $v)

$tpl->setVariable(“dup_{$f}”, $v);
$tpl->parseCurrentblock();

}
}

$tpl->setCurrentBlock(‘problem_entry_form’);
$tpl->setVariable($params);
$tpl->setVariable(‘form_action’, $_SERVER[‘PHP_SELF’]);
$tpl->parseCurrentBlock();

// actually display something, finally...
print start_page($default_page_title.’: Enter New Report’);
$tpl->show();
print end_page();

}

The form will be submitted to the page that called it. That page in turn ends up
calling the write_customer() function, which is discussed next.

write_customer.php
This function is long, if not terribly complicated. We will mention interesting parts
as they present themselves. It’s easiest to figure out by actually looking at it the
variety of actions this function can accomplish.

This page is largely a series of nested if...else statements. The simplest case is
that in which all or part of the customer record — as identified by the
customer_id— exists in the database already and when none of the information

466 Part IV: Not So Simple Applications

entered into the form conflicts with anything that’s in the database. If that’s so, we
just pick up the customer information and move along.

A more complicated situation exists when more than one record matches the
email and/or phone numbers entered into the form or when a single record matches
but differs in other respects from what’s in the database. The procedure here is to
show all matching records to the customer and allow him or her to take any of sev-
eral actions:

◆ Create a new record

◆ Choose one of the existing records to be used without modification

◆ Choose an existing record, merging it with the information in the form

Here is the complete listing of the function:

function write_customer(&$params)
{
$dbh = db_connect();

$output = TRUE;

$action = ‘insert’;
$duplicate = NULL;

// set up default variables for all the fields in customers table
// we end up with a key in params for every field in customers,
// set to NULL if we have no value
$customer_fields = $dbh->getCol(‘describe customers’);
foreach (array_diff($customer_fields, array_keys($params)) as $k)
$params[$k] = NULL;

// extract($params, EXTR_REFS);
// workaround for “BOGUS” bug #24630 with extract() :
// extracting with the EXTR_REFS flag will make any
// variables used in *creating* the array into
// references as well
foreach (array_keys($params) as $k)
$$k =& $params[$k];

// the hours for day and evening phones are filled in by default.
// if no phone number is given, set them to NULL

if (empty($day_prefix)) { $day_start = NULL; $day_end = NULL; }
if (empty($eve_prefix)) { $eve_start = NULL; $eve_end = NULL; }

Chapter 13: Problem-Tracking System 467

// the $action variable will be set to reflect what the script
// should do with the customer data as it passes through a
// myriad of tests. by default, create a new customer record

$errors = array();

// if we’ve been through this once already, the user may
// have passed on instructions
$dup_action = NULL;
if ($duplicate)
{
list($customer_id,$dup_action) = explode(‘-’,$duplicate);

}

// use the validate_email() function (defined in
// /book/functions/CheckEmail.php) to validate the format of the
// email address. (note: this does *not* verify that the email
// address is a real one, only that it looks like one.)

if (!validate_email($email)
&& empty($day_prefix)
&& empty($eve_prefix)

)
{
// we have to have either an email address or a phone number
// to contact the user. if we don’t, print out an error.
$errors[] = <<<EOQ

Without either a valid email address or a phone number,
we can’t contact you to resolve your problem.
Please enter at least one of these items
and submit your problem again. Thank you.

EOQ;
$action = ‘problems’;

}
elseif ($customer_id)
{
// we have a database ID for a specific customer record
$record = array(‘customer_id’ => $customer_id);
fetch_customer($record);

if ($dup_action == ‘merge’)
{
// the user has checked a radio button indicating

468 Part IV: Not So Simple Applications

// that we should combine the information in the form
// with the existing record in the customer table.

// begin parsing customer record.
foreach ($record as $field => $value)
{
if (is_string($value))
{
$value = trim($value);

}
if (is_string($$field))
{
$$field = trim($$field);

}
// for each column from the database record
if ($value != $$field && empty($$field))
{
// the value from the form ($$field -
// i.e. the variable with the same name
// as the column) is blank, and the
// current value of the column
// in the database is not blank.
// overwrite the form value with
// the value from the database.
$$field = $value;

}
}
// end parsing customer record.

// set $action to indicate that we should update
// the customer record, using the information from
// the form (which has been overwritten when called
// for above).
$action = ‘update’;

}
elseif ($dup_action == ‘override’)
{
// the user has checked a radio button indicating
// that all the information in the current database
// record should be overwritten by the values from
// the form.

// set $action to indicate that we should update
// the customer record using the information from

Chapter 13: Problem-Tracking System 469

// the form.

$customer_code = $record[‘customer_code’];
$action = ‘update’;

}
else
{
// use the customer’s record from the database
extract($record);
$action = ‘none’;

}
}
elseif ($dup_action == ‘add_as_new’)
{
// the user has clicked on a radio field indicating that
// a new customer record should be created.

// set $action to indicate that we should create a new record.
// with the information from the form.
$action = ‘insert’;

}
else
{
// either we haven’t checked for duplicate customer records yet,
// or the user didn’t tell us what to do about them.

// use the find_customer() function (defined in functions.php)
// to look for any existing customer records which might
// match the customer described in the form.

$result = find_customer($email
, $day_area, $day_prefix, $day_suffix
, $eve_area, $eve_prefix, $eve_suffix

);
if (count($result) == 0)
{
// either we don’t have any contact information,
// or no record was found matching this one.
// set $action to indicate that we should go ahead
// and create a new record.
$action = ‘insert’;

}
else
{
$action = ‘problems’;

470 Part IV: Not So Simple Applications

if (count($result) == 1)
{
// we found exactly one record which might match
// the form.
// get that record from the database, trimming
// strings and removing empty fields
$row = array_filter($result[0], ‘notempty’);

// do the same for current field values
$current = array_filter($params,’notempty’);

// check for differences
$diff = array_diff($row,$current);
foreach (array_keys($diff) as $k)
{
if (empty($current[$k]))
{
unset($diff[$k]);

}
}
if (!empty($diff))
{
// $errors[] = var_export($diff, TRUE);
$customer_id = 0;

}
else
{
$action = ‘none’;
extract($result[0]);

}
}
if ($action == ‘problems’)
{
$params[‘dup_results’] = $result;

}
}

}

if ($action == ‘problems’ || count($errors) > 0)
{
$params[‘error_messages’] = $errors;
return FALSE;

}

if ($action == ‘none’)

Chapter 13: Problem-Tracking System 471

{
// no change to existing customer record

}
else
{
// remove customer_id and customer_code from list of fields
// at first
$fields = array_diff(
$customer_fields
, array(‘customer_id’, ‘customer_code’)

);
$bind = array_key_value($params,$fields,NULL,’list’);
$where = NULL;
if ($action == ‘insert’)
{
// create a new customer record
$customer_id = $dbh->nextId(‘customer’);
$bind[] = $customer_id;
$fields[] = ‘customer_id’;
// use the code for their first problem as a customer code
if ($problem_code === NULL)
{
$problem_code = create_problem_code();

}
$customer_code = $problem_code;
$bind[] = $customer_code;
$fields[] = ‘customer_code’;
$mode = DB_AUTOQUERY_INSERT;

}
elseif ($action == ‘update’)
{
// update an existing customer record
$bind[] = $customer_id;
$where = ‘ customer_id = ? ‘;
$mode = DB_AUTOQUERY_UPDATE;

}
else
{
$private_error = “unknown value for action: $action”;
push_handler(E_ALL, H_DEBUG);
$debug = E_ALL;
user_error(‘Error creating problem record’, E_USER_ERROR);
return FALSE;

}
$stmt = $dbh->autoPrepare(‘customers’, $fields, $mode, $where);

472 Part IV: Not So Simple Applications

$output = $dbh->execute($stmt, $bind);
if (!$output)
{
$private_error = ‘error updating customers: <pre>’
.$dbh->last_query.’</pre>’;

user_error(‘Error updating customer record’, E_USER_ERROR);
return FALSE;

}
// $params = array_merge($params, compact($fields));

}
$params[‘action’] = $action;
return $output;

}

staff/problems.php
This is where you expect the staff members to log in to the application. Note the use
of the staff_authenticate() function, which calls the authenticate() function
we’ve been using throughout the book. Before a staff member can log in, he or she
must enter a valid password and username.

The page is going to show two lists of queries, a list of calls owned by the cur-
rently logged-in staff member, and a list of unowned calls, probably stuff that has
been entered over the Web.

require_once(dirname(__FILE__).’/header.php’);

$params = $_GET;
$last_list_value = NULL;

if (empty($params[‘customer_code’]))
{

// get a list of all open unowned problems (in the hopes
// that the current user might grab one) and the current
// user’s open problems. include information from the
// last entry in the history table for each problem.

$params[‘where’] = ‘ status_id <> ? and ifnull(staff_id,?) = ?
‘;

$params[‘bind’] = array(status_id(‘Closed’), $staff_id,
$staff_id);

$params[‘order_by’] = ‘ staff_id, last_entry_dt asc ‘;
$list_titles = array(

‘’ => ‘Unowned Calls’
, $staff_id => ‘Open Calls for ‘.$staff_name

);

Chapter 13: Problem-Tracking System 473

$list_key = ‘staff_id’;

}
else
{

fetch_customer($params);
$list_titles = array(

$params[‘customer_code’] =>
‘Calls for ‘.$params[‘firstname’].’

‘.$params[‘lastname’]
);
$list_key = ‘customer_code’;
$last_list_value = $params[$list_key];

}

fetch_problems($params);

$tpl = template_object();

$tpl->loadTemplatefile(‘problem_list.html’,TRUE,TRUE);

$neparams = array_filter($params, ‘notempty’);
$tpl->setVariable($neparams);

$first_list_value = $last_list_value;

foreach ($params[‘problems’] as $row)
{

if ($row[$list_key] !== $last_list_value)
{

$tpl->setCurrentBlock(‘problems’);
$tpl->setVariable(‘list_title’,

$list_titles[$last_list_value]);
$tpl->parseCurrentBlock();
$last_list_value = $row[$list_key];

}
if ($row[‘source_id’])

$row[‘source’] = source($row[‘source_id’]);
else

$row[‘source’] = ‘No Source ID’;
if ($row[‘status_id’])

$row[‘status’] = status($row[‘status_id’]);
else

474 Part IV: Not So Simple Applications

$row[‘status’] = ‘No Status ID’;
$tpl->setCurrentBlock(‘problem’);
$tpl->setVariable($row);
$tpl->parseCurrentBlock();

}
if (count($params[‘problems’]) > 0 && $last_list_value !=
$first_list_value)
{

$tpl->setCurrentBlock(‘problems’);
$tpl->setVariable(‘list_title’, $list_titles[$last_list_value]);
$tpl->parseCurrentBlock();

}
if (empty($params[‘customer_code’]))
{

$tpl->touchBlock(‘general_problem’);
}
else
{

$tpl->setCurrentBlock(‘customer_problem’);
$tpl->setVariable(‘customer_code’, $params[‘customer_code’]);
$tpl->parseCurrentBlock();

}

print start_page();

$tpl->show();

print end_page();

Summary
The application presented in this chapter is very useful, as just about every
information-services department will have some sort of system to track user com-
plaints. As we stated at the beginning of this chapter, the problem-tracking system
presented here is fairly generic. However, it can definitely be the basis for a more
detailed application that you’d custom-design for use in the workplace.

Chapter 13: Problem-Tracking System 475

Chapter 14

Shopping Cart
IN THIS CHAPTER

◆ Creating a secure site

◆ Working with PHP sessions

◆ Communicating with a credit-card-authorization service

IN THIS CHAPTER YOU are going to learn what you need to create a shopping-cart appli-
cation using PHP and MySQL. But this application is different from the others in this
book in that it’s really impossible to talk about what you need for it without delving
into some other topics. In addition to understanding the schema and the PHP code,
you need to have a basic understanding of how to maintain state between pages. (If
you don’t know what that means, don’t worry, we’ll get to it momentarily.) Also, you
need to know how to securely process credit-card transactions.

Don’t read another sentence if you have not read through Chapter 12. You

must understand how the catalog works before you can take this on. For rea-

sons that shouldn’t be too tough to understand, we built the shopping cart

atop the catalog.

Determining the Scope and
Goals of the Application
Anyone familiar with the Web knows what a shopping cart does. But it will be a bit
easier to understand what the code for this application is doing if we explicitly state
some of its purposes.

First, the application is going to have to display your wares; for this you reuse
the code from Chapter 12. Further, users have to be able to choose items that they
want to buy. Obvious, we know. Note what must happen after a user chooses an
item: The exact item must be noted, and the user should have the opportunity to
continue shopping. The server must remember what has been ordered. As the user
continues to browse, the server must keep track of the user and allow him or her to
check out with his or her requested items. 477

This functionality requires you to use some method for maintaining state — that
is, the Web server needs to remember who the user is as he or she moves from page
to page. Now, you might recall that in the introduction to this book we discussed
the stateless nature of the Web and the HTTP protocol that the Web makes use of.
After responding to an HTTP request, the server completely and totally forgets what
it served to whom. The server takes care of requested information serially — one at
a time, as requests come in. There is no persistence, no connection that lasts after a
page has been served.

To give your site memory so that, in this case, the cart can remember who
ordered what, some information that identifies the user must be sent with each
page request. On the Web, you can store this information in exactly five ways:

◆ You can set a large cookie (a nugget of information that’s stored —
possibly in a persistent file — on the client machine) containing all
information about the state of the transaction and, in this case, the
contents of the shopping cart. Each time a request is made, the informa-
tion stored in the cookie is sent to the server. Note that the browser stores
the cookie information in a small text file (or in RAM) and sends the
information to the server with each request.

◆ You can set a small cookie that merely identifies the user to the server.
With the identifier, the server can find a database record that contains all
further information about state.

◆ You can make users use unique URLs (typically, they’ll call server-side
programs with unique, identifying, arguments). These work like the pre-
vious “small cookie” strategy, but enable users to have cookies turned off.

◆ You can send hidden data about the state to be kept on the user’s
screen and resent (posted) with the next request. The session-identifying
information can be stored in hidden form fields.

◆ You can send hidden data to merely identify the user to be kept on the
user’s screen and resent (posted) with the next request. Then the user-
identifying data are used on the server to find a database record that
contains all further information about state.

What do you need?
Since you are building this application atop the catalog, much of the code and infor-
mation should be very familiar. The one notable thing that is going to be added to
every page is a button that lets people go directly to the checkout. Figure 14-1 shows
an example.

478 Part IV: Not So Simple Applications

Figure 14-1: Category page with checkout button

What do you need to prevent?
You need to be careful about two things:

◆ Making sure you can track your users from page to page

◆ Keeping credit-card numbers and other personal information away from
prying eyes

The Data
The database used here is added to the catalog database. Information about goods
still comes from the tables reviewed there, while information on orders is stored in
the tables shown here.

The data schema here, represented in Figure 14-2, should look familiar if you
studied Chapter 1 and Chapter 12.

Chapter 14: Shopping Cart 479

Figure 14-2: Cart schema

Configuration Overview
This application is specialized enough to require its own configuration. All the chal-
lenges discussed earlier (maintaining state, securely gathering credit-card informa-
tion, and processing that information) not only require specialized code, they require
some unique installation options.

Configuring for encryption and security
If you have a lot of experience with Apache and its related tools, this configuration
might not be too big a deal; or if you are using an ISP and don’t have the authority
to install programs on a box, you won’t need to worry about the specialized instal-
lation necessary to work with e-commerce.

addresses

address_id
user_id
address
address2
city
state
zip
phone

items

order_id
item_id
product_id
style_id
substyle_id
qty
price
total_price

users

user_id
email
firstname
lastname

shipping

shipping_id
shipping
per_order
per_item

cc_types

cc_type_code
cc_type

orders

order_id
user_id
address_id
status_id
total_price
shipping_id
ship_cost
cc_number
cc_exp_yr
cc_exp_mon
cc_type_code
create_dt

status

status_id
status

480 Part IV: Not So Simple Applications

But in any case, you should have an idea of the tools you need to get all of this
working. First, we cover the basic theories behind encryption and Web security. We
then cover some of the mandatory tools for your Apache installation. Finally, we
cover some of the options PHP offers for maintaining state and processing credit-
card transactions.

ENCRYPTION AND SECURITY THEORY
One of the best things about working around the Web is having first-hand knowl-
edge of the work done by people smarter than yourself. Some of the most intense,
complex, and difficult work being done is in the realm of security. This is algorithm-
heavy stuff, and to really understand how the protocols work, you need to know
quite a bit of math. Luckily, you don’t need to have an advanced degree to under-
stand the theories, and putting them into practice really isn’t too bad.

PUBLIC-KEY/PRIVATE-KEY ENCRYPTION Machines on the Web make use of a
public-key/private-key security scheme. Basically this means that computers that
wish to communicate using encrypted data must have two keys to encrypt and
decrypt data. First there is the public key. As the name suggests the public key is not
hidden. It is available to all those you wish to communicate with.

However, the public key is good only for encrypting data. If you encrypt data
with the public key and then try to decrypt it with the same key, it won’t work,
because of a very complicated piece of math called a one-way hash. The messages
can be decrypted only by the private key. As the name implies, the private key is
kept private. No one but you has access to it.

So, for example, suppose you want to send some credit-card information to a
bank for processing. You have access to the bank’s public key, with which you
encrypt the information. But because of the complex algorithms involved, only the
private key held by the bank can decrypt the data.

CERTIFICATES Even with the public-key/private-key safeguards, the banks have
one major concern: that the messages they are getting are not from the sources they
appear to be from. That is, if you are running sofamegastore.com, the bank needs
to make sure that the request for credit-card authorization for that loveseat is actu-
ally from Sofa Megastore, not someone who is pretending to be Sofa Megastore.
This confirmation requires a third party.

The encrypted messages that you send and receive have a signature of sorts, but
that signature must be verified. For this reason, organizations that wish to commu-
nicate over the Web make use of organizations that distribute digital certificates
that verify the sender of a message. Mechanisms for keeping certificates secure and
making them useless if stolen are quite complicated. So it should make sense that
you need to go to one of these organizations to get your public and private keys.

Chapter 14: Shopping Cart 481

Probably the best-known organization involved in security certificates is

VeriSign. You can find out about their offerings at this site: http://www.
verisign.com/products/site/ss/index.html.

SECURE PROTOCOL HTTP by its very nature is open to eavesdropping. Packets
that move across the Internet’s routers are full of messages just waiting to be
sniffed and read. Normally, the fact that you can easily read data sent via HTTP is
a good thing. It makes the transfer and rendering of information quite simple.
However, in cases where you need security, HTTP won’t work well.

For example, if you are giving credit-card information to a site — for example,
the commerce site you set up — you want to make sure that the information is
unreadable. To ensure that, you need to make use of the Secure Sockets Layer, or
SSL. SSL is an additional protocol by means of which the keys and certificates from
your site are transferred to a browser or another server. Over SSL, your browser is
able to verify the certificate from your site so that it knows you are who you say
you are. Sites can also use it to verify each other’s identity.

All the encryption in the world can’t stop someone who has hacked into

your box or who has legitimate access. Most credit-card theft is done by

dishonest employees with too much access.

ENCRYPTION AND SECURITY TOOLS
Given what you have just read about encryption and security, it probably stands to
reason that you are going to need some new tools. Here’s a basic rundown.

First off, you are going to need to add SSL to Apache. As with everything else
discussed in this book, adding SSL does not require you to pay for specialized soft-
ware. All you need to do is install Apache with mod_ssl (which you can read more
about at http://www.modssl.org). You’ll want to have a look at the products of
the Apache-SSL project as you configure your server for secure connectivity.

The process of installing SSL modules is documented by the project teams and is
best found on the Web, so we won’t cover it here. If you are having trouble getting
mod_ssl, PHP, and MySQL to work for you, we recommend this site, which goes
through the installation step by step: http://www.devshed.com/Server_Side/
PHP/SoothinglySeamless/page8.html. Even though it deals with rsaref, which is
no longer strictly required, the steps remain valid.

Configuring Apache for credit-card authorization
When Apache is configured with SSL your site is able to talk to browsers securely.
If the URL starts with https:// the browser knows to look on port 443 and to look

482 Part IV: Not So Simple Applications

for a certificate. However, the question of how your site talks with the entity that
processes credit cards and either accepts or rejects the transaction still exists.
Fortunately, PHP’s integration of HTTP streams with its regular file-handling func-
tions, like fopen() and file_get_contents(), has gotten even better. If PHP is
built with SSL enabled, you can use these functions to exchange data with your
credit-card processor via a secure connection. (Be aware, though, setting up the
certificates for use in this way is more complicated than it is to go to an https://
URL in your browser. The bank or service you choose will have more information
on their requirements for you.)

Configuring for session handling
When we start breaking down the code, you can see the exact functions you need
in order to work with sessions. But while talking about configuration options it’s
best to cover the different ways sessions can be implemented in PHP. However, first
we present a little about what sessions in PHP actually do.

Suppose you want to track the activity of your users across a number of pages,
as with this shopping cart. You need to remember who has put what in a cart. To do
this you could pass some rather complex variables via a cookie that holds all the
elements and their prices, but that approach is kind of messy and might expose
more of the workings of your application than you are comfortable exposing.
Moreover, the cookie specification (http://www.netscape.com/newsref/std/
cookie_spec.html) allows only 20 cookies per domain and only 4 bytes per cookie.

A better idea is to give each person who visits your site a unique identifier, some
value that identifies who that person is. Then, as the user adds items to the cart,
information associated with the unique identifier can be stored on the server. If you
were to code a function that stored the information by hand, you might create a
unique string that would be put in a cookie; then, in some directory on the server,
you could have a file that has the same name as the unique user ID. Within that file
you could store all the variables associated with the user. For example, you might
store an array of items that a specific user put in his or her cart.

In fact, this is a description of almost exactly what sessions do. When you indi-
cate in your code (or by settings in your php.ini) that you’d like to start a session,
PHP creates a unique identifier and an associated file, which is stored on the server
(the location is set in the php.ini and, by default, is in the /tmp directory). Then, as
a user moves from page to page, all the variable information that the user chooses
can be stored in the file on the server, and all the script needs to keep track of is the
unique identifier.

Many configuration options are possible when it comes to sessions, but probably
the most important decision is whether the session ID is propagated in a URL or in
a cookie. Most e-commerce sites make use of cookies. However, it is possible that
some of your users will not be able to use your site properly if they have their
browsers set to reject cookies. For this reason, in PHP it is very easy to include the
session ID in the page request. You have two options.

Chapter 14: Shopping Cart 483

◆ First, you can append the session identifier to the URL, as in this example:
http://www.fakeo.domain/?SID=ABCDEFG. That corresponds to the HTTP
GET operation.

◆ Alternately, you can include the session identifier in a hidden form field,
which is submitted to the server when the form in which it is embedded
is submitted. This corresponds to the HTTP POST operation.

However, this is NOT recommended. Though it’s theoretically possible for a ses-
sion to be “hijacked” in some way no matter how you set things up, putting the
session cookie in as highly visible a place as the URL or the source of the form
makes life easier for anyone trying to break in. It might be better in the long run to
try to guide any recalcitrant users into allowing you to give them a cookie.

Code Overview
As you might have guessed by now, this example uses two function sets that are
relatively unique:

◆ The functions that deal with sessions

◆ The functions associated with the cURL library

We cover both sets of functions in some detail in this section.
First, though, we need to make another note about the advantages of the object-

oriented approach. When you read Chapter 12 (you did read Chapter 12, right?) you
saw some of the principles of object-oriented programming in practice. Specifically,
you might have noticed how inheritance is used. When a class inherits the proper-
ties and methods of a parent class, it has access to all of the methods and properties
of the parent.

In this application you are extending the code you used in the catalog, so it
makes sense that this application creates classes that extend the classes used in the
catalog. Please be sure you are familiar with the catalog classes in Chapter 12
before proceeding.

Session functions
If you head over to the session page in the PHP manual (http://www.php.net/
manual/ref.session.php), you will find at least 20 different functions. Depending
on your needs, you may have to use a majority of these, but in many circumstances
you can get away with using one: session_start(). The actual storing of vari-
ables in your session data, and removal of them, is just a matter of setting or unset-
ting a value in the $_SESSION superglobal array, once you’ve started your session.

484 Part IV: Not So Simple Applications

session_start()
This function either starts a new session or resumes your current one, allowing you
to maintain data across a number of request/response transactions. You’ll call this
every time you want to start session tracking. The most likely source of trouble you
will have with this function is when you have stored an object in your session. The
class definition must have already been loaded before the session is re-started. As
of PHP 5, this will become less of a pain, however, since you can define an
__autoload() function that will search your include path for any as-yet unloaded
class files when the session begins.

session_destroy()
This function kills a session and all the variables associated with it. You might want
to call this to enable a “fresh start” through an application, such as when a user
completed a game or logged out from a special area.

session_set_save_handler()
This interesting function enables you to set your own methods for storing, retriev-
ing, and writing your own session handlers:

void session_set_save_handler (string open, string close, string
read, string write, string destroy, string gc)

For a good deal of the time, the file-based session management in PHP is fine.
However, in a couple of circumstances it might not suit you. If you happen to be
working in a clustered environment (one in which several machines are serving the
same site), writing to the local file system really won’t work. Similarly, your SSL-
enabled Apache installation may reside on a machine other than your main server.

In this case a better choice is to have all the machines connect to the same data-
base and to have your database (MySQL, of course) store the session data. It was
unnecessary for us to make use of this function when we created this application
because we were working with only one physical server. However, if you need to
store session data in a MySQL database, you can use the functions in Appendix H.

session_encode()
To write variables to a database you must put them in a format that makes sense to
the database. That is what the session_encode function does. You can see examples
of this in Appendix H.

$str = session_encode()

session_decode()
This function reverses the process of encoding, so that the variable is turned into a
representation that PHP can work with. You can see examples of this in Appendix H.

Chapter 14: Shopping Cart 485

Dealing with the credit-card processor
You are going to need to get some information directly from the entity processing
the transaction. Most processing companies that we’ve seen work similarly. You
send them a request with all the expected credit-card information — number, expi-
ration date, address, and so forth — and they send you some codes in response.

Your PHP script needs to compare the codes it receives with the values you get
from the processing agency.

For this application we use (well, pretend to use) Authorize.Net as the credit-card
processor, which seems to work just fine.

Code Breakdown
As with the catalog, here you start by looking at the classes that come into play in
this application. Again, the files accessed via the URLs are very high-level files; all
the tough work is done in the class files.

As already mentioned, one of the goals of this application is to make use of the
classes you created in the catalog. You want to write as little new code as possible,
so the new classes here inherit the methods and properties in the classes you’ve
already created.

One class from Chapter 12 doesn’t quite do enough for inclusion in the cart. That
is the Base class. In this chapter you’re going to create another Base class with some
extended functionality. Then all you have to do is make sure that the categories that
extend Base call your new version. This is easily done with require_once() state-
ments. In your classes.php file you include the CartBase class, and then, when a
class that extends CartBase is included, the extending class sees the new class.
When you look at the classes.php file, remember that the entire content of each of
the included files is sucked into this file when the main file is parsed by PHP.

Classes
These classes have methods that look very much like the methods in the Category,
Product, and other classes from Chapter 12. Those worked well because products
have a natural hierarchy: Categories contain products, products contain styles, and
styles contain substyles. For a shopping cart a hierarchy of user information exists:
A user can have many addresses, many orders can go to an address, and many
items can belong in a single order. These relationships are represented and man-
aged in this application by the Tree class.

We start by looking at the Request class, another general purpose class similar
to Base and Tree, that handles HTTP requests.

486 Part IV: Not So Simple Applications

REQUEST CLASS
In the two example classes we provide for packaging up your user’s credit card
information all neatly for some card processing company, there’s just one line that
does quite a bit:

$results = Request::post($url, $args);

This sends an array of data and a URL off to the Request class, and receives the
OK or not-OK from the card processor. Looks fairly simple on the outside, which is
somewhat the point. But there’s quite a bit going on inside.

This is especially true for POST requests (GET requests, being ultimately just long
URLs, are easier to manage.) In previous versions, you had to explicitly open a
socket to port 443 yourself, and do most of the work of reading data, checking for
blocks, and so on. PHP 5 largely does that for you now. Instead, you need to set up
what are called “stream context options.” These are parameters to tell the PHP code
handling the communication with the server what kind of content headers to send,
where your SSL certificates are, among other things. Here’s what that code looks
like in the Request class:

$context = stream_context_create(
array(‘http’ => array(

‘method’ => ‘POST’
, ‘user_agent’ => ‘Mad/Fish 1.0’

))
);
stream_context_set_option(

$context
, ‘http’
, ‘header’
, “Content-type: {$content_type}\r\n”
.’Content-length: ‘.strlen($request_content).”\r\n”

);
stream_context_set_option(

$context
, ‘http’
, ‘content’
, $request_content

);

We begin by creating a stream context of type ‘http,’ telling it that we will be doing
a POST, and setting up a user agent. Then we spell out the content type and length —
the type for a POST request is typically “application/x-www-form-encoded.” Finally,
we attach the actual content of the post — the URL-encoded version of the array we
passed in as an argument to this function.

Chapter 14: Shopping Cart 487

Then to do the POST and get a response, we have this tricky bit of coding:

$results= file_get_contents($url,false,$context);

Yes, that’s it. Just like reading in a file, or downloading a web page from a URL.
This will return the body of the response. To see the HTTP headers that came with
it, you’ll need to check the global variable $http_response_header.

TREE CLASS
We’ve set up this shopping-cart application to use a generalized tree structure to
represent relationships among database records — individual records can have par-
ents and children. Therefore, a Tree class exists for making queries against the
database and interpreting the results in terms of tree structure.

Essentially, you pass to the node() method (shown following) the kind of object
you want to organize in a hierarchy, which determines what table is queried, what
the key field name is, and what class is created for each child record found.

function node($o=NULL)
{

if ($o !== NULL)
{

if (is_object($o) && is_a($o, ‘base’))
{

$class = get_class($o);
if ($this->node !== NULL

&& $o !== $this->node
&& $class == $this->node_class

)
{

$props = array_merge(
get_object_vars($this->node)
, get_object_vars($o)

);
foreach ($props as $k => $v)
{

$o->$k = $v;
}

}
$this->node = $o;
$this->node_class = get_class($o);
$this->idfield = $o->idfield;
$this->table = $o->table;

}
else

488 Part IV: Not So Simple Applications

{
return FALSE;

}
}
elseif ($this->node === NULL)
{

return FALSE;
}
return $this->node;

}

Once you have a tree in place in your database, you can use the predict_
children() method to pull up all the descendants of a given ID value (or set of
values) at one time, out to an arbitrary number of generations: the depth. The depth
can be sent as a parameter, but it may be a better idea to let the method go to the
default value set in the class constant Depth (referred to in code as Tree::Depth).
You can set Tree::Depth to match the structure you’ve established for your data.

So what does a predict_children() query do? A query out to a depth of 3
looks like this:

select g0.product_id as g0_id
, g1.product_id as g1_id
, g2.product_id as g2_id
, g3.product_id as g3_id

from products g0
left join products g1 on g0.product_id = g1.parent_id
left join products g2 on g1.product_id = g2.parent_id
left join products g3 on g2.product_id = g3.parent_id

where g0.product_id in (1)

and the results look like this:

+-------+-------+-------+-------+
| g0_id | g1_id | g2_id | g3_id |
+-------+-------+-------+-------+
1	3	5	8
1	3	5	9
1	3	6	NULL
1	3	7	NULL
1	4	10	NULL
1	4	11	NULL
1	4	12	NULL
1	22	NULL	NULL
+-------+-------+-------+-------+

Chapter 14: Shopping Cart 489

In other words:

◆ Record 1 has three children: 3, 4, 22

◆ Record 3 has three children: 5, 6, 7

◆ Record 5 has two children: 8, 9

◆ Record 4 has three children: 10, 11, 12

The predict_children() method represents these data as a tree, creating a new
object for each record. The actual data are stored in the $all_data property; the
other properties are arrays of references into $all_data.

You know that the tree has been represented completely if the last column is
NULL for all the records. If it’s not, that can mean that more child records remain to
be found, and the function can run again starting at that depth. In terms of the
shopping cart application, this means we can extract the entire contents of our Tree
objects.

ADDRESS CLASS
The Address class exists for the purpose of manipulating the Address table — a
design characteristic of applications like this. The key function is write_to_db(),
which verifies that a user_id value has been provided, and that either modifies an
existing record or creates a new one corresponding to it.

class Address extends CartBase
{

var $table = ‘addresses’;
var $idfield = ‘address_id’;
var $what = ‘address’;
var $fields = array(

‘address_id’,’user_id’,’address1’,’address2’,’city’,’state’,’zip’,’p
hone’

);

var $id = NULL;
var $address_id = NULL;
var $user_id = NULL;
var $address1 = NULL;
var $address2 = NULL;
var $city = NULL;
var $state = NULL;
var $zip = NULL;
var $phone = NULL;

490 Part IV: Not So Simple Applications

var $save_as_new = NULL;

// Methods:

function write_to_db()
{

if (empty($this->user_id))
{

$this->error = ‘user_id required to save address’;
trigger_error($this->error, E_USER_WARNING);
return FALSE;

}
if ($this->save_as_new)
{

// if the save_as_new property is set,
// then create a new address record by setting
// the id to NULL
$this->address_id = NULL;

}

// update the addresses table
$result = parent::write_to_db();
return $result;

}
}

ORDER CLASS
The Order class corresponds to the Order table and so features fields and methods
that adjust and examine the contents of that table. It also contains the
charge_card() function, which sends a transaction (over an SSL link, naturally) to
an authorization center. Here is that code:

function charge_card()
{

if (!$this->validate_card())
{

return FALSE;
}

$this->calculate_total();
$total_charged = $this->total_price + $this->shipping_cost;

// pass it off to one of the Charge subclasses
return AuthorizeNet::sale($this);
// return IONGATE::sale($this);

}

Chapter 14: Shopping Cart 491

Notice that near the end, the return value is forced TRUE. This is for testing pur-
poses. In reality, your authorization house returns a value for auth_result that
determines whether the function returns TRUE or FALSE.

Scripts
These are the pages called by URLs and the includes. You will probably notice that
not much is involved here. Almost all the work is done in the classes. These scripts
are concerned more with presentation of data and ways of manipulating them — as
they should be, because such a design makes it more likely that you’ll be able to
reuse the classes somewhere else someday.

DISPLAY.PHP
This prints out either a list of categories or a specific product:

<?php
require_once(‘header.php’);

$product_id = (int)array_key_value($_REQUEST,’product_id’,0);
$submit = (string)array_key_value($_POST, ‘submit’);
$again = (string)array_key_value($_POST, ‘again’);

$p = new Product(array(‘product_id’=>$product_id));

if (empty($p->product_id))
{

$p->description = “Here at Bag’O’Stuff, we’ve got so much stuff
we don’t know what to do with it. So buy some and help us clear out
some space.”;

$p->product = “What’ve We Got?”;
}
else
{

$p->fetch_from_db();
}

// begin constructing the page title with a link to the main page
// of the catalog

// add a link back to the product level to the page title,
// followed by the name of this product, and print out the
// top of the page

$page_title = anchor_tag(‘index.php’, “Bag’O’Stuff”);
foreach ($p->parents() as $t)
{

492 Part IV: Not So Simple Applications

$page_title .= ‘ > ’.anchor_tag(
‘display.php?product_id=’.$t->product_id
, $t->product

);
}
if ($p->product_id)
{

$page_title .= ‘ > ’.anchor_tag(
‘display.php?product_id=’.$p->product_id
, $p->product

);
}
else
{

$page_title .= ‘

’.$p->product;
}
print start_page($page_title);

if ($submit == ‘Add to Cart’ || $again == ‘please’)
{

include(‘cart.php’);
}
else
{

print print_product($p);
}
// print out the bottom of the page
print end_page();

?>

It doesn’t get a whole lot more basic than this: If this page is to display a cate-
gory (not a product), a category is loaded and then printed. The same happens for a
product, if appropriate. If you remember the display.php page from Chapter 12, you
might notice that the only real difference is that the objects instantiated here are
created from the classes new to this application. That gives you access to the new
print methods, which were designed to work with this application.

CART.PHP
Here’s the page that creates your shopping cart:

<?php
$o = get_session_order();

$href = regular_url($_SERVER[‘PHP_SELF’]);

Chapter 14: Shopping Cart 493

// display the contents of the shopping cart
print start_form();
print hidden_field(‘again’,’please’);
print ‘<h3>Shopping Cart</h3>’;
print ‘<h5>(Change quantity to 0 to remove an item.)</h5>’;
print start_table(array(

‘border’=>0
, ‘width’=>’80%’
, ‘cellpadding’ => 5

));
print table_row(

table_header_cell(‘Item’)
, table_header_cell(array(‘align’=>’right’,

‘value’=>’Quantity’))
, table_header_cell(array(‘align’=>’right’, ‘value’=>’Price’))
, table_header_cell(array(‘align’=>’right’, ‘value’=>’Total’))

);
print table_row(‘<hr>’,’<hr>’,’<hr>’,’<hr>’);
$total_price = 0;
$total_quantity = 0;
foreach ($o->items() as $item)
{

$tprice = $item->price * $item->quantity;
$qfield = text_field(array(

‘name’=>”quantity[{$item->item_name}]”
, ‘value’=>$item->quantity
, ‘size’=>4

));
print table_row(

anchor_tag($href.’?product_id=’.$item->product_id, $item-
>item_name)

, table_cell(array(‘align’=>’right’, ‘value’=>$qfield))
, table_cell(array(‘align’=>’right’, ‘value’=>money($item-

>price)))
, table_cell(array(‘align’=>’right’,

‘value’=>money($tprice)))
);

// keep a running total of the quantity and price of items
// in the cart.
$total_price = $total_price + $tprice;
$total_quantity = $total_quantity + $item->quantity;

}
$o->total_price = $total_price;

494 Part IV: Not So Simple Applications

$o->total_quantity = $total_quantity;

// print out totals
print table_row(‘<hr>’,’<hr>’,’<hr>’,’<hr>’);
print table_row(

table_header_cell(array(‘align’=>’right’, ‘value’=>’Grand
Total’))

, table_header_cell(array(‘align’=>’right’,
‘value’=>$total_quantity))

, ‘ ’
, table_header_cell(array(‘align’=>’right’,

‘value’=>money($total_price)))
);

print table_row(
table_cell(array(

‘colspan’ => 4
, ‘value’ => submit_field(‘Recalculate Order’)

))
);

$url = ‘display.php’;
if (isset($p))
{

$url .= ‘?product_id=’.$p->product_id;
}
print table_row(

table_cell(array(
‘align’ => ‘right’
, ‘colspan’ => 4
, ‘value’ => ‘’

. anchor_tag(regular_url($url), ‘Continue Shopping’)

. ‘’
))

);

print end_table();
print end_form();
save_session_order($o);
?>

CHECKOUT.PHP
Now, finally, it’s time to check out. Note that this is really the only file that needs
to be on the secure server. There’s no need for the catalog portions or even the cart

Chapter 14: Shopping Cart 495

page to be on a secure server, because they don’t contain information that needs to be
protected. However, on this page you’re going to be accepting credit-card information.

Extensive comments are contained within the script to help you get through the
page’s logic.

<?php
require_once(‘header.php’);

// get the session variables for the shopping cart, the current
order,
// and the user’s email address
$order = get_session_order();

// if a value for ‘email’ was posted to the script from a form, use
that
// in preference to the session variable
$_SESSION[‘email’] = array_key_value(

$_POST
, ‘email’
, array_key_value($_SESSION, ‘email’)

);
$order->email = $_SESSION[‘email’];

// set up variables defining the values of the buttons of the form
// (defining the values once helps avoid errors caused by spelling
problems.)
$order_button = ‘ORDER NOW!’;

// load data from form into order
$order->build($_POST);

$submit = array_key_value($_POST, ‘submit’);
if ($submit == $order_button)
{

// the user hit the big ORDER button. validate their credit
// card and charge it, using the ValidateCard() and ChargeCard()
// functions of the Order class.

if (!$order->charge_card())
{

print “could not charge card\n”;
}
else
{

496 Part IV: Not So Simple Applications

// the charge went through - write the order to the
// database using the SaveOrder() method of the Order class.
$order->write_to_db();

// redirect the user to the receipt page for a receipt
// they can print or save to a file, and exit the script.
// pass on the ID value of the new order record and
// the session ID that was passed in to this script.

$url = ‘receipt.php?order_id=’
. $order->order_id
. ‘&sessid=’
. session_id()

;
// header(‘Location: $url’);
print paragraph(anchor_tag($url, $url));
// exit;

}
}

print start_page(
anchor_tag(‘index.php’, “Bag’O’Stuff”)
. ‘

Check Out’

);

print paragraph(
start_form()
, submit_field(array(‘name’=>’reset_order’,’value’=>’Reset Order

Object’))
, end_form()

);

// include the shopping cart form
print print_cart($order);

// begin the order form.
print start_form();

print hidden_field(‘sessid’, session_id());

print subtitle(‘User Info’);
// store the IDs of the user and address (if any)
print hidden_field(‘user_id’, $order->user_id);

Chapter 14: Shopping Cart 497

print hidden_field(‘address_id’, $order->address_id);

start_table(array(‘_defaults’=>array(‘cellspacing’=>4)));

print start_table();

// display the user’s email address, along with the button they
// can use to ask to check the database for address information.
print labeled_row(

‘Email:’
, text_field(array(

‘name’=>’email’
, ‘value’=>$order->email
, ‘size’=>20

))
. ‘ ’
. submit_field(‘Get My Info’)

);

print labeled_row(
‘First Name:’
, text_field(array(

‘name’ => ‘firstname’
, ‘value’ => $order->firstname
, ‘size’ => 42
, ‘maxlength’ => 40

))
);
print labeled_row(

‘Last Name:’
, text_field(array(

‘name’ => ‘lastname’
, ‘value’ => $order->lastname
, ‘size’ => 42
, ‘maxlength’ => 40

))
);

print table_row(table_cell(array(‘colspan’=>2, ‘value’=>’ ’)));

// these fields contain any address information that might have been
// directly entered by the user before the database was searched, or
// the information from an address from the database that has been
// selected by the user. in any case, *these* fields are what will

498 Part IV: Not So Simple Applications

// be used in the order.

print labeled_row(
‘Address:’
, text_field(array(

‘name’ => ‘address1’
, ‘value’ => $order->address1.’-new’
, ‘size’ => 42
, ‘maxlength’ => 40

))
);
print labeled_row(

‘ ’
, text_field(array(

‘name’ => ‘address2’
, ‘value’ => $order->address2
, ‘size’ => 42
, ‘maxlength’ => 40

))
);
print labeled_row(

‘City:’
, text_field(array(

‘name’ => ‘city’
, ‘value’ => $order->city
, ‘size’ => 42
, ‘maxlength’ => 40

))
);
print labeled_row(

‘State:’
, select_field(array(

‘name’ => ‘state’
, ‘values’ => states()
, ‘match’ => $order->state

))
);
print labeled_row(

‘Zip:’
, text_field(array(

‘name’ => ‘zip’
, ‘value’ => $order->zip
, ‘size’ => 12
, ‘maxlength’ => 10

Chapter 14: Shopping Cart 499

))
);
print labeled_row(

‘Phone:’
, text_field(array(

‘name’ => ‘phone’
, ‘value’ => $order->phone
, ‘size’ => 22
, ‘maxlength’ => 20

))
);

if ($order->address_id)
{

// allow the user to create a new address
print table_row(

‘ ’
, checkbox_field(array(

‘name’ => ‘save_as_new’
, ‘value’ => ‘yes’
, ‘label’ => ‘Save this as a new address’

))
);

}

print end_table();

// display the available shipping methods
print subtitle(‘Shipping Info’);

print start_table(array(‘cellspacing’=>4));

print table_row(
table_header_cell(‘Shipping Method’)
, table_header_cell(array(‘value’=>’Per Order’,

‘align’=>’right’))
, table_header_cell(array(‘value’=>’Per Item’,

‘align’=>’right’))
, table_header_cell(array(‘value’=>’Total for Order’,

‘align’=>’right’))
);

// set up shipping methods

foreach ($order->shipping_methods() as $shipping_id => $r)

500 Part IV: Not So Simple Applications

{
// calculate the cost of using this method. we use a simplistic
// system: a fixed cost per order, and a per item charge.
$shiptotal = $r[‘per_order’] + ($order->total_quantity *

$r[‘per_item’]);

// display the shipping method with a radio field allowing the
// user to choose it
print table_row(

radio_field(array(
‘name’ => ‘shipping_id’
, ‘value’ => $shipping_id
, ‘label’ => $r[‘shipping’]
, ‘match’ => $order->shipping_id

))
, table_cell(array(‘value’=>money($r[‘per_order’]),

‘align’=>’right’))
, table_cell(array(‘value’=>money($r[‘per_item’]),

‘align’=>’right’))
, table_cell(array(‘value’=>money($shiptotal),

‘align’=>’right’))
);

}
print end_table();

// display payment information
print subtitle(‘Credit Card Info’);

print start_table();

if ($order->error)
{

// if the user tried to place an order and there was an error
// when validating or charging the card, display it here.
print table_row(

table_cell(array(
‘style’ => ‘color:red’
, ‘value’ => $order->error
, ‘colspan’=>2

))
);
$order->error = ‘’;

}

// display a test card number in the form for this example by
default.

Chapter 14: Shopping Cart 501

// it has a valid format, and since we’re not really trying
// to charge any cards here, AuthorizeNet will accept it.
if (empty($order->cc_number))
{

$order->cc_number = ‘4912-7398-07156’;
}

// pick Visa as the default type, to match the default test card
number
if (empty($order->cc_type_code))
{

$order->cc_type_code = ‘vis’;
}

// display the accepted credit card types as radio button fields
$cc_types = $order->dbh()->getAssoc(‘select cc_type_code, cc_type
from cc_types’);

print labeled_row(
‘Credit Card:’
, select_field(array(

‘name’ => ‘cc_type_code’
, ‘match’ => $order->cc_type_code
, ‘values’ => $cc_types

))
);

print labeled_row(
‘Number:’
, text_field(array(

‘name’=>’cc_number’
, ‘value’=>$order->cc_number
, ‘size’=>22

))
);

// set the variables used to enter the credit card expiration date

// set the $months array to a list of possible months
$months = array(

1 => 1
, 2 => 2
, 3 => 3
, 4 => 4
, 5 => 5

502 Part IV: Not So Simple Applications

, 6 => 6
, 7 => 7
, 8 => 8
, 9 => 9
, 10 => 10
, 11 => 11
, 12 => 12

);

// set the $years array to a list of plausible years
$y = date(‘Y’);
$years = array(

$y => $y++
, $y => $y++
, $y => $y++
, $y => $y++
, $y => $y++
, $y => $y++
, $y => $y++
, $y => $y++

);

// use January of next year as a default expiration date
if (empty($order->cc_exp_mon))
{

$order->cc_exp_mon = 1;
}
if (empty($order->cc_exp_yr))
{

$order->cc_exp_yr = date(‘Y’)+1;
}

print labeled_row(
‘Expires:’
, select_field(array(

‘name’ => ‘cc_exp_mon’
, ‘values’ => $months
, ‘match’ => $order->cc_exp_mon

))
. select_field(array(

‘name’ => ‘cc_exp_yr’
, ‘values’ => $years
, ‘match’ => $order->cc_exp_yr

))
);

Chapter 14: Shopping Cart 503

print end_table();

// display the order button
print paragraph(

submit_field($order_button)
, submit_field(‘Test Submit’)

);

print end_form();

print end_page();

$_SESSION[‘order’] = serialize($order);
?>

Summary
This chapter explained a lot of PHP concepts, using a shopping cart as a vehicle (no
pun intended).

One of the most important concepts we discussed was persistence — the ability to
store information related to a particular user (such as shopping-cart items) across
multiple visits. PHP relies upon its connectivity to a database — a connection medi-
ated by the PEAR classes, if you’re smart — to store information.

Another key concept is state maintenance. Because HTTP is an inherently state-
less protocol, you have to do a bit of work to correlate one HTTP request from
someone with the next request from the same person, all the while distinguishing
those requests from the hundreds of others that might be showing up at about the
same time. PHP provides some useful state-management features. You saw, for
example, that there’s nothing to the process of registering a session identifier and
examining it later to identify a particular use.

These capabilities are key in our shopping cart application. For one thing, we
used persistence to store the contents of each shopping cart in a database, in such
a way that they were kept separate from all others. Furthermore, we used session
management to track users through our site — across many request/response trans-
actions — as they browsed our wares and added and removed items from their carts.

504 Part IV: Not So Simple Applications

Chapter 15

XML Parsing
IN THIS CHAPTER

◆ Learning how to work with XML documents

◆ Examining an XML document retrieved from a URL

WHAT HTML IS TO WEB PAGES, the eXtensible Markup Language, or XML, is to
data. Whereas HTML is about presenting your information to the world — handling
typefaces, sizes, colors, layout, and so on — XML concerns itself purely with struc-
turing and identifying that information. Given the number of new and different
Web platforms that seem to pop up each week — desktop computers, laptops, cell
phones, televisions, wristwatches, car stereos — this separation of content from pre-
sentation is the great holy goal of Web programmers. Both languages are wildly
successful because at heart they’re both very simple, yet allow for a huge range of
applications. They even look alike — which they should, considering they’re both
based on the Standard Generalized Markup Language (SGML).

In an XML document containing meteorological-observation data, for example,
distinct tags can identify certain numbers as wind-velocity values and other numbers
as wind-direction values. The question of how to represent these values visually— if
they are to be displayed visually at all, rather than just read into a database or other
processing environment — is a separate issue.

The other great thing about XML is that it’s an excellent format for transmitting
information not just data, but the kinds of queries and responses you might nor-
mally associate with a regular programming language (like PHP itself). This is
because it’s lightweight — it’s just ASCII (or Unicode), after all — and transparent.
You can look at an XML document for the first time and stand a good chance of
understanding it right away. Yet it’s also suitable for interpretation by machines,
which are notoriously dim when it comes to understanding.

In this chapter we’ll explore XML and the capabilities of PHP when it comes to
processing it. We’ll read a document in from a URL and reformat its contents for
use in Netsloth, our content-management application.

505

The Web site Slashdot.org is used in this chapter merely for example pur-

poses. Most sites like Slashdot.org have terms and conditions governing the

use of the content they post, so be sure to pursue the proper permission

before you publicly post any content taken from another Web site through

your own Web application. For information about using headlines from

Slashdot specifically, you should take a look at http://slashdot.org/
code.shtml.

Scope and Goals of Application
Not long ago, we had this great application to show you here. It had XML parsers,
and event handlers, and function callbacks, and all kinds of flashy bits. The idea
was to grab the headlines from a Web site like Slashdot (www.slashdot.org),
which makes their content available in about every format known to modern
humanity. One of these formats is XML, and you can see it yourself at http://
slashdot.org/slashdot.xml. We would read it, parse it, and spit it back out as
HTML, to be included on our tiny yet distinctive example of a Web content site,
Netsloth (which you might remember from Chapter 11).

But then the folks building PHP decided that they would change their underly-
ing XML support, building it around the Gnome XML library libxml2, and intro-
ducing this new extension called Simplexml, and, this is how you would build our
first example now. Completely.

<?php
// keep the errors off the page
ini_set(‘display_errors’, 0);
$url = ‘http://www.slashdot.org/slashdot.xml’;
$cachefile = “/tmp/slashdot.xml.cache”;

if (($xml = file_get_contents($url)))
{

file_put_contents($cachefile, $xml);
}
else
{

error_log(‘Unable to contact www.slashdot.org’);
if (($xml = file_get_contents($cachefile)) === FALSE)
{

506 Part IV: Not So Simple Applications

error_log(“Unable to open cache file: $cachefile”);
print <<<EOT

<p>
Unable to obtain Slashdot.org content.
Please try again later.
</p>
EOT;

return;
}

}
$stories = simplexml_load_string($xml);
print <<<EOT
<h3>Slashdot Stories:</h3>

EOT;
foreach ($stories->story as $story)
{

print <<<EOT
url}”>{$story->title}
EOT;
}
print <<<EOT

EOT;
?>

This would make for a rather short chapter. You’ll notice particularly that the
“handle the XML” part of this code is just ten lines. So we’ve jazzed it up a bit.

We’ll want to be able to include more information about each story, including
the topic-representing images the site provides. At the same time, we want our own
page at Netsloth to keep running if Slashdot gets slashdotted and goes off the air,
while minimizing the amount that we add to their site’s traffic. Both goals involve
setting up local caches of content. Figure 15-1 shows you the new Netsloth home
page.

The stories shown in Figure 15-1 are for example purposes only. None of the

content in this chapter represents postings that ever actually appeared on

Slashdot.org.

Chapter 15: XML Parsing 507

Figure 15-1: Netsloth21 home page with mock sample stories

Code Overview
The essential purpose of our application is to reach out across the Internet, grab an
XML document, pick it apart, and reformat the chopped-up pieces into a form that’s
acceptable for use in our Netsloth content-management suite. To accomplish these
goals, this software will need to be able to look at an XML document, distinguish
the tags from the tagged text (also known as character data), and separate them if
necessary. The piece of code that does this is generically called an XML parser.
XML parsers can be designed in a couple of different ways.

An introduction to parsers
If you’re going to work with XML, you need a parser. Parsers come in two different
general varieties:

◆ Tree-style parsers (also called Document Object Model (DOM) parsers),
which read through entire XML documents at once and convert the
imported data into hierarchically organized objects representing whole
documents at once. Microsoft’s MSXML parser is of this kind.

508 Part IV: Not So Simple Applications

◆ Event-style parsers, which read through XML documents just like
tree-style parsers, but fire events as they go. These events correspond
to different elements (such as opening tags, closing tags, and character
data) encountered in the read-through. It’s therefore possible to process
different elements with code that listens for events of different kinds.
The Simple API for XML (SAX) is an event-style parser implemented
in a number of programming languages.

Both kinds of parsers do the job — it’s possible to use either to examine an XML
document programmatically. The difference between the two is performance.
Because tree-style parsers have to read in a whole XML document and store it in
memory as an object, they tend to be more resource-intensive than event-type
parsers. Generally, tree-style parsers are a good idea if you’re going to be examin-
ing the whole tree, or widely scattered parts of it — particularly more than once.
Event-type parsers are better for quick, once-off examination of small parts of the
tree.

Of course, you can just ignore the whole question of what style of parser suits
you, and use Simplexml instead.

Using Simplexml
The Simplexml extension is, as of this writing, a work in progress. Still, it’s hard to
imagine that it could get much easier to use. It’s a bit like one of those auto-focus,
auto-everything-else cameras: you point it at some XML and, click, you’ve got an
object:

$xml_object = simplexml_load_file(“/path/to/my/file.xml”);
$xml_object = simplexml_load_file(“http://a.server/file.xml”);
$xml_object = simplexml_load_string($some_xml_content);

Note especially the second example. Because PHP has general support for using
URLs the same way you would use a path to a file on your server, you can go
directly from an XML document from some far-off location to a useable object in
your own code. Still, there are a few things to look out for. The nature of the prop-
erties of the simplexml_element object produced depends on the content of the
XML. For example, we can make up a simplistic XML document and store it in a
variable:

$doc = <<<EOT
<outer>
<first>
</first>
<second>
<name></name>

Chapter 15: XML Parsing 509

</second>
<third>
<name>Joe</name>
</third>
<fourth>
<name>Jill</name>
<name>Bob</name>
</fourth>
</outer>
EOT;

Then we can point Simplexml at it and print out the object we receive as a result:

$xml = simplexml_load_string($doc);
print_r($xml);

The results are as follows:

simplexml_element Object
(

[first] => simplexml_element Object
(
)

[second] => simplexml_element Object
(

[name] => simplexml_element Object
(
)

)
[third] => simplexml_element Object

(
[name] => Joe

)
[fourth] => simplexml_element Object

(
[name] => Array

(
[0] => Jill
[1] => Bob

)
)

)

510 Part IV: Not So Simple Applications

The first tag, <first>, had no content, so it becomes an empty simplexml_
element object. The <second> tag did have some content, a <name> tag, but
<name> itself was empty. We end up with an object having a single property, called
name, whose value is another empty object. But now look at the <third> tag. This
time <name> had a value, the string Joe. Now the name property, instead of point-
ing to another object, has a simple string value. And in the <fourth> tag, where the
<name> tag was repeated, the result is an array of strings. This all makes good sense
when you compare the output to the XML source.

But if you don’t know what that source looked like, then discovering the nature
of what you’ve received can be a little tricky. If you’re going to be routinely pars-
ing complicated documents that can have widely varying contents, then using
something like the DOM XML Parser, which supports Xpath functions you can use
to search through the XML in an easy yet powerful fashion, might be the way to go.

On the other hand, to use those routines, you have to learn new syntax rules,
lots of new method calls, and so on. Whereas objects — we know from objects.
Simplexml lets you focus more on the PHP side of the problem, and if that’s where
most of your real work lies, it can be a godsend.

Code Breakdown
Most of the work we’ll be doing, as you saw in the smaller version earlier in the
chapter, has to do with what happens at our end of the connection. We want to
always be able to deliver some kind of content to our Netsloth front door, even if it
isn’t always current up to the instant the user sees the page. If we were delivering
stock quotations, for instance, we’d have to worry much more about that subject.
But for news headlines — particularly of the sort covered by a site like Slashdot,
more valuable for their uniqueness than as the latest breaking stories — being
roughly up-to-date is fine. Besides, they specifically request that you not hit their
site more than once every 30 minutes, or else you might find yourself banned. One
advantage we’ll have is that we know what we’ll be getting — the XML we’ll receive
from Slashdot is quite predictable. A typical Slashdot headline XML document is
formatted like this (though, again, none of these stories are real):

<?xml version=”1.0”?>
<backslash xmlns:backslash=”http://slashdot.org/backslash.dtd”>

<story>
<title>Aliens Sue OCS For Copyright Infringement</title>

<url>http://slashdot.org/article.pl?sid=03/08/15/1454224</url>
<time>1917-08-15 15:51:00</time>
<author>nobody</author>

Chapter 15: XML Parsing 511

<department>this-is-completely-fake</department>
<topic>107</topic>
<comments>65</comments>
<section>aliens</section>


</story>

<story>
<title>Diesel-Powered Barbie a Hit in Midwest</title>

<url>http://slashdot.org/article.pl?sid=03/08/15/1451223</url>
<time>3002-08-15 14:55:00</time>
<author>no one</author>
<department>we-made-these-up-they-are-not-real</department>
<topic>126</topic>
<comments>3014</comments>
<section>basement</section>


</story>

<story>
<title>Change Most Often Found Within Other Pants</title>

<url>http://slashdot.org/article.pl?sid=03/08/14/2222214</url>
<time>666-08-15 12:05:00</time>
<author>CowgirlJane</author>
<department>because-it-would-be-wrong</department>
<topic>134</topic>
<comments>253</comments>
<section>science</section>


</story>

</backslash>

Note that each story element has associated title, URL, time, author, depart-
ment, topic, comments, section, and image elements. Further note that the whole
document is a backslash element — that is, it’s bounded by <backslash> and
</backslash> tags.

Laying the groundwork
All of the code is contained in a single file, slashdot.php, that lives in the
/book/xml-rpc directory. But it gets displayed via an include() call from the front
page of the enhanced version of Netsloth, which lives in /book/netsloth21. So the

512 Part IV: Not So Simple Applications

first order of business here, besides setting up the remote URL we’re working with,
is to figure out just where in the heck we are:

<?php
// example using new simplexml extension

// made possible by the nice folks at slashdot.org
$url = ‘http://www.slashdot.org/slashdot.xml’;

// let’s get some stuff out of the way
$this_dir = dirname(__FILE__);
$root_dir = str_replace(

$_SERVER[‘PHP_SELF’]
, ‘’
, $_SERVER[‘PATH_TRANSLATED’]

);
$src_dir = str_replace(

$root_dir
, ‘’
, $this_dir

);

We are going to want to create URLs that point to content in the current direc-
tory — /book/xml-rpc — but that is not the “current directory” from the Web server’s
point of view, because we’re being included from another script. That script name is
in $_SERVER[‘PHP_SELF’], and the full file system path to that script is
$_SERVER[‘PATH_TRANSLATED’]. So we make the assumption that we share a
common root directory with the script that called us, and do some string algebra to
remove that common root from our current location — leaving us with, in theory,
the correct Web server path to where we are.

Next, we check to see if it’s time to get new stories from the Slashdot site. If that
fails, because the network connection has trouble, or the remote site is down, or
someone in Boise went nuts with a backhoe, we pick up the last copy we downloaded
from a cache file. (If that fails, there’s not much to do but apologize and give up.):

// a file to hold previously retrieved data
$cachefile = “{$this_dir}/slashdot.xml”;

// We want nice clean error messages.
ini_set(‘display_errors’, 0);

// first, we need to check whether we’ve hit their
// site within the last half-hour, BECAUSE:
//

Chapter 15: XML Parsing 513

// “For those who don’t know, you can get slashdot.rdf
// or slashdot.xml to receive a list of headlines for
// Slashdot. The document is fairly self explanatory,
// and the rules are simple: Do whatever you want, but
// don’t access the file more than once every 30 minutes.
// The server is plenty bogged down without adding a
// hundred stock tickers refreshing themselves every
// 60 seconds. If your automated loading of slashdot
// becomes too much of a burden on our servers, you
// run the risk of having your IP banned, so play fair!”
//
// -- http://slashdot.org/code.shtml
//

$xml = false;
if (!file_exists($cachefile) or !($last_time =
@filectime($cachefile))
)
{

$last_time = 0;
}
else
{

$xml = @file_get_contents($cachefile);
}

$this_time = time();
if ($last_time + 1800 < $this_time)
{

// OK, try getting a new copy
$newxml = @file_get_contents($url);
if ($newxml === FALSE)
{

error_log(“Unable to contact $url”);
if ($xml === FALSE)
{

error_log(“Unable to open cache file: $cachefile”);
$msg = ‘Unable to obtain Slashdot.org content. Please

try again later.’;
error_log($msg);
print “<h3>$msg</h3>\n”;
return;

}
$this_time = $last_time;

514 Part IV: Not So Simple Applications

}

}

Note that we use the built-in PHP function filectime() to get the date that the
cache file was created. That lets us tell users how current the information they’re
looking at is.

If we are able to load the XML file from the URL, then we need to save it out as
a new copy of the cache file, in preparation for times to come:

else
{

$xml = $newxml;
if (!@file_put_contents($cachefile, $xml))
{

// you might want to put an alert to the site webmaster
// in here - if permission problems are preventing you
// from caching the headlines, you’ll hit the site too
// often, and There Will Be Trouble. possibly including
// flying monkeys.
error_log(“Problem caching Slashdot content to

$cachefile”);
}

}
}

Then we run the XML that’s now sitting in the variable $xml through Simplexml
and create an object. We also check to see how many stories we’re supposed to dis-
play. In the Netsloth21 home page, we set $storycount to the number we want to
use. That variable will be visible here. In case we’re being called by someone else,
we also check to see if $storycount was passed as part of the URL, or from a form,
by looking in the $_REQUEST superglobal. If no one has told us differently, we set
the count to zero, meaning that we want to display every story we can get:

// load up the XML
$stories = simplexml_load_string($xml);

// and hey, presto
$last_updated = date(‘r’, $last_time);
if (empty($storycount))
{

if (empty($_REQUEST[‘storycount’]))
$storycount = 0; // all of ‘em

Chapter 15: XML Parsing 515

else
$storycount = $_REQUEST[‘storycount’];

}

Now, to show off the goods. After opening an HTML table to contain the head-
lines, we create some variables pointing at the topic image directory on the
Slashdot site and a local image directory on our own server. What we’re going to do
is copy the files from their site to ours. Since the images are based on general top-
ics, the same ones are reused frequently. The first time we see each one, we make a
local copy, and thereafter, that’s what gets displayed on our pages. It’s faster for us,
and cheaper for them.

print <<<EOT
<p>
<table cellspacing=”0” cellpadding=”0” border=”0”>
<tr>
<th colspan=”4” align=”left” style=”font-size:large;”>
Slashdot Stories
</th>
</tr>
<tr>
<th colspan=”4” align=”left” style=”font-size:smaller;”>
last updated {$last_updated}

</th>
</tr>

EOT;
// we are counting on this not changing..
$slashimage_dir = “http://images.slashdot.org/topics”;
// they get enough traffic - let’s store the Borg
// locally...
$ourimage_dir = “{$this_dir}/slashdot”;
$i = 0;
foreach ($stories->story as $story)
{

if (!file_exists(“{$ourimage_dir}/{$story->image}”))
{

copy(
“{$slashimage_dir}/{$story->image}”
, “{$ourimage_dir}/{$story->image}”

);
}

516 Part IV: Not So Simple Applications

Again, note how PHP’s support for URLs-as-files makes this a snap. We just
use the built-in copy() routine, which copies a file from one place to another,
even though here, the file being copied is on some other server far off in the Net
somewhere.

At this point, we’re inside our main story loop, so we print out the headline, as
well as the name of the person who posted it, the all-important department-of-
strange-department-names line, and the number of comments about the story on
the Slashdot site. In a bid to add a tiny bit of value to what is otherwise wholesale
borrowing, we’ll change the way we display the number of comments. You know a
story is buzzing when the topic count goes through the roof, so the comments line
will go from normal, to bold, to bright red for the big ones:

// just to be fancy, let’s be alarmed
// by the number of comments
$comment_style = ‘’;
$comment_count = (int)$story->comments;
if ($comment_count > 200)
{

$comment_style .= ‘font-weight:bold;’;
if ($comment_count > 500)
{

$comment_style .= ‘color:red;’;
}

}
print <<<EOT

<tr>
<td align=”center” valign=”top” rowspan=”2”><img height=”25”

src=”{$src_dir}/slashdot/{$story->image}”></td>
<td align=”left” valign=”top” rowspan=”2”> </td>
<td align=”left” valign=”top” colspan=”2”>url}”

style=”text-decoration:none;”>{$story->title}</td>
</tr>
<tr>
<td align=”left” valign=”top”> </td>
<td style=”font-size:smaller;” align=”left” valign=”top”>
from the {$story->department} dept.

by {$story->author} on {$story->time}

{$story->comments} comments so

far
</td>
</tr>

EOT;

Chapter 15: XML Parsing 517

And that’s it. Now we just check the story count and break out of the loop if
we’ve reached our limit. Then we close the table, and we’re done.

++$i;
if ($storycount and $i >= $storycount)

break;
}
print <<<EOT
</table>
</p>

EOT;

?>

Summary
This chapter looked at the way in which PHP interacts with XML, which is an
extraordinarily useful markup language for representing data in flat file form so
that’s it’s more or less universally meaningful.

The new capabilities of PHP have made using an XML document feed — and
there are lots of them out there — go from what was really something of a pain, to
almost no trouble at all. Plus, obviously, headline feeds aren’t the only kind of serv-
ices available. The ease of using those services inside Web applications is going to
make them a lot more popular.

If you’re interested in getting deeper into XML and Web services, take a look

in the /book/xml-rpc directory on the CD. We’ve put the code for an XML-

RPC server and client there, along with some front-end pages you can use to

see how they work. There, we use the new DOM extension of PHP 5, built

around the libxml2 libraries, and Xpath, as well as the new object-oriented

features and exception-handling capabilities, to make it almost as easy to call

a function on someone else’s server as it is on your own.For more information

about XML-RPC, the best place to start is http://www.xmlrpc.com.

Next up: Simple Object Access Protocol (SOAP), a protocol for formatting mes-
sages with XML.

518 Part IV: Not So Simple Applications

Chapter 16

SOAP
IN THIS CHAPTER

◆ Introducing Simple Object Access Protocol (SOAP)

◆ Introducing NuSOAP classes

◆ Examining application architecture built around public Web services and
NuSOAP

◆ Looking at SOAP operations in PHP

WOULDN’T IT MAKE SENSE if software applications could talk to each other via some-
thing like email? You know, have one application send a message to another in
order to invoke some function and have a message containing the result go back?
Well, of course, it would, and a number of proprietary systems have served this pur-
pose for a long time (IBM MQSeries is a long-standing example). Messaging sys-
tems enable applications — including those written in different languages, running
on different processors, and created at different times — to work together to meet
organizational-software-system requirements.

Messaging systems can be broken up, conceptually, into at least two parts: the
transport protocol and the message format. Proprietary systems have traditionally
used a closed protocol for at least one of those functions. Even relatively open stan-
dards, like remote procedure calls (RPCs) under Java, have relied on special facili-
ties that can be perceived as security weaknesses by skeptical minds or under
specific conditions.

This is the problem Simple Object Access Protocol (SOAP) is meant to solve.
SOAP defines an XML document type for invoking objects’ properties and func-
tions. XML documents that conform to this specification are messages to be sent,
like the body text of ordinary email messages between humans. SOAP messages,
once written, can be sent via HTTP, or, indeed, by Simple Mail Transport Protocol
(SMTP), the protocol normally used to send email. Hardly any routers or firewalls
block the TCP ports required by those transport protocols, so moving SOAP mes-
sages around is a relatively straightforward process.

This chapter doesn’t concern itself much with transport mechanisms. Instead,
we’re concerned here with the details of the SOAP message specification and the
means by which you can make PHP comply with them.

519

Overview of SOAP
SOAP, at the end of the day, lives up to its first initial: It is indeed simple. SOAP
messages are essentially text passages with some special tags applied, similar in
some ways to HTML documents.

The SOAP specification is neither concerned with matters of transport (that’s the
role of the HTTP and SMTP specifications) nor with rules about what SOAP messages
can carry (not much, anyway; that’s up to the developers who build applications
that employ SOAP). The SOAP definition has mainly to do with the structure of the
documents that carry function calls to objects providing services and results back
to the calling programs.

You can divide SOAP transactions into the request and the response. The client,
via SOAP messages addressed to the server, says something like, “What’s the CEO’s
inseam measurement?” This presumes, of course, that the server has a function that
looks up or otherwise provides the boss’s inseam length.

The server then executes the called function and returns some value or series of
values. It might just return the integer 34, or return the integer 34 as well as the
string inches so that the unit being used is clear.

Now it’s time to have a look at the SOAP message itself. Though the SOAP spec-
ification includes information on a large number of special features (such as
attachments), SOAP messages are essentially envelopes and their contents. The
application we create in this chapter requires no SOAP features other than these
critical ones.

You can view the full SOAP version 1.2 specifications on the Web at

http://www.w3.org/TR/soap12-part0. (By the way, don’t go to

http://www.soap.org expecting to find information about the SOAP

protocol. That site is run by the Society for Obstetric Anesthesia and

Perinatology — “Celebrating Over 150 Years of Obstetric Anesthesia”).

The SOAP envelope
The envelope surrounds the message payload, or body, and serves to define the
XML namespaces used throughout the SOAP message.

Because it is an XML document, the SOAP text begins with a statement of its
XML encoding and version:

<?xml version=’1.0’ encoding=’UTF-8’?>

Then you have an opening Envelope tag, preceded by the SOAP-ENV namespace
identifier. Indeed, the opening Envelope tag serves mainly to define three of the
four namespaces used in the SOAP message. Here’s the opening Envelope tag:

520 Part IV: Not So Simple Applications

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://www.w3.org/2001/09/soap-encoding”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

Though the intricacies of XML namespaces are beyond the scope of this book,
understand that the three namespaces defined in that passage of code serve the fol-
lowing roles:

◆ SOAP-ENV— Provides the definition of Envelope and Body elements in this
SOAP message. The SOAP 1.2 specification is http://www.w3.org/2001/
09/soap-encoding. That URL will render readably in Microsoft Internet
Explorer; other browsers might require you to download the XML and
look at it in a text viewer (such as vi, emacs, or Windows Notepad).

◆ xsi— The xsi schema defines aspects of function calls, such as values
sent as arguments.

◆ xsd— The xsd schema deals with data types, such as integers, dates,
strings, and Boolean values.

After the opening Envelope tag comes the whole of the Body element (to be dis-
cussed next). At the conclusion of the SOAP message, after the Body element, you
find a closing Envelope tag, complete with its namespace identifier. It looks like
this:

</SOAP-ENV:Envelope>

Now let’s move on to the Body element.

The SOAP body
Inside the SOAP envelope is the SOAP body, the payload that’s the whole point of
having SOAP in the first place. A body begins with an opening Body tag, further
distinguished by a SOAP-ENV namespace identifier:

<SOAP-ENV:Body>

Next comes the meat of the SOAP message — a call to a function, in this case.
The name of the function you’re calling is the name of the element that calls it. A
namespace identifier — traditionally ns1— precedes the function name, like this:

<ns1:getInseam
xmlns:ns1=”urn:referenceToWebService”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

Chapter 16: SOAP 521

What’s all that other stuff? Well, the namespace definition states where the func-
tion getInseam() can be found on the network. The SOAP-ENV:encodingStyle
value further standardizes the way in which simple and complex data types are pre-
sented on each side of the SOAP transaction.

Next comes the question of whose inseam measurement you want to retrieve.
This specifier should be presented to the function as an argument, which is to say
that in a traditional (intra-program) call to the function the syntax looks something
like this:

GetInseam(“Joe Bloggs”)

In SOAP you’re obliged to do things a little differently. Remember that you are
already inside a getInseam element, which means you have already made clear
that getInseam is the function you’re calling. You need to specify the argument
now. Logically enough, you do that with an element whose name matches the argu-
ment name, as specified in the remote class:

<person xsi:type=”xsd:string”>Joe Bloggs</zipcode>

With that done, you close out the getInseam element and the Body element, as
well:

</ns1:getInseam>
</SOAP-ENV:Body>

How does all this look in practice? The next section takes a look at a request/
response pair in which a call to getInseam() is made and replied to.

A typical request/response pair
A SOAP transaction consists of a request and a response, similar in lots of ways to
the request and response that are made when you order up a Web page with your
browser. Remember, SOAP transmissions are nothing more than passages of text,
marked up with XML in such a way that they serve special SOAP purposes.

THE REQUEST
Here’s a complete request:

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<SOAP-ENV:Body>

<ns1:getInseam

522 Part IV: Not So Simple Applications

xmlns:ns1=”urn:referenceToWebService”
SOAP-

ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<person xsi:type=”xsd:string”>Joe Bloggs</person>
</ns1:getInseam>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A request, at its simplest, is just a Body element inside an Envelope element. You
can make things more complicated if you want — the specification allows for, among
other things, a supplementary Header element that describes the relationship
among several SOAP messages or that describes how the message should be routed.

THE RESPONSE
Responses, in terms of format, bear a close resemblance to requests. They have
exactly the same envelope formats, and the body is different only in terms of the
name given to the element being sent. Usually, that’s the same as the element name
specified in the request, with Response appended.

Here’s a complete response to match your earlier request:

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<SOAP-ENV:Body>

<ns1:getInseamResponse
xmlns:ns1=”urn:referenceToWebService”
SOAP-

ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<return xsi:type=”xsd:float”>34.0</return>

</ns1:getInseamResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Not too complicated, right? Joe Bloggs has an inseam measurement of 34. That’s
probably 34 inches. However, could Joe be a child with a 34-centimeter inseam?
This response gives us no way to tell.

To encode complex data structures into SOAP messages (both requests and
responses), you have to dig a bit deeper into the specification. The next section
takes a look at how to encode an array into a SOAP message.

COMPLEX DATA TYPES
Complex data types are multipart data types. An array is an example of a complex
data type in which the members are accessed by number. A struct, as those of you

Chapter 16: SOAP 523

who code in C know, is an “associative array,” in which the array elements are
accessed by name rather than by number.

In the case of the inseam-returning Web service, it would be handy to know
what unit applies to the floating-point number that comes back in response to a
request. You can modify the contents of the Body element to hold this information
in a struct.

The struct defined here contains two elements: the value (the floating-point
value) and the unit (the string inches, centimeters, or whatever).

<return xmlns:ns1=”urn:referenceToWebService”
xsi:type=”ns1:inseamInfo”>
<unit xsi:type=”xsd:string”>inch</unit>
<value xsi:type=”xsd:double”>34.0</value>
</return>

In this mode of using SOAP, the Web service referred to defines a struct called
inseamInfo, which is comprised of a string called unit and a float called value.
By stating in the opening return tag that the return value is of type inseamInfo,
you make it legal to refer to these sub-elements.

There’s a lot more to do with the SOAP specification, and not all of it obscure.
Some of the more interesting and useful bits have to do with how errors and other
exceptional conditions are noted via SOAP, while others have to do with how to
describe other compound data types in SOAP messages. Such aspects of the specifi-
cation are beyond the scope of this chapter, but are certainly worth studying.

There’s lots of information on SOAP at the World Wide Web Consortium

site, including an overview (http://www.w3schools.com/soap/
soap_intro.asp) and a tutorial (http://www.w3schools.com/soap/
default.asp).

Code Overview
Key to any successful career in software design is the ability to freely make use of
the work of other people. The open-source movement is all about this practice, and,
thankfully, a considerable amount of software is available for the taking. NuSphere
Corporation — makers of PHPEd, a PHP development environment — have developed
a set of classes called SOAPx4, which has since been modified and renamed
NuSOAP. It’s a remarkably capable SOAP suite, doing pretty much all the heavy lift-
ing for you. If you’re using a PHP development environment (such as NuSphere’s
PHPEd version 3 or later) you’ll probably find it even easier to work with NuSOAP.
You can add your own modules — such as new releases of PHP — to your environ-
ment after you set it up initially.

524 Part IV: Not So Simple Applications

The best place to begin the process of getting NuSOAP is on the Web site

of Dietrich Ayala (http://dietrich.ganx4.com/nusoap/). His site

includes links to the latest version of NuSOAP, as well as links to documenta-

tion, mailing lists, and other resources for developers and architects.

The essence of NuSOAP
NuSOAP is a series of classes. You copy the downloaded files (most of them .php
files) to your include directory and then make reference to them in your own PHP
classes. The NuSOAP classes take care of such work as creating SOAP client and
server objects and managing the transmission of SOAP messages among those
objects. The NuSOAP classes even take care of something we discussed earlier in
this chapter: the encoding of values into properly structured XML.

For the most part, you can think of the NuSOAP classes as black boxes. You just
stick the PHP files in your include directory and then cease worrying about them.
All you have to do is be aware, as you’re writing PHP programs that you want to
act as Web-service providers or consumers, that you have some new classes avail-
able to you.

Suppose you want to build a server. In other words, you want to make a PHP
function available as a Web service. Once you’ve added the required include state-
ment (as follows) you have a four-step process ahead of you.

require_once(‘nusoap.php’);

1. Create a server object. All you need to do is set a variable equal to a
soap_server object (soap_server being one of the classes made avail-
able by your inclusion of NuSOAP). It’s easy:

$server = new soap_server;

2. Register one of your local functions with that new soap_server object.
Again, no problem. You simply invoke the register() function of the
soap_server object, specifying one of your local functions as the sole
argument. The complete syntax looks like this:

$server->register(‘getInseam’);

3. Define a function called getInseam(). This can contain whatever code
you want. Presumably, in this case, it accesses a database to retrieve a
named party’s inseam measurement and then returns a value and unit.
The skeleton of the function looks something like this:

function getInseam($name) {
// Function code...
}

Chapter 16: SOAP 525

4. Tune the soap_server object in to the HTTP requests it’s meant to moni-
tor and enable it to respond to them. You do this with a standard piece of
code that rarely varies across NuSOAP applications:

$server->service($HTTP_RAW_POST_DATA);

Those are the key elements of a SOAP server as implemented under NuSOAP.
What, then, about the client that speaks to this service? It’s even simpler.

NuSOAP clients have to include the nusoap.php file as well. Once that’s done,
they need only to instantiate a soapclient object (the soapclient object, again,
being part of the NuSOAP collection) with the URL of the service to be called as an
argument. If you had a service called getInseam() on http://www.wiley.com
(there isn’t one, by the way), you could do this to create a SOAP client to call it:

$soapclient = new soapclient(‘http://www.wiley.com/getInseam.php’);

Then you could send a call to the server via that client, like this:

write($soapclient->call(‘getInseam’,array(‘name’=>’Joe Bloggs’)));

Pretty cool, eh? The arguments are sent as an array that enables you to match
sent values to expected values as you like.

A simple NuSOAP service call
Now we take a quick look at a “Hello, user” program as written with the help of the
NuSOAP classes. Really you see two programs here: a client and a server. The server
exposes a simple routine that takes in a string (the user’s name) and returns a string
made up of the word Hello and the provided name followed by a period. In other
words, if you send the service Ralph as an argument, the service says, Hello,
Ralph.

First you need a server. The server has the same name as the service you want to
expose, so in this case name it hello.php. Its full contents are as follows:

require_once(‘nusoap.php’);

$server = new soap_server;

$server->register(‘hello’);

function hello ($name){
return “Hello $name.”;
}

$server->service($HTTP_RAW_POST_DATA);

526 Part IV: Not So Simple Applications

Not complicated, really. It’s just a matter of registering an otherwise ordinary
function with a special server object and then setting that server to deal with HTTP
activity.

Every server needs a client. The client file, in this case, can be called anything
and can reside anywhere the server can be accessed via HTTP.

require_once(‘nusoap.php’);

$soapclient = new soapclient(‘http://yourdomain.com/hello.php’);

write($soapclient->call(‘hello’,array(‘name’=>’Ralph’)));

Pretty simple, really. You just bind your client to the service (this example
assumes you know exactly where it is and what it’s called) and call that client as
you need values from it.

The glory of NuSOAP is its simplicity. There’s more to it than we’ve just dis-
cussed — you will see some more complexity as the chapter continues — but there’s
no doubt that NuSOAP makes it unbelievably easy to incorporate SOAP client and
server capability into PHP programs. It can be said that, other than for educational
reasons, there’s never a reason to write your own SOAP client and server classes
anymore. You’d be reinventing an already highly refined wheel.

Determining the Goals
of the Application
It’s time to have a look at SOAP messaging under PHP, and at some of the ways you
can communicate with publicly accessible Web services via SOAP. The rest of this
chapter focuses on an application that requests information from different sources,
parses it, and presents it to the user.

Our goal is to use the Web services made available by a couple of providers — the
Barnes & Noble bookstore and the Babelfish translation service — to gather infor-
mation. Specifically, we use the Barnes & Noble service to gather information about
books that interest us, and the Babelfish service to translate a passage of text from
English into a series of European languages.

The Barnes & Noble application takes an International Standard Book Number
(ISBN) and returns the price of the book identified by that number at Barnes &
Noble’s Web site, www.bn.com. If you send it the value 0440234816, which is the
ISBN of Karen Marie Moning’s novel To Tame a Highland Warrior, you can expect
to see the following output from your local PHP program:

The price of book number 0440234816 is $6.99.

That price really is a bargain for “a medieval romance with paranormal overtones.”

Chapter 16: SOAP 527

The Babelfish application (http://babelfish.altavista.com) enables you to
translate a phrase from English to French, German, Italian, Spanish, or Portuguese.
By default, the program is set up to send the value From beneath you, it devours
to Babelfish. The application gives you the following translations, which are vari-
ously accurate. Generally, if you see the English word in the translation, it means
Babelfish was stumped.

◆ French — De sous vous, il devours.

◆ German — Von unter Ihnen es devours.

◆ Italian — Sotto da voi, esso devours.

◆ Spanish — Debajo de usted, él devours.

◆ Portuguese — Abaixo de você, ele devours.

Clearly, Babelfish has problems with devours.
The interesting aspect of this is that everything is done with Web services. You

send parameters (the ISBN in the former example, and the target language and
original phrase in the latter), and the Web services (which aren’t hosted locally, per-
haps obviously) return the strings you need.

How does it work? The answer to this question requires a deeper exploration of
our application’s code, which follows in the next section.

Code Breakdown
To see what’s going on in the two applications, you have to take a close look at the
PHP code itself. Both the Babelfish application and the Barnes & Noble application
are clients — they exist for the purpose of talking to servers that are implemented
somewhere else.

In this case, both of them speak to servers on XMethods (www.xmethods.com or
www.xmethods.net), a site that hosts a number of Web services for the purposes of
testing and experimentation. You don’t need to know how those remote services are
implemented. They could be in Java, C, or PHP. It really makes no difference to you,
because they’re set up to work with SOAP requests from over the Internet.

The Barnes & Noble application
The Barnes & Noble client sends an ISBN value (which uniquely identifies a book in
print) to a Web service, which returns the selling price of the corresponding book
on the Barnes & Noble Web site, www.bn.com. It prints out a simple string, indicat-
ing either the price of the book, the fact that www.bn.com doesn’t list the book, or
the fact that there was an error in the execution of the Web service.

528 Part IV: Not So Simple Applications

THE HEADER FILE
Many of the files in the Barnes & Noble and Babelfish applications call a header file
initially. The header file, header.php, does two important things. First, it imports the
critical nusoap.php file. It also specifies how the local applications deal with errors.

Here is header.php:

<?php

require_once(preg_replace(‘/soap.*/’,’book.php’,realpath(__FILE__)))
;
function soap_errors()
{

$oh = set_error_handler(‘error_handler’);
if (empty($oh))
{

set_handler(0, H_ERROR);
set_handler(E_ALL, H_LOG);

}
else
{

restore_error_handler();
}

}

soap_errors();

// include the class and function definitions for this application
require_once(‘lib/nusoap.php’);
?>

THE CLIENT FILE
The client file actually handles the process of instantiating a SOAP client that con-
nects to a publicly accessible Web service providing Barnes & Noble prices (really,
it just tells NuSOAP to do the dirty work). Here it is:

<?php
// include the SOAP classes
require_once(dirname(__FILE__).’/header.php’);
// define parameter array (ISBN number)
$param = array(‘isbn’=>’0385503954’);
// define path to server application
$serverpath
=’http://services.xmethods.net:80/soap/servlet/rpcrouter’;
//define method namespace
$namespace=”urn:xmethods-BNPriceCheck”;

Chapter 16: SOAP 529

// create client object
$client = new soapclient($serverpath);
// make the call
$price = $client->call(‘getPrice’,$param,$namespace);
// if a fault occurred, output error info
if (isset($fault)) {

print “Error: “. $fault;
}

else if ($price == -1) {
print “The book is not in the database.”;

} else {
// otherwise output the result
print “The price of book number “. $param[‘isbn’] .” is $”.

$price;
}

// kill object
unset($client);
?>

So, what’s going on here? Some of it should look familiar. First of all, the pro-
gram defines an array:

$param = array(‘isbn’=>’0385503954’);

Then, it sets a variable ($serverpath) that contains, as a string, a URL:

$serverpath
=’http://services.xmethods.net:80/soap/servlet/rpcrouter’;

What’s that URL? Well, if you call it up in an ordinary browser, you get an error.
The error says, in effect, that you can’t use a browser in this situation because this
isn’t a document at all — it’s a remote procedure call (RPC) router. As such, you have
to send it text (that is, SOAP XML) via the HTTP POST command. This makes sense,
because you want to send something from your client to the remote Web service.

Then you specify, on that remote site, the namespace you’re working with. This
line of code serves that purpose:

$namespace=”urn:xmethods-BNPriceCheck”;

The purpose of the reference to that site is to examine the Web Services
Description Language (WSDL) file that exists there. WSDL describes the Web services
that exist at a particular site, and the particular methods they expose. You know that
BNPriceCheck is a meaningful namespace on XMethods because you saw it adver-
tised at http://services.xmethods.net. (It’s also described programmatically at
http://www.xs.net/sd/2001/BNQuoteService.wsdl.)

530 Part IV: Not So Simple Applications

The next line should look familiar. It’s the instantiation of a NuSOAP soapclient
object that’s bound to the XMethods RPC router:

$client = new soapclient($serverpath);

With all that done, you can make a call to the remote service, expecting a single
value in return:

$price = $client->call(‘getPrice’,$param,$namespace);

That line invokes the call() function of the local soapclient object (as con-
tained in the $client handle). It sends along three arguments:

◆ getPrice— The name of the function you are calling

◆ $param— The struct you established earlier, containing the ISBN value

◆ $namespace— The namespace you got from the WSDL file, making it clear
to the RPC router that you want to send your query to the Barnes & Noble
service

After the request goes off — and remember, it’s the job of NuSOAP to manage the
mechanics of sending the request over HTTP (using POST) and dealing with the
response when it comes — you have only to react to the string that you get back.
It’ll be one of three things: An indication that the service experienced an error, an
indication that the ISBN you sent doesn’t correspond to a book in the database, or
a price value. Here’s the code that figures out which:

if (isset($fault)) {
print “Error: “. $fault;
}

else if ($price == -1) {
print “The book is not in the database.”;

} else {
print “The price of book number “. $param[isbn] .” is $”.

$price;

From that code you see that you’re expecting a floating-point value if the book
is in the database, or -1 if it’s not. If a variable called $fault (defined in NuSOAP)
exists, it means there was a problem in the service’s execution and an error field in
the Header element of the SOAP response was used (have a look at the SOAP spec-
ification for information on how Header elements indicate error conditions).

Chapter 16: SOAP 531

Be aware that floating-point values have some risk with respect to precision.

If you work with lots of numbers, rounding errors can occur, and when the

errors represent money, you can be in big trouble! Use the math functions to

guarantee precision if you have to, but don’t worry about it here — it’s not a

problem.

The Babelfish application
The Babelfish applications (there are three of them on the CD-ROM) are also
SOAP clients, similarly concerned with talking to a Web service made available on
the XMethods experimental site. The difference between these applications and
the Barnes & Noble application, though, is that the Babelfish applications rely
on the WSDL file exposed at XMethods (www.xmethods.com or www.xmethods.net)
to learn about the Web service.

For discussion purposes, consider babel.php, the simplest of the Babelfish SOAP
clients. The others vary mainly in that they do the same thing several times for dif-
ferent languages. Here is babel.php:

<?php
require_once(dirname(__FILE__).’/header.php’);

$client = new soapclient(
‘http://www.xmethods.net/sd/2001/BabelFishService.wsdl’
, ‘wsdl’

);
$proxy = $client->getProxy();

$languages = array(
‘English’ => ‘en’
, ‘French’ => ‘fr’
, ‘German’ => ‘de’
, ‘Italian’ => ‘it’
, ‘Spanish’ => ‘es’
, ‘Portugese’ => ‘pt’
);

$phrase = ‘From beneath you, it devours.’;

foreach ($languages as $language => $lc)
{

if ($language == ‘English’)
continue;

532 Part IV: Not So Simple Applications

$result = $proxy->BabelFish(‘en_’.$lc, $phrase);
$result = $proxy->BabelFish($lc.’_en’, $result);
$result = $proxy->BabelFish(‘en_’.$lc, $result);
$result = $proxy->BabelFish($lc.’_en’, $result);
print “English <-> $language : $result\n”;

}
?>

The most readily obvious difference between this and the Barnes and Noble
application is that the soapclient object (again, part of NuSOAP) uses a construc-
tor that’s different from the ones you saw earlier in this chapter. The soapclient
constructor used here makes reference to a WSDL file:

$client = new soapclient(
‘http://www.xmethods.net/sd/2001/BabelFishService.wsdl’
, ‘wsdl’

);

What’s that all about? Have a look at the WSDL file. It’s an XML file itself, so you
can call it up in your browser (or a text editor, if your browser won’t show XML
readably) if you like. The most interesting part of the file, for your purposes, is this
passage:

<operation name=”BabelFish”>
<input message=”tns:BabelFishRequest” />
<output message=”tns:BabelFishResponse” />
</operation>

That means there’s a function called BabelFish available to you. To call it you
need to create what NuSOAP calls a proxy object, which you do by calling a func-
tion of the soapclient object:

$proxy = $client->getProxy();

With that done, your local PHP program sets a variable containing the phrase to
be translated and an array containing abbreviations for the languages into which
translation is to be made. Each individual call to the Babelfish service goes through
the proxy object. The syntax for setting the variable looks like this:

$result = $proxy->BabelFish(‘en_’.$lc, $phrase);

The service is invoked, via the proxy object, with two arguments: the phrase to
be translated and the from/to language pair that describes the desired translation
procedure.

Chapter 16: SOAP 533

The seemingly redundant code in the foreach loop has a bit of fun with Babelfish,
highlighting the fact that a translation from Language A to Language B and back
again doesn’t necessarily yield the original phrase! This results, among other
things, from the gendered nature of many languages. Suppose you start with this
phrase in English:

If I had a hammer

Babelfish translates it into Spanish like this:

Si tenía un martillo

If you ask Babelfish to translate that Spanish back into English, though, you get
this:

If it had a hammer

This is because tenía can mean I had, you had, she had, he had, or it had (it’s
only in the subjunctive that Spanish is this vague). Only Babelfish’s programmers
know why the algorithm chooses it in this case.

Writing a SOAP server application
Sometimes, you just have to do things the hard way. Even though NuSOAP can
make the job a lot easier, the file simple.php does the work of a SOAP server man-
ually. It includes the code necessary to receive, parse, and evaluate SOAP requests,
and to send out correct SOAP responses. Up until now, you’ve worked with clients;
they requested data from publicly available Web services on the Internet.

Much of this file should look familiar to you. It receives a stream of raw text via
an HTTP POST event and uses a combination of string manipulation and PHP’s
built-in XML parsing capability to extract an argument (either CD or DVD). The pro-
gram kind of fakes a database lookup — you can put in actual code if you like — and
formats the “results” of the “lookup” as a SOAP response.

That’s the interesting part. The PHP program has to take on all the responsibility
of properly formatting the SOAP response. Essentially, the whole SOAP response
gets packed into a single variable, which is then returned:

$resp= <<<EOQ
<env:Envelope xmlns:env=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:enc=”http://schemas.xmlsoap.org/soap/encoding/”
env:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xs=”http://www.w3.org/1999/XMLSchema”
xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”>
<env:Header>
<t:Transaction xmlns:t=”urn:CDSpecial” env:mustUnderstand=”0”>
5
</t:Transaction>
</env:Header>

534 Part IV: Not So Simple Applications

<env:Body>
<a0:CDSpecial xmlns:a0=”urn:CDSpecial”>
<CDSpecialResponse>
<price xsi:type=”xs:string”>
$price
</price>
<title xsi:type=”xs:string”>
$title
</title>
<artist xsi:type=”xs:string”>
$artist
</artist>
</CDSpecialResponse>
</a0:CDSpecial>
</env:Body>
</env:Envelope>
EOQ;

This passage should look very much like the standard SOAP response you saw in
the theory sections earlier in this chapter. It’s all here: the namespace declarations,
the Envelope, Header, and Body elements, and the data-type designations describ-
ing the values that populate the Body.

Summary
This chapter covered a lot and in the process opened the door to a very exciting
new capability of PHP. Web services, as made possible by SOAP messaging, enable
you to extract information from the Internet without writing complicated text-
parsing routines or having to hope that the HTML your programs parse remains
formatted the same way forever. Web services are resources you can rely upon to
give you correct answers in response to correctly formatted function calls.

SOAP isn’t that hard to use, either, thanks in large part to the NuSOAP classes
from NuSphere and Dietrich Ayala. NuSOAP handles the tedious work of managing
HTTP requests and responses between clients and servers, and of formatting the
XML in SOAP messages as required. It makes Web services under PHP simpler by a
considerable margin.

Chapter 16: SOAP 535

Chapter 17

Project Management
IN THIS CHAPTER

◆ Introducing project management software

◆ Discussing the problems a project management application must solve

◆ Examining the database tables for a project management application

THE PROBLEM IS ALMOST NEVER the code. When you’re developing a large application—
or any project really — the hairiest difficulties have more to do with people working
in teams than with any technical aspect of the job.

The program in this chapter aims to facilitate the process of collaboration
between people working on a project. It will keep track of deadlines and keep notes
on which person is responsible for which tasks in a project.

Determining the Goals
of the Application
For the purposes of this application, project management has to do with the division
of labor between two or more collaborators. We want them to be able to see who’s
responsible for what, to know when deadlines are (or were), and to view the contents
of files. As an ancillary function, this application also requires authentication, so the
software knows which user is which and can adjust its output accordingly.

Necessary pages
The catalog of pages our project management program requires closely resembles
the list of requirements it must satisfy:

◆ The project management application must support user logins, and it must
keep track of users as they use the application across many transactions.
This makes session management a necessity. We use PHP’s library of
session-management functions and objects, just as we did in other appli-
cations in this book.

537

◆ Once users have logged in, they should be able to view the status of the
projects they’re involved in. They’ll want to see which files they are
responsible for (own, in the parlance), when they are or were due to be
finished, what any revised expected completion dates are, and whether
any problems have been noted with regard to individual files.

◆ Users should be able to share files that are relevant to a project.

The pages are straightforward — as you’ve guessed by now, we certainly didn’t
blow the budget on a designer. Figures 17-1 through 17-5 show you some of the
main screens of the application.

Figure 17-1: Project home page

538 Part IV: Not So Simple Applications

Figure 17-2: Edit Project page

Figure 17-3: Calendar view

Chapter 17: Project Management 539

Figure 17-4: Add New Task page

Figure 17-5: Project Admin home page

540 Part IV: Not So Simple Applications

Designing the Database
Key to this application is its database. Much of the work that the project-management
application does is essentially note keeping about which files fit into which projects,
where they are, who owns them, and what their status relative to established dead-
lines is. This information is the sort that databases like to contain for us.

The entirety of the project management information store is contained in a data-
base called projects. The projects database contains a number of tables, each of
which tracks various aspects of the project management mission. Figure 17-6 shows
the complete schema:

Figure 17-6: The projects database

User types
The values that can be assigned to users to dictate their privileges are contained in
the user_types table. The table contains an incremented integer field called
user_type_id that serves as the primary key, and a user_type field that contains
English words that describe the type of user.

users

user_id
user
password
user_type_id
email
firstname
lastname
company
phone

files

file_id
project_id
task_id
description
public
owner_id
upload_dt
first_upload_dt
fullpath
mimetype
file

tasks

task_id
project_id
task
description
due_dt
status_id
public
owner_id
first_due_dt
completion_comments

projects

project_id
project

project user map

project_id
user_id

status

status_id
status

admin

username
password

user types

user_type_id
user_type

Chapter 17: Project Management 541

The SQL scripts that create the database and populate its tables initially put the
values “staff,” “client,” and “admin” into the user_type fields of three records.

Application users
The users table defines the people who are allowed to use the database, as well as
their usernames, passwords, and a bunch of personal contact information. The
fields in this table are as follows:

◆ user_id— An auto-incrementing integer used as the primary key

◆ user— The username

◆ password— The password

◆ user_type_id— An integer that matches the primary key of one of the
user type constants in the user_types table

◆ email, firstname, lastname, company, and phone— Strings representing
personal details

Project and task status
The status table contains another set of values, describing whether a project or
task is late, on schedule, on a delayed schedule, completed, or abandoned.

The descriptions of these values are “On Track,” “Slipped,” “Overdue,” “Done,”
and “Cancelled.”

Projects
In this application, a project is defined as an entity in its own right. Though pro-
jects typically contain many files, it is the files that are mapped to projects, not the
reverse. Projects are recorded in the projects table.

Project records contain seven columns:

◆ project_id— An auto-incrementing integer used as the primary key

◆ project— The project name

◆ description— A text description

◆ due_dt— The current due date of the project (possibly not the same as its
original due date)

◆ status_id—The status of the project, defined by a reference to the status table

◆ owner_id— The manager of the project, defined by a reference to the
users table

◆ first_due_dt— The original due date of the project; by comparing this
field to due_dt, you can see whether or not the project has been delayed

542 Part IV: Not So Simple Applications

Project-user mappings
The project_user_map table exists solely for the purpose of establishing a correla-
tion between a project record, as identified by its project_id integer and stored in
the project_id field, and a user, identified by its user_id integer and stored in the
user_id field.

Tasks
Tasks are like files in that they are associated with project, and many of them can be
associated with a single project. Tasks are recorded in a table called tasks, which
contains 10 fields:

◆ task_id— An auto-incremented integer that serves as the table’s
primary key

◆ project_id— An integer that maps to a project_id value in the project
table

◆ task— A varchar name for the job

◆ description— A text description of the task to be done

◆ due_dt— A date variable describing the originally scheduled completion
date

◆ status_id— An integer that maps to the status_id field in the status
table

◆ public— A Boolean value describing whether users other than the owner
can see the task

◆ owner_id— An integer that maps to the user_id field of the users table to
identify the task’s owner

◆ first_due_dt— A date object denoting the current scheduled completion
date for the task

◆ completion_comments— A text field for notes that are made upon
completion

Files
Projects contain many files, and files map to projects. The project management
application keeps track of projects’ constituent files in a table called, logically
enough, files. The files table contains 11 fields that describe the files:

◆ file_id— An auto-incrementing integer used as the primary key

◆ project_id— An integer that maps to a value in the project_id field in
the projects table

Chapter 17: Project Management 543

◆ task_id— An integer that maps to the task_id field in the tasks table

◆ description— A text description of the file (not necessarily including its
path)

◆ public— A Boolean value that describes whether users other than the
owner can access the file

◆ owner_id— An integer that maps to the user_id field of the users table to
identify the file’s owner

◆ upload_dt— A date object describing when the file was last uploaded

◆ first_upload_dt— A date object describing when the file was first
uploaded

◆ fullpath— The path and file name of the file in the file system, relative
to the project root, recorded as text

◆ mimetype— A varchar description of the file’s MIME characteristics

◆ file— The contents of the file itself

Code Overview
Aside from the database, the core of the project management application’s func-
tionality is in a series of PHP pages that closely parallel the application’s essential
functions (refer back to the requirements described earlier in this chapter in the
“Necessary pages” section). The program also makes use of a series of classes that
serve as software representations of logical entities, such as database connections.
Further, it uses a library of PHP snippets to guarantee that HTML pages throughout
the application have a consistent look, and that the pages’ design can be updated
easily.

Logging in and establishing a session
Users enter the application via the login page, login.php, which goes through the
process of presenting the user with an HTML form that collects a username and
password. The application validates these against the database before forwarding the
user to index.php, the main interface page. The login page also serves the critical
function of establishing a session with the user, enabling the application to distin-
guish him or her from other users across many request/response transactions.

Showing active projects
The main interface page, generated by index.php, provides the user with his or her
main project management “dashboard.” It shows the user, at a glance, what projects
he or she owns, what the status of each is, and how each one is performing relative

544 Part IV: Not So Simple Applications

to its deadline. The user can see what tasks are associated with each project, and
can establish a new project record in the database.

Creating a new project
If the user chooses to create a new project, he or she is prompted for all the details
the database requires in its project record. The user gets an HTML form that asks for
the project’s title and description, its due date, its present status, and its owner
(which may be someone other than the user who’s adding the project).

Uploading a file
The application allows the user to associate files with projects. The application vali-
dates the path the user specifies and stores the file the user uploads — which the user
does via a file upload interface of the sort that’s standard to his or her operating
system — in the files table of the database.

Viewing a file
When a version of a project file exists in the files table of the database, the applica-
tion displays it to the user. The application lists the PHP code directly into the user’s
browser, where he or she can examine or save it.

Adding a user
Administrator-class users have the ability to add and edit users. They can determine
usernames and passwords and adjust the personal information kept about each user.

Code Breakdown
How does the application do all this? The application is really quite modular and
incorporates a lot of functions and other pieces you’ll probably find useful in other
kinds of applications. The details of the code are worth a look.

Session management
The first order of business on the login page is to figure out whether the user who
has accessed the page is already in a PHP-managed session. If so, it may not be
necessary for the user to log in manually at all. The application may be able to ver-
ify his or her credentials automatically and just present the requested page.

The code for doing this appears right at the top of the login page (and in several
other locations throughout the application files, as well). It looks like this:

Chapter 17: Project Management 545

check_session();
if (!isset($_SESSION))

global $_SESSION;

That code looks for a variable called $_SESSION. If the variable isn’t around, it
creates a new instance of it, effectively putting the user into a new session for
tracking purposes.

The function check_session() is interesting. It’s one of a library of functions
written expressly for this book. It makes sure the user’s environment (a browser,
typically) is set to support persistent cookies, and if so, it starts a session:

function &check_session()
{

if (!isset($_SESSION))
{

trace(‘_SESSION is not set’);
if (php_sapi_name() == ‘cli’)
{

global $_SESSION;
$_SESSION = array();
trace(‘can not use cookies, in CLI - set _SESSION to

array()’);
}
else
{

trace(‘ok to use cookies, call session_start()’);
session_start();

}
}
trace(‘results of check_session: _SESSION=’, $_SESSION);
return $_SESSION;

}

If the browser does not support cookies, or the user has them turned off, then the
code reacts politely, and other operations continue without session tracking.

Authentication
Now you can have a look at the way the application handles user authentication.
The file login.php handles the work of prompting the user for a username and pass-
word, using an HTML form. What’s interesting is that this form makes use of the
variables $_SERVER[‘PHP_AUTH_USER’] and $_SERVER[‘PHP_AUTH_PW’], which
are PHP values that represent the username and password entered by the user.

546 Part IV: Not So Simple Applications

Alternately, when the credentials are stored as part of a session, they can be
referred to as $_ SESSION [‘PHP_AUTH_USER’] and $_SESSION[‘PHP_AUTH_PW’].
This capability of PHP means that it’s possible to refer to the entered values with a
little more security than might otherwise exist during the authentication transaction.

The login.php file is called by the session_auth() function (a general-purpose
authorization function found in /book/functions/basic), which makes use of the
validate_user() function:

function validate_user()
{

static $_defaults = array(
‘username’ => NULL
, ‘password’ => NULL

);
static $_simple = array(‘username’,’password’);
$args = func_get_args();
$p = parse_arguments($args, $_simple, $_defaults);

session_user()->user = $p[‘username’];
session_user()->password = $p[‘password’];
return (bool)session_user()->validate();

}

validate_user() calls in its last line a method of the User class object returned
by session_user() called validate(). The validate() method is where the
actual database query (the interrogation of the users table) takes place. Have a look:

function validate()
{

$query = ‘select u.* from users u
left join user_types ut

on u.user_type_id = ut.user_type_id
where u.user = ? and u.password = ? ‘

;
$bind = array($this->user, md5($this->password));
if ($this->user_type())
{

$query .= ‘ and ut.user_type = ? ‘;
$bind[] = $this->user_type();

}
$row = $this->dbh()-

>getRow($query,$bind,DB_FETCHMODE_ASSOC);
if (count($row) > 0)

Chapter 17: Project Management 547

{
$this->build($row);
return TRUE;

}
return FALSE;

}

There’s some code to deal with encryption in there (the password is passed as a
hash), but essentially that function determines whether the user credentials the user
has sent as a result of the login attempt match an entry in the users table. The
validate() function returns a Boolean value, to which the lower functions react.

Viewing projects’ status
The main part of the project management application’s user interface is contained
in the file index.php. That file concerns itself with displaying status information
and other details, including deadline information, about the projects with which the
user is associated. In doing that, the main interface page must do a lot of database
queries and a fair bit of text-formatting work. Much of this work is delegated to
other functions (many of them in other PHP files), which makes the application
more modular and easier to maintain.

In index.php you see a strategy that’s commonplace across all the display scripts
in this application (and, indeed, in most HTML-generating PHP scripts everywhere).
Early on, the script calls the start_page() function, like this:

print start_page(‘Project Management Example’);

That function, defined in an imported file, does the work of generating opening
HTML. The argument is inserted as the HTML TITLE element.

With that done, the application proceeds to determine if the user accessing the
page is an administrator:

if (!session_user()->is_admin())

If so, then the status of all current projects is displayed; if the current user is not
an administrator, then only the projects to which that user is assigned are displayed.

To query the database, the application makes use of a function called dbh(),
which is contained in base.class.php (imported everywhere). The dbh() function
establishes the link to the database and enables queries to be run against it:

function dbh()
{

static $dbh = NULL;
if ($dbh === NULL)
{

548 Part IV: Not So Simple Applications

$dbh = db_connect($this->appname);
if ($dbh === NULL)
{

user_error(‘Received NULL db connection’,
E_USER_ERROR);

return FALSE;
}
$dbh->setFetchMode(DB_FETCHMODE_ASSOC);

}
return $dbh;

With dbh() invoked, the index page can send a query to it:

$rows = session_user()->dbh()->getAll($query, $bind);

The index page gets a set of rows back. Those rows, looped through, form the
bulk of what’s on the index page. Here is the looping logic:

foreach ($rows as $row)
{

extract($row, EXTR_OVERWRITE|EXTR_PREFIX_ALL, ‘p’);
$tlinks = array();
$tlinks[] = anchor_tag(

‘tasks/cal.php?project_id=’.$p_project_id
, ‘Calendar’

);
$tlinks[] = anchor_tag(

‘tasks/list.php?project_id=’.$p_project_id
, ‘Task List’

);
$query = ‘select t.*, u.user as owner

from tasks t left join users u on t.owner_id = u.user_id
where t.project_id = ?

and t.status_id <> ?
and (t.due_dt >= curdate() - interval 3 day

and t.due_dt <= curdate() + interval 3 day)
‘;
$bind = array($p_project_id,$cancelled_id);
$events = session_user()->dbh()->getAll($query,$bind);
$elist = array();
if (count($events) > 0)
{

$elinks = array();
$today = strtotime(date(‘Y-m-d’,strtotime(‘today’)));
foreach ($events as $e)

Chapter 17: Project Management 549

{
extract($e, EXTR_OVERWRITE|EXTR_PREFIX_ALL, ‘e’);
session_user()->format_dt($e_due_dt);
$e_task_tag = anchor_tag(

‘tasks/view_task.php?task_id=’.$e_task_id
, $e_task

);
$its_yours = FALSE;
if ($e_owner_id == session_user()->user_id)
{

$e_owner = ‘You’;
$its_yours = TRUE;

}
if ($e_status_id == $done_id)
{

$e_text = “$e_owner finished $e_task_tag on
$e_due_dt”;

}
elseif ($e_status_id == $slipped_id)
{

$e_text = “$e_owner slipped $e_task_tag to
$e_due_dt”;

}
else
{

$e_due_ts = strtotime($e_due_dt);
$on_time = ($today <= $e_due_ts);
if ($its_yours)
{

$due_word = $on_time ? ‘are’ : ‘were’;
}
else
{

$due_word = $on_time ? ‘is’ : ‘was’;
}
$e_text = “$e_owner $due_word supposed to finish

$e_task_tag on $e_due_dt”;
}
$elinks[] = $e_text;

}
$tlinks[] = ‘Alerts:’.ul_list($elinks);

}

$links[] = anchor_tag(
‘project.php?project_id=’.$p_project_id

550 Part IV: Not So Simple Applications

, $p_project
)
. ul_list($tlinks)

;
}

Some of the most interesting calls there are the ones to cal.php and list.php. These
files contain functions that generate information about the due date and about the
task list associated with the project at hand, respectively. They handle some of the
bothersome aspects of PHP dates.

It’s worth noting, as well, how the project management application deals with
projects. Consider the following, for example:

$links[] = anchor_tag(
‘project.php?project_id=’.$p_project_id
, $p_project

)
. ul_list($tlinks)

;

The call to project.php guarantees that the call to the database is made — the
details of the project the user is interested in are retrieved and populated into a
local object, which can then be manipulated. Here is that code:

$fetch_ok = TRUE;
if ($submit == ‘Save’)
{

if (empty($p->owner_id))
{

print paragraph(array(
‘style’ => ‘color:red’
, ‘values’ => ‘Error: No owner is associated with this

project’
));
$fetch_ok = FALSE;

}
else
{

$p->write_to_db();
}

}
if ($fetch_ok)
{

$p->fetch_from_db();
}

Chapter 17: Project Management 551

else
{

$p->owner()->fetch_from_db();
$p->status();

}

Uploading a file
The project management application provides its users with the ability to upload
files to the files table of the database, which makes those files accessible to others
with the proper access. It’s interesting to see how the application goes about
uploading a file from the user’s local file system and encoding it into the database.

Upload duties are the domain of savefile.php, which capitalizes upon PHP’s abil-
ity to work with a traditional computer file system and also its ability to interact
with the contents of a relational database.

The code first sets out to determine whether the file already exists in the data-
base. If it does not, the application proceeds to create a File object, complete with
a file name, a MIME type, and the contents of the uploaded file itself:

$f = new File;
$f->build($_POST);
$uf = $_FILES[‘projectfile’];
$f->description = $uf[‘name’];
$f->mimetype = $uf[‘type’];

if (file_exists($uf[‘tmp_name’])) {
$f->file = gzdeflate(

file_get_contents($uf[‘tmp_name’]), 9
);

}
else
{

error_log(“could not find {$uf[‘tmp_name’]}”);
}

$f->write_to_db();

Where does the File object come from, anyway? It’s defined in projects/classes/
file.class.php and describes the mapping between its properties and the fields in the
files database. Early in the File class definition, the fields are established in an
array:

array(‘file_id’,’project_id’,’task_id’,’description’,’public’,’owner
_id’,’upload_dt’,’first_upload_dt’,’fullpath’,’mimetype’,’file’);

552 Part IV: Not So Simple Applications

Displaying the contents of a file
Our project management application needs to be able to display the files it’s man-
aging, which it does with the contents of displayfile.php, in which a named file is
retrieved from the database:

$f = new File;
$f->build($_REQUEST);
$f->fetch_from_db();
if ($f->file)
{

$f->display();
}
elseif ($f->fullpath)
{

virtual($f->fullpath);
}
else
{

print “Duh, like what do I do now?\n”;
}
unset($f);

That code segment, in turn, calls the display() function in the File class,
defined in file.class.php. This function is a simple one:

function display()
{

header(‘Content-type: ‘.$this->mimetype);
echo gzinflate($this->file);

}

display() simply undoes the gzdeflate() function invoked at storage time
and decompresses it after storage.

Summary
In this chapter we designed and built an application that manages projects, files,
users, deadlines, and notes by storing everything in a database and presenting a
coherent, useful user interface.

This exercise enabled you to explore the way PHP manages sessions persistently
and to see how it goes about stuffing files from a file system into a database. You also
got a further look at object orientation in PHP and ended up with both a library of
reusable functions and a simple project management application.

Chapter 17: Project Management 553

Appendixes
APPENDIX A

What’s on the CD-ROM

APPENDIX B
HTML Forms

APPENDIX C
Brief Guide to MySQL/PHP Installation

and Configuration

APPENDIX D
MySQL Utilities

APPENDIX E
MySQL User Administration

APPENDIX F
PHP Function Reference

APPENDIX G
Regular Expressions Overview

APPENDIX H
Helpful User-Defined Functions

APPENDIX I
PHP and MySQL Resources

APPENDIX J
MySQL Function Reference

Part V

Appendix A

What’s on the CD-ROM
THIS APPENDIX PROVIDES YOU with information on the contents of the CD that
accompanies this book. For the latest and greatest information, please refer to the
ReadMe file located at the root of the CD. Here is what you will find:

◆ System Requirements

◆ Using the CD

◆ What’s on the CD

◆ Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements listed in
this section. If your computer doesn’t match up to most of these requirements, you
may have a problem using the contents of the CD.

For Windows 9x, Windows 2000, Windows NT4 (with SP 4 or later), Windows
Me, or Windows XP:

◆ PC with a Pentium processor running at 120 MHz or faster

◆ At least 32MB of total RAM installed on your computer; for best perfor-
mance, we recommend at least 64MB

For Linux/Unix:

◆ PC with a Pentium processor running at 90 MHz or faster

◆ At least 32MB of total RAM installed on your computer; for best perfor-
mance, we recommend at least 64MB

For Macintosh:

◆ Mac OS computer running OS X or later

◆ At least 32MB of total RAM installed on your computer; for best perfor-
mance, we recommend at least 64MB

557

Using the CD
The contents of this CD are set up as a folder structure. To access the files you want
to work with, access the appropriate folder (apache, mysql, php, and so on). Note:
To access the example applications from the book open the book folder and explore
its contents.

What’s on the CD
The following sections provide a summary of the software and other materials you’ll
find on the CD.

Example applications
To get the applications in Sections III and IV working you first need to install
Apache, PHP, and MySQL. You can find these applications on this book’s CD-ROM.
You can follow the instructions in Appendix C to install these applications.

Once Apache, PHP, and MySQL are installed, you need to copy the PHP scripts
that load the databases and run the applications. Copy the entire /book directory
from the CD, with all of its subfolders, to somewhere under the htdocs/ directory of
your Apache installation, so that you can browse to http://myserver/book/ (or
http://myserver/monkeying/with/php5/book/, and so on)

Check the README.TXT file in this directory for further instructions. Primarily,
you will need to edit the book.ini file and set the values defined there to match your
local configuration.

Applications
On the CD, in addition to the code for the examples detailed in this book (as well as
some extra ones), you’ll find the following:

◆ MySQL — Files for installing a recent version of MySQL 4.0. For more
information, and a more recent version, check their Web site at http://
www.mysql.com.

◆ Apache — Files for installing a recent version of the Apache Web server
(go to http://www.apache.org for more information).

◆ PHP — Files for installing PHP 4 on your machine. Be sure to install
Apache and MySQL first.

558 Part V: Appendixes

◆ PHP 5 beta — Files for installing the beta version of PHP 5 that was avail-
able at the time of publication. If you have access to the Web, check the
PHP site at http://www.php.net for more recent developments. You
can also find absolutely up-to-the-minute development versions at
http://snaps.php.net.

◆ Adobe Acrobat Reader — Tool for reading files in the Portable Document
Format (PDF).

◆ Scripts from Appendix H.

All files with .php extensions can simply be copied to the Web server directory
and will execute when the page is accessed.

Files with .tar.gz extensions are intended for Unix systems and must be uncom-
pressed before you will be able to use them. Use the following commands:

gunzip filename.tar.gz
tar xf filename.tar

All files with .zip extensions must be uncompressed using a Windows zip utility
such as WinZip (available at http://www.winzip.com).

Once you’ve uncompressed the packages, see the README or INSTALL files for
installation instructions.

For more information on installing and configuring MySQL, PHP, and

Apache, see Appendix C.

Shareware programs are fully functional, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support. Freeware programs are
copyrighted games, applications, and utilities that are free for personal use. Unlike
shareware, these programs do not require a fee or provide technical support. GNU
software is governed by its own license, which is included inside the folder of the
GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or func-
tionality (such as being unable to save projects). Some trial versions are very sensi-
tive to system date changes. If you alter your computer’s date, the programs will
“time out” and will no longer be functional.

Appendix A: What’s on the CD-ROM 559

eBook version of MySQL/PHP Database
Applications, Second Edition
The complete text of this book is on the CD in Adobe’s Portable Document Format
(PDF). You can read and search through the file with the Adobe Acrobat Reader
(also included on the CD).

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD,
try the following solutions:

◆ Turn off any antivirus software that you may have running — Installers
sometimes mimic virus activity and can make your computer incorrectly
believe that it is being infected by a virus. (Be sure to turn the antivirus
software back on later.)

◆ Close all running programs — The more programs you’re running, the less
memory is available to other programs. Installers also typically update
files and programs; if you keep other programs running, installation may
not work properly.

◆ Reference the ReadMe — Please refer to the ReadMe file located at the root
of the CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD-ROM, please call the Wiley Product
Technical Support phone number: (800) 762-2974. Outside the United States, call
1(317) 572-3994. You can also contact Wiley Product Technical Support at
www.wiley.com/techsupport. Wiley Publishing will provide technical support
only for installation and other general quality control items; for technical support
on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products,
please call (800) 225-5945.

560 Part V: Appendixes

Appendix B

HTML Forms
IF YOU WANT YOUR APPLICATIONS to take user data, you are going to need to provide
a place for users to enter the data. That requires HTML forms (or, if you want to be
fancy, PDF files or Macromedia Flash applications, but those are subjects unto
themselves). HTML forms are easy enough to work with. Several commonly used
input types are available, and in browsers that make use of HTML 4.0 and
Cascading Style Sheets you can use certain techniques to make your forms a bit
fancier. A full discussion of everything you can do with forms is beyond the scope
of this book. If you need more information on forms and how they can work with
CSS or JavaScript, or on some of the newer browser-specific form types, check out
the documentation at http://microsoft.com or http://mozilla.org. There is
also a great resource for questions about how different tags and attributes work in
different browsers at the Index DOT Html site, http://www.blooberry.com/
indexdot/html/. You’ll find the official documentation at http://www.w3c.org/
MarkUp/.

Form Basics
Each form is delimited by opening and closing <form> tags. The <form> tag takes
the following attributes:

◆ action— This attribute specifies the URL of the page that a form will be
sent to for processing. It can contain a relative URL (such as myscript.
php or ../myfolder/myscript) or a complete URL (such as http://
www.mydomain/myscript.php).

◆ method— This attribute indicates the HTTP request type the browser will
send to the server. It must be set to either GET or POST. If you set it to GET,
the name/value pairs will appear in the browser’s location bar (as in
http://mypage.com?name1=value1&name2=value2). The advantage
of using GET is that results can be bookmarked in the browser and that
debugging is easier. The disadvantage is that the variables you send will
be more transparent. If you set the method attribute to POST the name/
value pairs will not be visible. The default value of this attribute is GET.

◆ name— This attribute is most useful for addressing portions of a form
through JavaScript, though it can also be used for CGI applications.
The form name is not sent to the server when the form is submitted. 561

◆ enctype— This attribute has a default value of application-x-www-
form-urlencoded, and this is normally be fine. But if you are uploading
files (using <input type=”file”>) you should use multipart/form-data.

A typical form shell will look something like this:

<form name=”myform” action=”processor.php” method=”POST”>
?
</form>

Input Types
Most of the work in your forms will be done by the input types. An input tag and
the type attribute determine what kind of form element is rendered in your browser.

Every form field must have a name attribute. The name you give the form field is
used by PHP to identify the value that was placed in it. See the code sample that
follows shortly for a concrete example. (To be absolutely accurate, you don’t need
to supply name attributes to submit and reset buttons, but doing so makes it easier
to retrieve values from form elements. Otherwise, you’re stuck doing it via array
position.)

As a quick example, the following would create a simple form with a single text
box and a submit button. The text box has the default value of “hello there”, as
shown in Figure B-1.

<form>
<input type=”text” size=”50” maxlength=”15”
value=”hello there”>

<input type=”submit” name=”submit” value=”OK?”>

</form>

The input types are as follows. Note that different input types have different
attributes associated with them. Each of them takes a name attribute.

◆ text— This type is shown in the preceding example. It can take these
attributes:

■ size— Indicates the length of the box rendered in the Web browser.

■ maxlength— Limits the number of characters that can be inputted into
the field. Keep in mind that older browsers will ignore maxlength;
even in newer browsers you should not rely on this attribute to limit
uploads.

■ value— The default value in the box. The user can override it by
typing in different information.

562 Part V: Appendixes

Figure B-1: A simple HTML form

◆ password— This type is identical to the text field, except that the text that
is typed into the box is shown as asterisks.

◆ hidden— This type does not render on the screen. It is very useful for
passing values between pages. The name and value attributes are all you
need with hidden fields; consider using them if you’re uncomfortable
with cookies or sessions. Note that by simply viewing the source of your
Web page, a savvy user will be able to see your hidden form elements.
Do not put any sensitive data in hidden form fields.

◆ submit— Places a submit button on the page. The text in the value
attribute will appear on the submit button. When the form is submitted,
the name and value of the submit button are passed along like all other
form elements. If you use name/value pairs for all of your submit buttons,
you have the extra flexibility of having multiple submit buttons on a
single form.

◆ image— Serves the same purpose as the submit button, but it enables you
to specify an image to use instead of that ugly old submit button. Treat
this form element as you would any tag. Provide both src and alt
attributes. If you’re working with image maps, in which clicks on different
regions of the same image have different functional significance, you can
access the coordinates of a click through name_x and name_y.

Appendix B: HTML Forms 563

◆ reset— This form field creates a button that, when pressed, returns the
form to the state it was in when the page loaded. Any data that the user
has entered into the form is cleared.

◆ file— Allows users to send files from their computer to a remote server.
The field looks much like a text box that has a button labeled “Browse”
placed next to it. When a user presses the Browse button, a file selection
dialog box is displayed. The user can choose one file per file upload
form field. A form can have multiple file upload fields. When using this
input type, be sure to change the form enctype attribute to multipart/
form-data. See Chapter 12 for a discussion of file uploads with PHP.

◆ checkbox— The name and value of the checkbox is passed only if the
checkbox is checked when the form is submitted. If the word “checked”
appears in the tag, the checkbox will be checked by default. Remember
to use name=box_name[] to pass multiple checkboxes as an array. See
Chapter 4 for a discussion of passing arrays with PHP.

◆ radio— Enable the user to select only one of several choices. Radio but-
tons with the same name attribute belong to the same group. The checked
attribute signifies the default choice.

The following form makes use of all the form elements we just covered, except
for the image type. Figure B-2 shows how it is rendered in the browser.

<h2>Please Enter Personal Information</h2>
<form>

<input type=”text” size=”25” maxlength=”15” name=”name”
value=”Name Here”>

<input type=”password” size=”25” maxlength=”15” name=”password”
value=””>

<input type=”hidden” value=”you can’t see me”>
<input type=”checkbox” name=”telemmarket” value=”yes” checked>If

checked, I have permission to clear out your bank account.
<p>
What is your eye color?

<input type=”radio” name=”eye_color” value=”blue”

checked>blue

<input type=”radio” name=”eye_color” value=”green”>green

<input type=”radio” name=”eye_color” value=”brown”>brown

<input type=”radio” name=”eye_color” value=”red”>red

<input type=”submit” name=”submit” value=”submit”>

<input type=”Reset”>

</form>

564 Part V: Appendixes

Figure B-2: More form elements

select, multiple select
The select form element creates drop-down boxes and (to use the Visual Basic
term) list boxes. To create drop-down boxes you must use an opening <select> tag
with a name attribute. Within the select element, <option> tags will indicate pos-
sible choices. Each of these can have a value attribute; without one, the value of
the option is the text between the opening and closing <option> tags. If the word
selected appears in the tag, that option is set as the default value of the <select>
field (as with ‘checked’ for checkboxes and radio buttons).

The following HTML code creates a drop-down box with three elements:

<form name=”tester” action=”script.php” method=”GET”>
<select name=”dinner”>

<option value=”1”>chicken</option>
<option value=”2”>fish</option>
<option value=”3”>vegetarian</option>

</select>
</form>

By adding the word multiple to the select element you enable the user to pick
more than one of the choices. The size attribute determines how many of the
options are visible at one time.

Appendix B: HTML Forms 565

The following code creates a list box with three visible elements. Figure B-3
shows how this HTML code looks in the browser.

<form name=”tester” action=”script.php” method=”GET”>
<select name=”side_dishes” multiple size=”3”>

<option value=”1”>potato</option>
<option value=”2”>pasta</option>
<option value=”3”>carrot</option>
<option value=”4”>celery</option>
<option value=”5”>mango</option>

</select>
</form>

If you want that select list to support multiple selections (by holding down Ctrl),
you have to put square brackets after the name value. In other words, the opening
line of the preceding select box would be as follows:

<select name=”side_dishes[]” multiple size=”3”>

textarea
The textarea element creates a large block for text entry. Add a rows and columns
attribute to specify the size of the box. textarea is different from other form ele-
ments in that opening and closing tags surround the default text. For instance:

<textarea name=”mytext” rows=”5” columns=”20”>Here’s the default text</textarea>

Keep in mind that if you have spaces or hard returns between your <textarea>
tags, those characters will be carried to the form element.

Add the wrap attribute to change how text wraps when it reaches the end of a
line in the box. If the value is wrap=”physical”, carriage returns are added at the
end of line; if the value is wrap=”virtual”, the lines will appear to wrap but will
be submitted as a single line. The latter is almost always the best choice for ease of
processing on the server side — though “virtual” still preserves any manually
inserted returns.

The attributes just listed came from the folks at Netscape, and you still might
need to use them. The official W3C HTML 4.0 attribute values for wrap are none,
hard, and soft, and these should work in the most of the recent browsers.

566 Part V: Appendixes

Figure B-3 adds the select, multiple select and textarea elements to a
form with the following code:

<h2>Please Enter Personal Information</h2>
<form>
<fieldset id=”fieldset1”

style=”postion:absolute;
width:300;
height:100;
top:20;
left:10;”
>

<legend>Food Questions</legend>
What did you eat for dinner?

<select name=”dinner”>
<option value=”1”>chicken</option>
<option value=”2”>fish</option>
<option value=”3”>vegetarian</option>

</select>

Any Side dishes?

<select name=”side_dishes[]” multiple size=”3”>
<option value=”1”>potato</option>
<option value=”2”>pasta</option>
<option value=”3”>carrot</option>
<option value=”4”>celery</option>
<option value=”5”>mango</option>

</select>

How are you feeling about dinner?

<textarea name=”mytext” rows=”5” columns=”20”>
Here’s the default text</textarea>
</fieldset>
<p>
<button>

<input type=img src=”disk.gif” width=”32” height=”32” border=”0”
alt=”disk”>

Pretty Little Button
</button>
</form>

Appendix B: HTML Forms 567

Figure B-3: Additional form elements

Other Attributes
With HTML 4.0 and the newest browsers some additional attributes have been
introduced. Make sure to test these as part of your QA process, because they will
not work on all browsers.

accesskey
An access key is the same as a hot key. If this attribute appears in a form element,
the user can hit (on a PC) Alt and the designated key to be brought directly to that
form element. The hot key is generally indicated by underlining of the hot letter.

<input type=”text” name=”mytext” accesskey=”m”><u>M</u>y text box.

tabindex
Users can use the Tab key to move through form elements. The tabindex attribute
specifies the order in which focus will move through form elements.

568 Part V: Appendixes

Other Elements
Internet Explorer 5 and Mozilla support a couple of new and seldom-used form ele-
ments that you might want to consider using.

button
The button is a fancier version of the submit button. It enables you to put both text
and an image on the same button. There are opening and closing <button> tags,
and everything inside of them appears on the button. Figure B-3 shows an example
of the button.

fieldset and legend
These are nice for grouping elements in forms. All text and tags within the
<fieldset> tags will be surrounded by a thin line. Text within the <legend> tags
will serve as the caption for that grouping.

Figure B-3 shows all the form types.
At present, it is still not a great idea to use most of the HTML 4.0 form elements

and attributes. Generally speaking, they add very little, and they may look very
strange on many browsers.

Appendix B: HTML Forms 569

Appendix C

Brief Guide to MySQL/PHP
Installation and
Configuration
WHEN INSTALLING MYSQL AND PHP, you are faced with all kinds of options. The vari-
ety of operating systems and installation options creates more permutations than
could possibly be handled in this book. Luckily, installation procedures for all pack-
ages are documented well in each package’s respective documentation.

In the first edition of this book, our installation instructions focused on compil-
ing the individual packages from source files and then making changes to configu-
ration files so that Apache, MySQL, and PHP would recognize each other. While
there’s still something to be said for compiling packages from source — you do get a
finer level of control and may be able to invoke options not available with any other
form of installation — it’s likely that a simpler method of installation will work just
fine for you. On just about any platform and operating system you can get the most
recent version of all packages precompiled and packaged into an easy-to-install set
of files. We make note of these installers in the following sections.

Windows Installation
At this point in computer history (in the opinion of these authors) far too many ver-
sions of Windows are in use. Windows 98, NT, 2000, and XP all have large user
bases. Though each of these operating systems differs significantly from the others,
the installation of the packages of concern to us is pretty similar on all Windows
variants.

There are a few installers that make MySQL/PHP/Apache installation a truly
painless process on Windows. We discuss two of these in the following sections.

phpdev
The phpdev bundles available at http://www.firepages.com.au/ provide a very,
very clean installation program. To install this package on a Windows machine, all
you have to do is the following.

571

1. Go to the phpdev bundles area of the site.

2. Pick a version and download the installer file — in this case, the PHP5 beta
bundle, dev5beta3.exe. This is an NSIS installer file.

3. Run the installer and choose the directory where you want your files to be
installed — C:\phpdev5, for example.

And that’s it. We’re not including a phpdev package on the CD because it’s likely
that by the time you read this book a significant bug or security vulnerability will
have be discovered in one of the included packages. So you’re really better off get-
ting the most current download available from the Web site.

You might also need to view any updated installation instruction files.

NuSphere
The NuSphere Corporation first got into the MySQL/PHP world by offering a trans-
actional table for MySQL called Gemini. At the time of this writing, it’s difficult to
find any mention of Gemini on the NuSphere Web site. Instead, NuSphere seems to
be concentrating its efforts on a PHP integrated development environment (IDE)
called PHPed. (Incidentally, if you’re on Windows or Linux, you might want to
check this product out; it’s pretty cool.)

At the time of this writing, NuSphere continues to make a very nice Web-based
installer that installs PHP, MySQL, Apache, and mod_perl on Windows and Linux
systems. All you really have to do is double-click the install file, and NuSphere did
the rest.

It’s entirely possible that NuSphere will no longer offer this installer by the time
you read this book. Check its Web site (http://www.nusphere.com/cgi-bin/
nsp.cgi/custsrvc/utils/free_download.htm) to see what’s currently available.

Another installer, called Sokkit (formerly PHPtriad), used to be free for all

but now is being re-written as part of a commercial effort.

Installing on Windows from assorted binaries
You can install all these packages separately and in the process let them know how
to work together. We recommend getting the most recent binaries from the Web
sites of the organizations that distribute the software. These packages are con-
stantly updated, and there’s no reason not to have access to the most recent features.
(Of course, if you already installed these packages using phpdev or by means of
some similar arrangement you should skip to the section on “PHP Configuration.”)

572 Part V: Appendixes

Start by copying the MySQL binaries from the http://mysql.com/downloads
site to your local drive. Do the same for Apache and PHP (the appropriate download
sites here are http://httpd.apache.org/download.cgi and http://www.php.
net/download). The names of the files will be something like the following (they
may be slightly different, depending on the version you are using):

◆ mysql-4.0.14b-win.zip

◆ apache_1_3_22_win32_no_src.exe

◆ php-4.2.2-Win32.zip

Start by unzipping the MySQL file and PHP files with your favorite unzip tool.
(If you don’t have one, we recommend WinZip at http://www.winzip.com/.)
Unzip them into a directory you find convenient. We prefer using a separate direc-
tory for each.

Start with MySQL.

1. In the directory in which you unzipped the file, you will have a file
named setup.exe. Execute that file.

2. Choose a directory (for example, c:\mysql) in which you want to install it,
and then in the next screen, select a Typical installation. (You might want
to examine the custom options, but with the Windows installation very
few real options exist.)

At this point your MySQL installation is complete. To test it, go to the DOS
prompt and move to the directory you specified for your MySQL installation. Then
move to the subcategory \bin. If you then type mysqld, the MySQL daemon should
start. To test if your daemon is working, start up the MySQL command-line client
by typing mysql.

Next, you should install Apache.
This installation requires little more than double-clicking the executable you

copied from the apache.org site. The installation is pretty easy: all you really need
to do is select a domain name (just use localhost if you’re not actually putting it
live on the Internet) and a directory in which you would like to install Apache.
When the installation is completed an Apache HTTP Server group item is added to
the Start menu. It’s important to remember the directory in which you installed
Apache. That is where you’ll be putting all the PHP files that make up the applica-
tions. If you used the default settings, your default serving directory will be
c:\Program Files\Apache Group\Apache\htdocs.

Don’t start up Apache just yet. A little more configuration information

follows.

Appendix C: Brief Guide to MySQL/PHP Installation and Configuration 573

Now on to PHP. You should have a folder into which you unzipped all the PHP
files. (In the following instructions we are assuming the folder is c:\php.) Also, PHP 4
and later versions have a pretty good Apache module for Windows. In the previous
version of this book we recommended using the CGI binary. The Apache module
has a bit more in the way of functionality, so you should probably use that.

1. Copy php5ts.dll and php5apache.dll from c:\php into the c:\windows\
system or c:\winnt\system32 directory, whichever is available on your
version of Windows.

2. Next, copy the php.ini-dist file from the c:\php directory to c:\windows
on Windows 95/98, or c:\winnt or winnt40 on NT/2000/XP. Rename the
file php.ini. Now open the php.ini file and change the extension_dir entry
so it matches the name of the folder where you placed the .dll files. For
example:

extension_dir = c:/windows/system32

3. Now you need to alter your Apache configuration file. The easiest way
to do this is to go to the Start menu and select Apache HTTP Server →
Configure Apache Server → Edit Configuration File.

4. Add the following three lines to the file. Note that the first line must
match the name of the directory on your system:

LoadModule php5_module c:/windows/system
AddModule mod_php5.c
AddType application/x-httpd-php .php

The last line ensures that all files with .php extensions are processed as
PHP applications. If you want other file extensions to by parsed by PHP,
simply add another AddType line to the conf file, as follows:

AddType application/x-httpd-php5 .phtml

You may have to make a couple of other alterations to your httpd.conf file, such
as the following:

◆ If the server refuses to start, you may need to add something to the
ServerName directive. If you are using TCP/IP in your local area network
you may need to add the IP address of your machine, as follows:

ServerName 192.168.1.2

Or, if your machine is not networked, you may want to use the following
ServerName:

ServerName 127.0.0.1

574 Part V: Appendixes

◆ If you also have Microsoft Personal Web Server running on your machine
you might want to change the port on which Apache runs. By default Web
servers listen on port 80, but you can change that by altering the port
line in httpd.conf to something else — perhaps 8080.

And that should do it. Start Apache through the Start Menu. Add a file to your
\htdocs folder that contains the phpinfo() function. When you call that function
you should see that everything is working properly and that an entry for MySQL is
there.

Note that you don’t need to make any alterations to the php.ini file to make PHP
work with MySQL. In fact, MySQL support is built into PHP for Windows.

If you uncomment the directive extension=php_mysql.dll you will

have all kinds of problems getting a PHP page to load.

These are the basics you need to get going with PHP and MySQL on Windows.
Note that you can also install PHP as an ISAPI filter for Internet Information Server
(IIS) and PWS. The instructions for doing so are included in the readme.txt file
included in the PHP Zip file.

As of this writing, running PHP as an IIS filter is tricky and unreliable and not

recommended for a production environment. It’s better to associate the .php

extension with the PHP interpreter in the Internet Services Management

console. It’s much more reliable that way.

Installation on Unix/Mac OS X
On Unix, there are far more options that you might want to avail yourself of. You
might want to install by compiling the source code yourself or (on Linux) by using
.rpm files. This appendix covers only compiling from source. We strongly recom-
mend that you do not use .rpm files. The convenience that .rpms sometimes offer
does not extend to this type of configuration, largely because configuration can be
tricky and manual work is the only way to get it right.

You can compile a variety of libraries and optional functions into PHP, and
additional libraries and functions are being added all the time. In this quick guide,
we cover only some highlights.

Appendix C: Brief Guide to MySQL/PHP Installation and Configuration 575

If you have other priorities, need .rpms, or want to include options not covered
here, seek out the documentation in the online manuals. This really isn’t a very dif-
ficult installation, and you should be able to customize as you see fit with minimal
effort. First stop, MySQL.

MySQL installation
An option we have yet to discuss — and probably the best one for Unixes — is to get
a set of binaries distributed by MySQL AB. If you go to www.mysql.com/downloads
you can see binaries for about every major Unix distribution, including Solaris,
Irix, HP-UX, FreeBSD, and Mac OS X. It would be impractical for us to include all
these install files on the CD (and you’re better off getting them from the site any-
way), and the installation instructions can differ slightly from platform to platform.
Installing from binaries, however, is exceedingly easy — and far quicker than com-
piling from source. If you download binaries for your platform you will see a set of
instructions that comes with the package. You can have MySQL installed in under
10 minutes after running only a handful of commands.

Complete information on MySQL installation can be found in Chapter 2 of the
MySQL online manual: http://www.mysql.com/documentation/mysql/bychapter/
manual_Installing.html. Check it out if you are having problems.

If you decide that you do want to install from source, you need to get a com-
pressed tarball of the source (a .tar.gz or .tgz file) from http://www.mysql.com/
downloads/. Copy it to a directory you want to work in and then unpack it with a
command like the following:

gunzip mysql-4.0.12.tar.gz
tar xf mysql-4.0.12.tar

This command creates a directory with the name of the MySQL distribution (for
example, mysql-4.0.12). Use cd to move into the directory. Note that the exact ver-
sion may be different, depending on when you download the software.

The first step is to run configure. You can set many options with configure
flags; to get a complete list run ./configure --help.

In the installations we’ve run, we have found it convenient to specify --prefix.
If you do not specify a prefix, /usr/local is used, and this is almost always perfectly
fine. Additionally, MySQL enables you to specify the location of any of the subdi-
rectories (the data directory, the bin directory, and so on). Usually that will not be
necessary. Normally you can run the following:

./configure --prefix=/path/to/installation

Now you have only two commands to execute:

make
make install

576 Part V: Appendixes

Note that you’ll probably have to run the make install command as root. Either
use su to switch to root, or, on platforms that support sudo, use that. The next thing
you want to do is cd into the /bin directory and run the following command, which
creates your default databases and permissions tables:

./mysql_install_db

You don’t want to have to run the MySQL daemon as root. You’re better off
making a user and group specifically for running the daemon, mainly because your
systems will be neater if you distribute responsibilities across users. Assign permis-
sions to directories that allow the MySQL user to access everything he or she needs.
In the following shell commands, we are creating a user and group named mysql
and then assigning proper rights to that user; we’re assuming an installation direc-
tory of /usr/local/mysql. These actions must also be performed as root.

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> chown -R root /usr/local/mysql
shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql

At this point a directory listing of /usr/local/mysql should look about like this:

shell> ls -Fla

drwxr-xr-x 13 root mysql 442 Jun 26 13:31 ./
drwxr-xr-x 4 root wheel 136 Jun 26 13:28 ../
drwxr-xr-x 40 root mysql 1360 Jun 26 13:29 bin/
drwxr-xr-x 3 root mysql 102 Jun 26 13:28 include/
drwxr-xr-x 3 root mysql 102 Jun 26 13:28 info/
drwxr-xr-x 3 root mysql 102 Jun 26 13:28 lib/
drwxr-xr-x 3 root mysql 102 Jun 26 13:29 libexec/
drwxr-xr-x 3 root mysql 102 Jun 26 13:29 man/
drwxr-xr-x 9 root mysql 306 Jun 26 13:29 mysql-test/
drwxr-xr-x 3 root mysql 102 Jun 26 13:29 share/
drwxr-xr-x 25 root mysql 850 Jun 26 13:29 sql-bench/
drwx------ 15 mysql mysql 510 Aug 12 15:44 var/

You should now be able to start the mysql daemon using the mysqld_safe
command from the /bin directory. With the permissions you’ve created you need to
run the startup command as root while specifying that the daemon run as the user
named mysql:

sudo /usr/local/mysql/bin/mysqld_safe --user=mysql &

Appendix C: Brief Guide to MySQL/PHP Installation and Configuration 577

By default MySQL uses port 3306 and keeps the all-important socket file at /tmp/
myslq.sock. This is generally okay: PHP looks for the socket file in this location.
However, if you have multiple installations of MySQL you need to change the port
and socket location, which can be a pain. You need to play with your my.cnf file.
See Chapter 4 of the MySQL manual for more information.

PHP/Apache
On Unix, PHP is loaded as an Apache module. Thus, the installation of the two
must be done in concert. Once again you have many, many installation options.
You can create PHP as an executable for use with CGI or command-line processing,
as a shared Apache module (apxs), or for DSO. Here we cover only installation as an
Apache module (except for OS X, which is discussed later in the appendix).

Start by unpacking both Apache and PHP.

gunzip apache 1.3.x.tar.gz
tar xf apache1.3.x.tar
gunzip php-4.2.tar.gz
tar xf php-4.2.tar.gz

Here x (in apache_1.3.x.tar) is the version number of Apache.
Use cd to move into the Apache directory and run configure, specifying the

path to the directory in which you want to install Apache. You should be probably
be running as the root account before you do this.

./configure --prefix=/path/to/apache

This prepares Apache to set up machine-specific information that PHP needs to
compile. You come back later and finish up the Apache installation.

Then move to the directory holding PHP. Here you find a variety of flags you
might or might not wish to specify. We suggest using the following:

./configure --with-mysql=/path/to/mysql --enable-trans-sid

Here, the two flags do the following:

◆ --with-mysql— Since the MySQL client libraries are no longer distributed
as part of PHP, the MySQL extension is not enabled by default. You need
to use this flag and, if you have installed MySQL somewhere other than
the default location, specify the directory where it can be found.

◆ --enable-trans-sid— This option allows the session ID to be included
automatically in URLs after a session is started. The Shopping Cart appli-
cation in Chapter 14 makes use of this option.

578 Part V: Appendixes

Additionally, you might want to include one or more of the following flags:

◆ --with-gd— The GD functions enable you to create images on the fly,
using nothing but code. A version of GD is bundled with PHP (at least,
as of this writing).

◆ --with-config-file-path=/path/to/file— The php.ini file specifies
many options for the PHP environment. PHP expects to find the file in
/usr/local/lib/php.ini. If you wish to change the location, use this flag.

You can incorporate many other flags and libraries into PHP. Please see the
online manual (http://php.net/install.configure) or run --configure --
help for the latest and most complete list.

After running configure, run the following two commands, the latter as root:

make
make install

Now you need to go back to the Apache directory and rerun the configure
command:

./configure --prefix=/path/to/apache --activate-module=
src/modules/php5/libphp5.a

Note that libphp5.a will not yet exist. It is created after the compiling is completed.
Now it’s time to run the great twosome:

make
make install

Apache should now be installed in the directory you specified.
Now move back to the PHP directory and copy the file named php-ini.dist to

/usr/local/lib/php.ini (or to the directory you specified in the --config-file-path
flag).

The final step is to go into the /conf directory of your Apache installation and
open the httpd.conf file. There you should uncomment the following line:

AddType application/x-httpd-php .php

Then move into the /bin directory and start Apache.

./apachectl start

Your installation should now be complete.

Appendix C: Brief Guide to MySQL/PHP Installation and Configuration 579

PHP looks for the socket to MySQL in /tmp/mysql.sock. If you have more

than one MySQL installation and need PHP to connect to the socket in

another location, you need to specify that in the mysql_connect() func-

tion, like this:

mysql_connect(“localhost:/path/to/mysql.sock”,
“username”, “password”);

In Mac OS X you probably want to use the version of Apache that ships with the
OS. Therefore, you probably won’t need to do any configuring or compiling of
Apache. Simply start by configuring PHP the way you want it, using all the
libraries and flags you need. Simply add the --with-apxs flag when compiling
PHP, and PHP makes itself part of your Apache configuration.

Depending on the state of PHP 5 and OS X at the time you’re installing, PHP
may require some extra libraries, like libxml2. You should be able to get what you
need from either Darwin Ports at http://www.opendarwin.org/projects/
darwinports/ or Fink at http://fink.sourceforge.net/.

You still need to make the changes listed earlier in this section to your httpd.conf
file. In OS X, that file can be found in /etc/httpd.

PHP Configuration
The php.ini file is extremely large and has more options than we can cover here. A
full list of options and potential settings can be found at http://www.php.net/
manual/configuration.php. Here are a few highlights.

Globals
We’ve talked a lot in this book about the use of global variables. If possible you
should have the register_globals line set to Off. This configuration requires you
to use the $_GET, $_POST, $_SERVER, and other like-named arrays when using
global variables, which keeps your applications more secure. But if you’re working
off legacy applications, it may be tough to make all the changes needed to have
register_globals set to Off. If you are able to set register_globals to Off, you
can prevent anyone from setting an internal PHP variable by referring to that vari-
able in the URL or in a POST.

MySQL configuration entries
The following are some of the MySQL configuration entries:

mysql.allow_persistent =
mysql.max_persistent =

580 Part V: Appendixes

mysql.max_links =
mysql.default_port =
mysql.default_host =
mysql.default_user =
mysql.default_password =

If you want to forbid persistent connections, change that setting to Off; if you
want to limit the number of persistent links to MySQL, change the setting on
max_persistent and max_links from -1 to an appropriate number.

You can use the default_user, default_host, and default_password entries
if you want to save yourself the trouble of entering these strings in your
mysql_connect() command. Note that putting your MySQL password in the
MySQL configuration file is a tremendous security risk.

You can make lots of other settings in your MySQL configuration file. The fol-
lowing sections explain some of the more useful ones.

MAGIC QUOTES

magic_quotes_gpc
magic_quotes_runtime

If magic_quotes_gpc is set to On, all single quotes (‘), double quotes (“), back-
slashes (\), and NULLs are prepended with a backslash immediately upon being
uploaded from a form element. This makes doing your inserts into MySQL a lot
easier.

If magic_quotes_runtime is set to On, data retrieved from the file system or a
database are automatically escaped with backslashes.

EXECUTION TIME

max_execution_time = 30
memory_limit = 8388608

These settings are intended to protect you in the event of an infinite loop or an
endlessly recursive function. All scripts are automatically terminated if they reach
either of these limits. If you want to use a script that you expect to take more than
30 seconds, you can set the maximum execution time within a script with the
set_time_limit () function. This function can contain a number of seconds; if
you want to specify no limit, specify set_time_limit(0).

AUTO PREPEND AND APPEND

auto_prepend_file =
auto_append_file =

Appendix C: Brief Guide to MySQL/PHP Installation and Configuration 581

With these settings you can specify files that are automatically included at the
start and end of your PHP files. It might be useful for connection information or
common headers.

INCLUDE PATH

include_path

This should contain a list of paths separated by colons (:). These paths are auto-
matically searched for every include() and require().

SESSION
You might want to change many session settings. Here are a few of them:

session.save_handler = files
session.save_path = /tmp
session.use_cookies = 1
session.auto_start = 0

Appendix F contains a set of functions for using MySQL for session handling. If
you want to use it you must set session.save.handler to user.

save_path indicates where in the file system PHP saves session information.
If use_cookies is set to 0 you must use another means of storing cookies —

either using <?=SID ?> or configuring PHP with the --with-trans-sid flag.
Finally, if auto_start is set to 1, sessions are started automatically on every

page, meaning you’ll be able to track users through your pages by examining their
session IDs.

582 Part V: Appendixes

Appendix D

MySQL Utilities
THIS APPENDIX PRESENTS a brief overview of some of the MySQL administrative util-
ities. These are the tools that you’ll use to build and maintain your databases.

The best place to get the full details about the tools you have available to you is
the Docs subdirectory of your local installation of MySQL. (Note: This is the install
directory, not the data directory.) You can also check the online version of the
MySQL documentation at http://www.mysql.com/documentation/.

Keep in mind that the online MySQL manual does not do a good job of indicat-
ing when features were added to a utility. This can be confusing as you may find
yourself attempting to use a feature that is not available in your currently installed
version. Don’t be surprised if you can’t find a utility — it may have been added in a
later version.

mysql
This is the command-line interface to MySQL; it enables you to run any arbitrary SQL
command, as well as the MySQL-specific commands like describe table. It’s a tool
you should get to know. You can use it to test out or debug queries for your code,
create your database, create tables, add columns to existing tables — everything,
really. It also has some batch-oriented options that make it handy to use in mainte-
nance scripts, or as a quick no-frills reporting tool.

Syntax:

mysql [options] [databasename] [<inputfile] [>outputfile]

If you just type mysql, you’ll start the tool up, but you won’t be anywhere. When
you try to do anything that involves interaction with a database, you’ll get this
error:

ERROR 1046: No Database Selected

To select one, type

use databasename;

583

use’ is one of the mysql tool’s built-in commands. Type help to see a list of
them:

help (\h) Display this help.
? (\?) Synonym for `help’.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db

and host.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result

vertically.
go (\g) Send command to mysql server.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don’t write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via

PAGER.
print (\p) Print current command.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute a SQL script file. Takes a file name as an

argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command (Linux only).
tee (\T) Set outfile [to_outfile]. Append everything into

given outfile.
use (\u) Use another database. Takes database name as

argument.

Once you’re in a database you can run a SQL statement by typing it in, followed
by a semicolon, \g, or \G, and hitting Return/Enter. When a query is terminated
with a semicolon or \g the utility will return any result in tabular format; when a
query is terminated with \G MySQL will give the listing in vertical format. The fol-
lowing listing demonstrates the difference:

mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.01 sec)

mysql> show databases \G
*************************** 1. row ***************************

584 Part V: Appendixes

Database: mysql
*************************** 2. row ***************************
Database: test
2 rows in set (0.00 sec)

The vertical output can be helpful if you’re feeding the output of your queries to
another program, such as a Perl script, for processing, because this form is easier to
parse. Alternatively, you can use the –B option to format things horizontally, but
without the character-based line art.

Table D-1 lists some of the more useful command-line options.

TABLE D-1 COMMON mysql COMMAND-LINE CLIENT OPTIONS, PART I

Flag Alternate Flag Description

-? --help Displays help.

-B --batch Prints tab-delimited results, with each row
on a new line.

-D, --database=.. Specifies a database to use.

-e --execute=... Executes a command and quits.

-E --vertical Prints output vertically.

-f --force Gives the order to continue regardless of
SQL errors.

-h --host=... Connects to a server.

-H --html Generates HTML output.

-L --skip-line-numbers Gives the order not to write line numbers for
errors.

-n --unbuffered Flushes buffer after query.

-p[password] --password[=...] Specifies the password to use when
connecting to the server.

-P --port=... Specifies the TCP/IP port to use for the
connection.

-q --quick Gives the order not to cache the result, but
to print it row by row.

-r --raw Writes column values without escape
conversion.

Continued

Appendix D: MySQL Utilities 585

TABLE D-1 COMMON mysql COMMAND-LINE CLIENT OPTIONS, PART I (Continued)

Flag Alternate Flag Description

--safe-mode Sends this SQL statement to the MySQL
server when the connection is opened:

SET SQL_SAFE_UPDATES=1,
SQL_SELECT_LIMIT=#select_limit#,

SQL_MAX_JOIN_SIZE=
#max_join_size#”

#select_limit# and #max_join_size#
are variables that you can specify on the
mysql command line.

-t --table Specifies that the output is to be in table
format.

-u --user=# Specifies the user to be used for login.

-w --wait Specifies the order to wait and retry instead
of aborting if the connection is down.

-X -XML Formats output as XML.

The effect of the --safe-mode flag command is as follows:

◆ You are not allowed to do an UPDATE or DELETE if you don’t have a key
constraint in the WHERE portion. You can, however, force an
UPDATE/DELETE by using LIMIT:

UPDATE table_name SET not_key_column=’some value’ WHERE
not_key_column=’some value’ LIMIT 1;

◆ All big results are automatically limited to #select_limit# rows.

◆ SELECTs that will probably need to examine more than #max_join_size
row combinations will be aborted.

mysqladmin
You can use mysqladmin, a command-line tool, for performing all sorts of admin-
istrative tasks on a MySQL server — everything from simple tasks like creating new
databases to getting detailed information on the status of your MySQL server.

586 Part V: Appendixes

mysqladmin takes a number of fairly generic flags that you can apply to any of the
processes you’ll see below. These flags, like -u, -p, and -h (which indicate user-
name, password, and host, respectively), show up in about every MySQL client. You
can get a listing of these flags by running mysqladmin --help.

Basic administrative commands
Many of the tasks that you can perform with the MySQL command-line client can
also be performed with mysqladmin. The primary advantage of using mysqladmin
for tasks like creating databases and setting passwords is that they can be entered
from the shell or through a shell script without your having to worry about enter-
ing and exiting the command-line client. (Or, you can always use mysql with the
–e option. That way, commands are standardized for you.)

From mysqladmin you can perform the following basic administrative functions:
create a database, drop a database, and change a password. The following examples
show how to perform each of these actions. (Note that for each of the examples,
we’re performing the actions as the MySQL root user.)

shell> mysqladmin -u root -p create store2
shell> mysqladmin -u root -p drop store2

The first command creates a database named store2 and the second one drops
the same database. Note that the drop command will return a warning and ask you
to confirm the drop action:

Dropping the database is potentially a very bad thing to do.
Any data stored in the database will be destroyed.

Do you really want to drop the ‘store2’ database [y/N]

This sort of response is fine, but it’s something you want to avoid in an admin-
istrative shell script. You can ask mysqladmin to drop the database without confir-
mation by applying the -f or --force flag:

shell> mysqladmin -u root -p drop -f store2

You can also change passwords from mysqladmin. The following command
changes the password for the MySQL root user from mypass to hispass.

shell> ./mysqladmin -u root -pmypass password hispass

Status-information commands
mysqladmin provides a means of determining the status and performance of your
database server.

Appendix D: MySQL Utilities 587

mysqladmin ping
For starters, you can check that a MySQL daemon is alive and running, using
mysqladmin ping. If the command is successful it will return the message mysqld
is alive. If it fails you will get an error message. Most often you will want to use
mysqladmin ping when trying to establish that a connection is possible from a
host other than localhost. In order to test the connection properly you’ll need to
supply a host name, username, and password. Within your MySQL installation
you’ll need to make sure that a user with that name from that host is allowed.

shell> mysqladmin -u jay -pmypass -h mysqlserver.myhost.com ping
mysqld is alive

If you simply want to find out whether the MySQL port is active, you can use

a simple telnet client. If MySQL is running on the default port (3306) you can

run telnet with the command:

telnet mysqlhost.myhost.com 3306

If the daemon is running you will get a response. You won’t be able to con-

nect through telnet, but you will get a response rather than a timeout.

mysqladmin version
You can get some interesting information about MySQL by running mysqladmin
version:

shell> mysqladmin version
Server version 4.0.0-alpha
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /tmp/mysql.sock
Uptime: 1 day 1 hour 15 min 10 sec

Threads: 73 Questions: 7168998 Slow queries: 119 Opens: 34482
Flush tables: 1 Open tables: 64 Queries per second avg: 29.983

The beginning of the listing shows very basic information. Below that, starting
with Threads, you get some interesting information. Note that you can get just the
information at the bottom of this listing (from Threads to Queries per second
avg) plus some other goodies by running mysqladmin status.

588 Part V: Appendixes

mysqladmin status
This command can give you some very important information:

/mysqladmin status -u root -pmypass
Enter password:
Uptime: 239352 Threads: 68 Questions: 7175296 Slow queries: 119
Opens: 34509 Flush tables: 1 Open tables: 64 Queries per second
avg: 29.978

In this listing, you get the following information:

◆ Uptime — Number of seconds MySQL has been running

◆ Threads — Number of clients connected to MySQL

◆ Questions — Number of queries processed since the MySQL daemon was
started

◆ Slow queries — Number of queries that have taken longer to process than
the value of the variable long_query_time

◆ Opens — The number of table opens MySQL has performed

◆ Flush tables — Number of flush, refresh, and reload commands run

◆ Open table — Number of tables open when mysqladmin status was run

◆ Queries per second avg — A simple measurement of the queries run
divided by the time the server has been running — not a measure of
your server’s performance

You can look at this information and start to make some decisions. If you have
a lot of slow queries, it may be time to restart the server and log slow queries so
you can see exactly what queries are problematic (see Chapter 4 of the MySQL
manual concerning the slow query log). If you find that the number of active
threads is often close to the maximum number allowed by the max_connections
variable, you might want to increase the number of available threads. If the Opens
item is very large (as it is in the previous listing), you should think about increas-
ing the value of the table_cache variable.

Beyond these items, you can get far more information from your MySQL instal-
lation by running mysqladmin extended-status. This command returns a very
long listing of system variables. You can get the definition for each of these items
from the MySQL manual: http://www.mysql.com/doc/S/H/SHOW_STATUS.html.

mysqladmin processlist
Using mysqladmin you can also view all the server’s active threads by running
mysqladmin processlist. For example, the following listing contains five threads
active in the MySQL server, including the thread that is running mysqladmin.

Appendix D: MySQL Utilities 589

shell> ./mysqladmin -u root -pmypass processlist
+----+------+-----------+-------+---------+-------+-------+---------
---------+
| Id | User | Host | db | Command | Time | State | Info
|
+----+------+-----------+-------+---------+-------+-------+---------
---------+
| 44 | jayg | localhost | | Sleep | 12359 | |
|
| 50 | jayg | localhost | store | Sleep | 12166 | |
|
| 77 | phps | localhost | store | Sleep | 22 | |
|
| 81 | root | localhost | mysql | Sleep | 2 | |
|
| 82 | root | localhost | | Query | 0 | | show
processlist |
+----+------+-----------+-------+---------+-------+-------+---------
---------+

You can get the same listing by logging in to the command-line client and run-
ning SHOW PROCESSLIST. (Note that you will need proper permissions to get a full
listing of threads.) The Process_priv column of the user grant table stores these
rights. If you don’t have rights in this column, running mysqladmin processlist
will show only the threads running with your username.

mysqladmin kill
Once you have a listing, you can end a process with mysqladmin. Try a command
like this:

shell> mysqladmin -u root -pmypass kill 44

Flush commands
The flush commands reload or reset files, tables, or logs. You probably won’t have
to use these commands very often, but they are important.

mysqladmin flush-hosts
The first flush command is mysqladmin flush-hosts. MySQL maintains a cached
table of all of the hosts connected to the MySQL server. If the connection from one
of the hosts becomes problematic, MySQL will register the errors. Once the number
of errors exceeds the value of the variable max_connect_errors, MySQL will cut
off access for that host. At that point MySQL will produce the error Host hostname
is blocked. Some sort of TCP/IP networking error normally causes these errors.

590 Part V: Appendixes

After the networking error is fixed, MySQL will continue to block the given host
until the cached host tables are flushed. You can run this command from the
MySQL command-line client with the command FLUSH HOSTS.

If you want to completely do away with blocking errors, you can set

max_connection_errors to 99999999999.

mysqladmin flush-logs
The mysqladmin flush-logs command closes and reopens all log files. Logging is
a very important topic for database administrators, so if you’re performing that
function, see Chapter 4 of the MySQL manual regarding logging.

mysqladmin flush privileges
You can use mysqladmin flush-privileges to reload the grant tables you see in
Appendix E. Normally you won’t need to flush the grant tables. If you are using the
GRANT statements, changes in permissions will be updated immediately. However, if
you decide to change the GRANT tables with standard UPDATE, INSERT, and DELETE
statements, you will need to flush the grant tables. You can also run this command
from the command-line client with the command FLUSH PRIVILEGES.

mysqladmin flush-tables
The final flush command is mysqladmin flush-tables. This closes all open tables
with the MySQL installation. MySQL is a multi-threaded environment and will open
multiple copies of tables to serve different threads more efficiently. Running this
command will close all tables associated with all threads. You can run this command
from the command-line client with the command FLUSH TABLES.

mysqldump
On the accompanying CD is a file named /book/databases.sql. If you open that file
in a text editor, you will see a series of SQL statements that includes both CREATE
statements for tables and INSERT statements for table data. The commands look
something like this:

MySQL dump 8.14
#
Host: localhost Database: store
#--
Server version 4.01

#

Appendix D: MySQL Utilities 591

Table structure for table ‘addresses’
#
create database store;
use store;

CREATE TABLE addresses (
address_id int(11) NOT NULL auto_increment,
user_id int(11) default NULL,
place varchar(25) NOT NULL default ‘’,
addr_1 varchar(255) NOT NULL default ‘’,
addr_2 varchar(255) default NULL,
city varchar(50) NOT NULL default ‘’,
state char(2) NOT NULL default ‘’,
ZIP varchar(5) NOT NULL default ‘’,
country varchar(5) default NULL,
PRIMARY KEY (address_id)

) TYPE=MyISAM;

#
Dumping data for table ‘addresses’
#

INSERT INTO addresses VALUES (5,3,’home’,’1845 Fair Oaks’,’Apt
6’,’San Francisco’,’CA’,’92147’,’USA’);
INSERT INTO addresses VALUES (6,4,’home’,’30445 Haines St’,’Apt
8G’,’San Francisco’,’CA’,’92149’,’USA’);
INSERT INTO addresses VALUES (7,5,’home’,’8 Oak
Rd’,NULL,’Atlanta’,’GA’,’14119’,’USA’);

It’s a piece of cake to run all of these commands in a batch by directing this file
into the command-line client.

shell> mysql -u root -pmypass < store.sql

The SQL statements in this file were created with the mysqldump utility. As you
can see from the .sql file, this utility exports both table-structure information
(create table statements) and table data (insert statements). By dumping the
entirety of databases and tables into files you will create a backup of your data and
make your data transportable.

The mysqldump utility is very flexible and can take a variety of flags that will
return the exact MySQL data you need in a variety of formats. You can see the full
set of mysqldump options by going to your mysql/bin directory and running
mysqldump --help. In this appendix we address only some of mysqldump’s more
commonly used options.

592 Part V: Appendixes

The basic format for a mysqldump command is as follows:

shell> mysqldump databasename

Or, optionally, you can add a table name after the database name to dump struc-
ture and data from a single table. And as you might expect, you need to have proper
permissions to run mysqldump. Your mysqldump commands will look like one of the
following; the first dumps a database named store, and the second dumps only the
users table from that database. In the following statements, we’ve directed the out-
put to files (store.sql and users.sql).

shell> mysqldump -u root -pmypass store > ~/store.sql
shell> mysqldump -u root -pmypass store users > ~/users.sql

If you want to dump more than one database you can include additional data-
base names with the --databases flag; to dump all databases at once you can use
the --all-databases flag.

shell> mysqldump -u root -pmypass --databases store otherdb > ~/dbs.sql
shell> mysqldump -u root -pmypass --all-databases > ~/alldbs.sql

On Unix systems you can use mysqldump with pipes to achieve some complex
actions with a single command. The first command in the following code takes the
output of mysqldump, compresses it using gzip, and then outputs the compressed
data to a file. The second transfers data from one MySQL installation to another. It
connects the output of mysqldump on one server to the command-line client on
another host.

shell> mysqldump -u root -pmypass --all-databases | gzip > ~/dbs.sql
shell> mysqldump -u root -pmypass store | mysql -u jay -pmypass -h
mysqlhost.mydomain.com

(Note: Don’t be misled by the appearance of the text here — that last command
should be all one line.)

The MySQL manual recommends that when using mysqldump on DOS, you

should indicate the location of any output file using the --result-file
flag instead of the greater-than sign (>). So a sample command would look

like this:

dos> mysqldump -u root -pmypass --result-file=c:\
store.sql store

Appendix D: MySQL Utilities 593

You should be aware of some other important flags:

◆ -c or --complete-insert: mysqldump outputs each row as an SQL
INSERT statement. But the INSERT statements do not use complete column
listings; instead they list the values in the order in which the columns
exist in the table. So in a table that has the following structure

CREATE TABLE sample(
id int not null primary key,
fname char(15)

)

you have INSERT statements that look like this:

INSERT INTO sample VALUES (1, ‘Jay Greenspan’);

This is potentially problematic if you’re transferring data to a table that
may be slightly different or that is using a different SQL server. In these
cases you want complete SQL statements like insert into sample (id,
fname) values (1, ‘Jay Greenspan’). The --complete-insert flag
gives insert statements in this form.

◆ -e or --extended-insert: When you use this flag, each table’s rows are
inserted in a single statement, with row values surrounded by parentheses
and separated by commas. Without this flag each row has its own INSERT
statement. The first command in the following code is what an INSERT
statement looks like when run with --extended-insert. The second and
third are statements that insert the same information and are created by
mysqldump if this flag is not used.

INSERT INTO SAMPLE VALUES (1, ‘jay’), (2, ‘john’);
INSERT INTO SAMPLE VALUES (1, ‘jay’);
INSERT INTO SAMPLE VALUES (1, ‘john’)

◆ --delayed: In MySQL you can indicate to the MySQL engine that an
insert statement is of a relatively low priority by using the syntax
insert delayed. When MySQL sees one of these statements it puts the
statement in a queue rather than directly into the table if other insert or
update statements are coming from other clients. This is especially helpful
if other clients are inserting rows that must be available immediately. The
delayed row will wait for other updates to finish before data are written to
the actual table. Using insert delayed is a good idea when doing bulk
inserts as might be the case with rows taken from mysqldump.

◆ --add-drop-table: MySQL’s drop table command can return an error
if a drop is attempted but the table does not exist. You can use the com-
mand drop table if exists to avoid potential errors with the DROP
commands. This flag adds drop table if exists before every CREATE
statement. If you use this flag with mysqldump you can be sure that any

594 Part V: Appendixes

recovery done from this dump will create a clean set of tables and erase
any data previously using those names in the tables.

◆ -t or no-create-info: Omits create table statements from the output.

◆ -d or no-data: Just dumps the create table statements with no row data.

◆ --lock-tables: Places a lock on all tables within a database before start-
ing a dump.

◆ --add-locks: Adds a lock tables before and an unlock tables com-
mand after each set of inserts. This allows the mysqldump thread to move
with the greatest speed because no other clients will be able to write to
the tables at the same time.

◆ --flush-logs or -f: Flushes the log files before starting a dump operation.

◆ -q or --quick: By default mysqldump writes rows to memory before forc-
ing the rows to standard output. This really isn’t necessary. By using this
flag you force mysqldump to deliver its contents directly to standard out-
put, thereby saving some memory.

◆ -w or --where: Enables you to put a where condition on what is dumped.
For example, from the store users table you can get a list of users with a
user_id of greater than 5 with the following code. (Note that each WHERE
condition must be put in quotes, and again, this is meant to be all on one
line.)

mysqldump -u root -pmypass --add-locks “-wuser_id>5” store
users

If you’re using mysqldump for backup, you’ll probably want to use the --opt
flag. This is the same as using --quick, --add-drop-table, --add-locks, --
extended-insert, or --lock-tables. So for regular backups you should probably
add something like the following command to your cron tab:

./mysqldump -u root -pmypass --opt --all-databases > /path/to/mybackup.sql

Other Utilities
Please check the /bin directory for other utilities that come with MySQL. If you are
using 3.23 or 4.x you will want to look at myisamchk and myisampack. The first
repairs corrupted tables and the second ensures that tables are set up as efficiently
as possible. These utilities only work with the MyISAM tables. If you are using 3.22
or newer you will need to use of the isamchk utility, which operates on the ISAM
tables used in this version of MySQL. And, of course, there’s MySQL Control Center
(MySQLCC) for those who prefer it.

Appendix D: MySQL Utilities 595

Appendix E

MySQL User
Administration
THIS APPENDIX TEACHES YOU to work with MySQL’s permissions tables, which con-
trol permissions in MySQL.

Administration of any relational database management system (RDBMS) requires
some work. Each system presents its own unique methods for administration, and
you can expect difficulties when it comes to tasks like adding and deleting user
accounts, backing up, and assuring security. Administering MySQL isn’t especially
difficult, but it can be a bit bewildering at first.

This book focuses on applications development, not server administration. Thus,
extensive details on administration are beyond the scope of this book. If you are
responsible for the backup and security of your server, you should delve deep into
the MySQL online manual at http://www.mysql.com/documentation/.

For the purposes of this book, and we hope also for you, the application devel-
oper, it is enough to know a bit about user administration and the methods for
assigning rights for users.

grant Tables
MySQL user rights are stored in a series of tables that are automatically created
with the MySQL installation. These tables are kept in a database called mysql. If
you start up the MySQL daemon (with mysqld or, better, mysqld_safe) and the
MySQL monitor (with mysql), and run the query show databases just after instal-
lation, you see two databases, test and mysql.

Running the show tables query on the mysql database lists the tables that store
user permissions.

mysql> use mysql

Database changed
mysql> show tables;
+-----------------+
| Tables in mysql |
+-----------------+
| columns_priv |
| db | 597

| func |
| host |
| tables_priv |
| user |
+-----------------+
6 rows in set (0.00 sec)

Each of these tables corresponds to a level of access control. You can create any
number of users, and users can be allowed access from any number of hosts. For
each user/host combination you can grant access to an entire database, to specific
tables within a database, or to a number of columns within a table. Additionally,
these tables grant administrative privileges. Users can be given permission to add
and drop databases or permission to grant other users permissions.

In practice you want to grant no more permissions than necessary. You want to
protect your data from the overzealous and the incompetent. The best way to do
that with MySQL is to use the proper grant table when assigning rights, keeping the
following in mind:

◆ Rights are granted in a hierarchical way.

◆ Rights granted in the user table are universal. If a user is granted drop
privileges in the user table, that user is able to drop any table in any
database in that MySQL installation.

◆ The db table grants privileges on a database-specific basis. Using this
table, you can grant rights for an entire database.

◆ For any one table or set of tables, make use of the tables_priv table.

◆ Finally, the columns_priv table enables you to grant rights on specific
columns within a table. If you don’t need to grant rights to an entire
table, see that rights are assigned in the columns_priv table.

Recent releases of MySQL make use of a couple of very convenient commands
that make creating users and assigning rights fairly easy. We’ll discuss these com-
mands after a brief look at the user, db, tables_priv, and columns_priv tables.

Remember, though, that managing user privileges manually is generally a

bad idea. As in administering operating systems, it’s better to define groups

and manage rights through those groups. Even if you have a group of one,

that’s the better way to go. Why? Because there’s less chance of someone

being forgotten and retaining privileges he or she should not have.

598 Part V: Appendixes

The user table
Every user who needs to get at MySQL must be listed in the user table. Rights might
be granted elsewhere, but without a listing here the user is refused a connection to
the database server. Here is the listing of columns in the user table:

mysql> show columns from user;
----------------- -------------------- ------ ----- ------- -----
| Field | Type | Null | Key |Default|Extra|
----------------- -------------------- ------ ----- ------- -----
Host	varchar(60) binary		PRI		
User	varchar(16) binary		PRI		
Password	varchar(16) binary				
Select_priv	enum(‘N’,’Y’)			N	
Insert_priv	enum(‘N’,’Y’)			N	
Update_priv	enum(‘N’,’Y’)			N	
Delete_priv	enum(‘N’,’Y’)			N	
Create_priv	enum(‘N’,’Y’)			N	
Drop_priv	enum(‘N’,’Y’)			N	
Reload_priv	enum(‘N’,’Y’)			N	
Shutdown_priv	enum(‘N’,’Y’)			N	
Process_priv	enum(‘N’,’Y’)			N	
File_priv	enum(‘N’,’Y’)			N	
Grant_priv	enum(‘N’,’Y’)			N	
References_priv	enum(‘N’,’Y’)			N	
Index_priv	enum(‘N’,’Y’)			N	
Alter_priv	enum(‘N’,’Y’)			N	
Show_db_priv	enum(‘N’,’Y’)			N	
Super_priv	enum(‘N’,’Y’)			N	
Create_tmp	enum(‘N’,’Y’)			N	
_table_priv					
Lock_tables_priv	enum(‘N’,’Y’)			N	
Execute_priv	enum(‘N’,’Y’)			N	
Repl_slave_priv	enum(‘N’,’Y’)			N	
Repl_client_priv	enum(‘N’,’Y’)			N	
ssl_type	enum(‘’,’ANY’				
	,’X509’				
	,’SPECIFIED’)				
ssl_cipher	blob				
x509_issuer	blob				
x509_subject	blob				
max_questions	int(11) unsigned			0	
max_updates	int(11) unsigned			0	
max_connections	int(11) unsigned			0	
----------------- -------------------- ------ ----- ------- -----

Appendix E: MySQL User Administration 599

As you have seen, the PHP mysql_connect() function takes three arguments:
username, host, and password. In the preceding listing you can see the corre-
sponding field names. MySQL identifies a user by the combination of username and
host. For instance, user jay can have a different set of rights for each host that he
uses to connect to MySQL. If you or your PHP scripts are accessing MySQL from the
local machine, you usually assign a host of localhost.

The other columns are intuitively named. As you can see, most of the columns
allow only Y or N as column values. As we mentioned earlier, any of these rights
that are set to Y are granted to every table of every database. Most of the columns’
names correspond to SQL statements (such as delete, create, and so forth).

The user table also contains a set of columns that grant administrative rights.
These columns are covered in detail in the “GRANT and REVOKE Syntax” section of
the MySQL documentation. The following is a brief explanation of the meanings of
some of these columns. If you are security-minded, grant these rights sparingly.

◆ File_priv— If granted, this privilege allows the database server to read
and write files from the file system. You most often use it when loading
a file into a database table.

◆ Grant_priv— A user with this right is able to assign his or her privileges
to other users.

◆ Process_priv— This right gives a user the ability to view and kill all run-
ning processes and threads.

◆ Reload_priv— Most of the privileges granted by this column are not cov-
ered in the course of this book. This privilege is most often used with the
mysqladmin utility to perform flush commands. See the MySQL online
manual for more details.

◆ Shutdown_priv— Allows the user to shut down the daemon using
mysqladmin shutdown.

The db table
For database-specific permissions, the db table is where you do most of your work.
The following is a list of columns from the db table:

mysql> show columns from db;
---------------------- ----------------- ------ --- ------- -----
| Field | Type | Null |Key|Default|Extra|
---------------------- ----------------- ------ --- ------- -----
Host	char(60) binary		PRI		
Db	char(64) binary		PRI		
User	char(16) binary		PRI		
Select_priv	enum(‘N’,’Y’)			N	
Insert_priv	enum(‘N’,’Y’)			N	

600 Part V: Appendixes

Update_priv	enum(‘N’,’Y’)			N	
Delete_priv	enum(‘N’,’Y’)			N	
Create_priv	enum(‘N’,’Y’)			N	
Drop_priv	enum(‘N’,’Y’)			N	
Grant_priv	enum(‘N’,’Y’)			N	
References_priv	enum(‘N’,’Y’)			N	
Index_priv	enum(‘N’,’Y’)			N	
Alter_priv	enum(‘N’,’Y’)			N	
Create_tmp_table_priv	enum(‘N’,’Y’)			N	
Lock_tables_priv	enum(‘N’,’Y’)			N	
---------------------- ----------------- ------ --- ------- -----

The db table works like the user table, except that permissions granted here work
only for the database specified in the db column.

tables_priv and columns_priv
These two tables look pretty similar, and to save a bit of space, we show only the
tables_priv table.

mysql> show columns from tables_priv;
------------- ----------------- ------ ----- --------- -------
| Field | Type | Null | Key | Default | Extra |
------------- ----------------- ------ ----- --------- -------
Host	char(60) binary		PRI		
Db	char(64) binary		PRI		
User	char(16) binary		PRI		
Table_name	char(60) binary		PRI		
Grantor	char(77)		MUL		
Timestamp	timestamp(14)	YES		NULL	
Table_priv	set(‘Select’				
	,’Insert’				
	,’Update’				
	,’Delete’				
	,’Create’				
	,’Drop’				
	,’Grant’				
	,’References’				
	,’Index’				
	,’Alter’)				
Column_priv	set(‘Select’				
	,’Insert’				
	,’Update’				
	,’References’)				
------------- ----------------- ------ ----- --------- -------

Appendix E: MySQL User Administration 601

For users who get access only to a table or set of tables within a database, the
exact rights are stored in this table. Note the use of the set column type for
table_priv and column_priv tables. All of the rights available to a specific user are
crammed into these two cells.

At a couple of points in this book we advise against using the set column

type. In fact, the db table is a good example of a place where using set
makes sense. The column has few potential values, and the number of

potential values is not likely to change.

grant and revoke Statements
Because the preceding tables are regular MySQL tables, you can alter them with the
SQL statements you are already familiar with. But consider the nightmare that
would be. If you wanted to grant a new user table-level access you would first need
to insert a row into the user database with an SQL statement like the following:

INSERT INTO user
(Host, User, Password, Select_priv, Insert_priv, Update_priv,

Delete_priv, Create_priv, Drop_priv, Reload_priv, Shutdown_priv,
Process_priv, File_priv, Grant_priv, References_priv, Index_priv,
Alter_priv)
VALUES

(‘localhost’, ‘juan’, ‘password’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’,
‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’)

Then you’d need to grant specific rights with another insert statement to
another table.

If you are thinking you can script these functions with a Web front end, that is
definitely a possibility. But you want to be very careful, because the script would
have the equivalent of root access to the database, which could be very unsafe.

Happily, MySQL has some built-in statements that make user administration a
whole lot easier. Knowing the grant and revoke statements saves you from having
to send individual queries.

The grant statement
Before we get into specifics of this statement, take a look at the statement that grants
all rights on the database named guestbook to user jim; jim’s password is pword.

602 Part V: Appendixes

mysql> grant all on guestbook.* to jim@localhost identified by
“pword”;

This command makes all the necessary changes to the user and db tables.
The first part of the grant statement can take the argument all (which must be

followed by WITH GRANT if it’s really to grant all privileges), or it can take any of
the options listed in the user table. Most often you are granting rights to use SQL
statements (select, create, alter, delete, drop, index, insert, and update).

The second portion of the grant statement (on guestbook in the example) iden-
tifies where privileges are to be applied: universally, to a single database, to tables,
or to columns. Table E-1 shows how to indicate where privileges should be applied.

TABLE E-1 SETTING PERMISSIONS

Identifier Meaning

grant all on *.* Rights are universal; inserted into the user
table

grant all on database.* Rights apply to all tables in a single database

grant all on database.table_name Rights apply to a single table

grant all(col1, col2) Rights apply only to specific columns in a
on database.table_name specific database and table

The third portion of the grant statement (to jim@localhost in the example)
indicates the user to be given access. As we mentioned earlier, MySQL needs both a
name and a host. In the grant statement these are separated by the @ symbol.

Finally, the identified by portion of the grant statement gives the user a
password.

Here are a few more examples of grant statements:

grant select, update, insert on guestbook2k.guestbook to
alvin@localhost identified by “pword”;

The preceding statement allows alvin to view, update, and insert records into the
table guestbook in database guestbook2k.

grant select, update (name, url) on guestbook2k.guestbook to
chipmunk@localhost identified by “pword”;

Appendix E: MySQL User Administration 603

With the preceding statement the user can view and update only two columns
(name and url). No deletes or inserts are allowed.

grant all on *.* to josh@localhost identified by “pword” WITH GRANT
OPTION;

The preceding statement gives this user all privileges, which means that josh@
localhost is even allowed to grant privileges to other users.

The revoke statement
If you want to remove some of a user’s privileges, you can use the revoke statement.
To remove shutdown privileges from a user who had been granted all privileges, like
josh in the preceding example, you can run the following:

revoke Shutdown on *.* from josh@localhost;

Notice that the word from is used in the revoke statement in place of to.
Otherwise revoke works just like grant.

To remove a user entirely you must run a delete statement against the user

table. Because the user is identified by a name and a host, the following

should do it:

delete from user where user=’username’ and
host=’hostname’

Viewing grants
You can use the SHOW GRANTS statement to see the exact grants available at a given
time. All you need to know is the username and host.

mysql> show grants for jayg@localhost;

+---+
| Grants for jayg@localhost |
+---+
| GRANT ALL PRIVILEGES ON my_test.* TO ‘jayg’@’localhost’ |
+---+
1 row in set (0.00 sec)

604 Part V: Appendixes

Reloading grants
The grant tables are loaded into memory when the MySQL daemon is started.
Changes made to the grant tables that do not make use of the grant command do
not take effect until you tell MySQL to reload the grant tables. You can do this in
the shell with the mysqladmin program:

shell> mysqladmin flush-privileges

or in the mysql client with the flush privileges command. Just run:

flush privileges

Appendix E: MySQL User Administration 605

Appendix F

PHP Function Reference
PHP CONTAINS MORE FUNCTIONS than could possibly be listed in this book. The follow-
ing tables present many of the most commonly used functions available as of PHP
version 4. To keep up on exactly what’s available in PHP, and to check out what
new functions are available in PHP 5, make sure to check in with the online docu-
mentation: http://www.php.net/docs.php.

TABLE F-1 MYSQL FUNCTIONS

Function Return Value Action

mysql_connect([string hostname resource Opens a connection to a
[:port][:/path/to/socket]] MySQL server
[, string username] [, string
password] [, bool new])

mysql_pconnect([string hostname resource Opens a persistent
[:port][:/path/to/socket]] connection to a MySQL
[, string username] [, string server
password])

mysql_close([int link_identifier]) bool Closes a MySQL connection

mysql_select_db(string bool Selects a MySQL database
database_name [, int
link_identifier])

mysql_get_client_info(void) string Returns a string that
represents the client-
library version

mysql_get_host_info([int string Returns a string describing
link_identifier]) the type of connection in

use, including the server-
host name

Continued

607

TABLE F-1 MYSQL FUNCTIONS (Continued)

Function Return Value Action

mysql_get_proto_info int Returns the protocol
([int link_identifier]) version used by the current

connection

mysql_get_server_info string Returns a string that
([int link_identifier]) represents the server-

version number

mysql_create_db(string bool Creates a MySQL database
database_name
[, int link_identifier])

mysql_drop_db(string bool Drops (deletes) a MySQL
database_name [, int database
link_identifier])

mysql_query(string query resource Sends an SQL query to
[, int link_identifier] MySQL
[, int result_mode])

mysql_unbuffered_query(string resource Sends an SQL query to
query [, int link_identifier] MySQL, without fetching
[, int result_mode]) and buffering the result

rows

mysql_db_query(string resource Sends an SQL query to
database_name, string query MySQL
[, int link_identifier])

mysql_list_dbs([int resource Lists the databases
link_identifier]) available on a MySQL

server

mysql_list_tables(string resource Lists the tables in a MySQL
database_name [, int database
link_identifier])

mysql_list_fields(string resource Lists the MySQL result
database_name, string table_name fields
[, int link_identifier])

mysql_error([int string Returns the text of the
link_identifier]) error message from the

previous MySQL operation

608 Part V: Appendixes

Function Return Value Action

mysql_errno([int int Returns the number of the
link_identifier]) error message from the

previous MySQL operation

mysql_affected_rows([int int Gets the number of
link_identifier]) affected rows in the

previous MySQL operation

mysql_escape_string(string string Escape string for a MySQL
to_be_escaped) query

mysql_insert_id([int int Gets the ID generated from
link_identifier]) the previous INSERT

operation

mysql_result(int result, mixed Gets result data
int row [, mixed field])

mysql_num_rows(int result) int Gets the number of rows in
a result

mysql_num_fields(int result) int Gets the number of fields
in a result

mysql_fetch_row(int result) array Gets a result row as an
enumerated array

mysql_fetch_object(int result object Fetches a result row as an
[, int result_type]) object

mysql_fetch_array(int result array Fetches a result row as an
[, int result_type]) array (associative, numeric,

or both)

mysql_fetch_assoc(int result) array Fetches a result row as an
associative array

mysql_data_seek(int result, bool Moves the internal result
int row_number) pointer

mysql_fetch_lengths(int result) array Gets the maximum data
size of each column in a
result

mysql_fetch_field(int result object Gets the column
[, int field_offset]) information from a result

and returns it as an object

Continued

Appendix F: PHP Function Reference 609

TABLE F-1 MYSQL FUNCTIONS (Continued)

Function Return Value Action

mysql_field_seek(int result, bool Sets the result pointer to a
int field_offset) specific field offset

mysql_field_name(int result, string Gets the name of the
int field_index) specified field in a result

mysql_field_table(int result, string Gets the name of the table
int field_offset) the specified field is in

mysql_field_len(int result, int Returns the length of the
int field_offset) specified field

mysql_field_type(int result, string Gets the type of the
int field_offset) specified field in a result

mysql_field_flags(int result, string Gets the flags associated
int field_offset) with the specified field in a

result

mysql_free_result(int result) bool Frees memory associated
with the result

TABLE F-2 STRING-MANIPULATION FUNCTIONS

Function Return Value Action

bin2hex(string data) string Converts the binary repre-
sentation of data to hex

strspn(string str, string mask) int Finds the length of the
initial segment consisting
entirely of characters
found in mask

strcspn(string str, string mask) int Finds the length of the
initial segment consisting
entirely of characters not
found in mask

nl_langinfo(int item) string Queries the language and
locale information

610 Part V: Appendixes

Function Return Value Action

strcoll(string str1, string str2) int Compares two strings
using the current locale

chop(string str string An alias for rtrim
[, string character_mask])

rtrim(string str string Removes trailing white
[, string character_mask]) space

trim(string str string Strips white space from
[, string character_mask]) the beginning and end of

a string

ltrim(string str string Strips white space from
[, string character_mask]) the beginning of a string

wordwrap(string str [, int width string Wraps a string to a given
[, string break [, int cut]]]) number of characters using

a string break character.

explode(string separator, array Splits a string-on-the
string str [, int limit]) string separator and

returns an array of
components

join(array src, string glue) string An alias for implode

implode(array src, string glue) string Joins array elements by
placing the glue string
between items and returns
one string

strtok([string str,] string Tokenizes a string
string token)

strtoupper(string str) string Makes a string upper case

strtolower(string str) string Makes a string lower case

basename(string path string Returns the file-name
[, string suffix]) component of the path

dirname(string path) string Returns the directory-
name component of the
path

Continued

Appendix F: PHP Function Reference 611

TABLE F-2 STRING-MANIPULATION FUNCTIONS (Continued)

Function Return Value Action

pathinfo(string path) array Returns information about
a certain string

stristr(string haystack, string Finds the first occurrence
string needle) of a string within another

(case-insensitive)

strstr(string haystack, string Finds the first occurrence
string needle) of a string within another

strchr(string haystack, string An alias for strstr
string needle)

strpos(string haystack, int Finds the position of the
string needle [, int offset]) first occurrence of a string

within another

strrpos(string haystack, int Finds the position of the
string needle) last occurrence of a

character in a string within
another

strrchr(string haystack, string Finds the last occurrence
string needle) of a character in a string

within another

chunk_split(string str [, int string Returns a split line
chunklen [, string ending]])

substr(string str, int start string Returns part of a string
[, int length])

substr_replace(string str, string Replaces part of a string
string repl, int start with another string
[, int length])

quotemeta(string str) string Quotes meta-characters

ord(string character) int Returns the ASCII value of
a character

chr(int ascii) string Converts ASCII code to a
character

ucfirst(string str) string Makes a string’s first
character upper case

612 Part V: Appendixes

Function Return Value Action

ucwords(string str) string Renders the first character
of every word in a string in
upper case

strtr(string str, string from, string Translates characters in
string to) str using given

translation tables

strrev(string str) string Reverses a string

similar_text(string str1, int Calculates the similarity
string str2 [, float percent]) between two strings

addcslashes(string str, string Escapes all characters
string charlist) mentioned in charlist

with backslashes. Creates
octal representations if
asked to backslash
characters with eighth-bit
set or with ASCII<32
(except \n, \r, \t, and
so on)

addslashes(string str) string Escapes single quotes,
double quotes, and
backslash characters in a
string with backslashes

stripcslashes(string str) string Strips backslashes from a
string (uses C-style
conventions)

stripslashes(string str) string Strips backslashes from a
string

str_replace(mixed search, mixed Replaces all occurrences of
mixed replace, mixed subject search in haystack
[, bool boyer]) with replace

hebrev(string str string Converts logical Hebrew
[, int max_chars_per_line]) text to visual text

hebrevc(string str string Converts logical Hebrew
[, int max_chars_per_line]) text to visual text with

newline conversion

Continued

Appendix F: PHP Function Reference 613

TABLE F-2 STRING-MANIPULATION FUNCTIONS (Continued)

Function Return Value Action

nl2br(string str) string Converts newlines to HTML
line breaks

strip_tags(string str string Strips HTML and PHP tags
[, string allowable_tags]) from a string

setlocale(mixed category, string Sets locale information
string locale)

parse_str(string encoded_string void Parses GET/POST/COOKIE
[, array result]) data and sets global variables

str_repeat(string input, string Returns the input string
int mult) repeated mult times

count_chars(string input mixed Returns information about
[, int mode]) what characters are used

in input

strnatcmp(string s1, string s2) int Returns the result of a
string comparison using
a “natural” algorithm

localeconv(void) array Returns numeric
formatting information
based on the current locale

strnatcasecmp(string s1, int Returns the result of a
string s2) case-insensitive string

comparison using a
“natural” algorithm

substr_count(string haystack, int Returns the number of
string needle) times a substring occurs

in the string

str_pad(string input, int string Returns the input string,
pad_length [, string pad_string padded on the left or right
[, int pad_type]]) to a specified length with

pad_string

sscanf(string str, string format mixed Implements an ANSI
[, string ...]) C–compatible sscanf

str_rot13(string str) string Performs the rot13
transform on a string

614 Part V: Appendixes

TABLE F-3 ARRAY FUNCTIONS

Function Return Value Action

krsort(array array_arg bool Sorts an array by key value
[, int sort_flags]) in reverse order

ksort(array array_arg bool Sorts an array by key
[, int sort_flags])

count(mixed var [, int mode]) int Counts the number of
elements in a variable
(usually an array)

natsort(array array_arg) void Sorts an array using
natural sort

natcasesort(array array_arg) void Sorts an array using case-
insensitive natural sort

asort(array array_arg bool Sorts an array and
[, int sort_flags]) maintains index association

arsort(array array_arg bool Sorts an array in reverse
[, int sort_flags]) order and maintains index

association

sort(array array_arg bool Sorts an array
[, int sort_flags])

rsort(array array_arg bool Sorts an array in reverse
[, int sort_flags]) order

usort(array array_arg, bool Sorts an array by values
string cmp_function) using a user-defined

comparison function

uasort(array array_arg, bool Sorts an array with a
string cmp_function) user-defined comparison

function and maintains
index association

uksort(array array_arg, bool Sorts an array by keys
string cmp_function) using a user-defined

comparison function

Continued

Appendix F: PHP Function Reference 615

TABLE F-3 ARRAY FUNCTIONS (Continued)

Function Return Value Action

end(array array_arg) mixed Advances the array
argument’s internal pointer
to the last element and
returns it

prev(array array_arg) mixed Moves the array
argument’s internal pointer
to the previous element
and returns it

next(array array_arg) mixed Moves the array
argument’s internal pointer
to the next element and
returns it

reset(array array_arg) mixed Sets the array argument’s
internal pointer to the first
element and returns it

current(array array_arg) mixed Returns the element
currently pointed to by the
internal array pointer

key(array array_arg) mixed Returns the key of the
element currently pointed
to by the internal array
pointer

min(mixed arg1 [, mixed arg2 mixed Returns the lowest value
[, mixed ...]]) in an array or a series of

arguments

max(mixed arg1 [, mixed arg2 mixed Returns the highest value
[, mixed ...]]) in an array or a series of

arguments

array_walk(array input, string bool Applies a user function to
funcname [, mixed userdata]) every member of an array

in_array(mixed needle, array bool Checks if the given value
haystack [, bool strict]) exists in the array

616 Part V: Appendixes

Function Return Value Action

array_search(mixed needle, mixed Searches the array for a
array haystack [, bool strict]) given value and returns the

corresponding key if
successful

extract(array var_array int Imports variables into the
[, int extract_type symbol table from an array
[, string prefix]])

compact(mixed var_names array Creates a hash containing
[, mixed ...]) variables and their values

array_fill(int start_key, array Creates an array
int num, mixed val) containing num elements,

starting with index
start_key, each
initialized to val

range(mixed low, mixed high) array Creates an array
containing the range of
integers or characters from
low to high (inclusive)

shuffle(array array_arg) bool Randomly shuffles the
contents of an array

array_push(array stack, int Pushes elements onto the
mixed var [, mixed ...]) end of the array

array_pop(array stack) mixed Pops an element off the
end of the array

array_shift(array stack) mixed Pops an element off the
beginning of the array

array_unshift(array stack, int Pushes elements onto the
mixed var [, mixed ...]) beginning of the array

array_splice(array input, array Removes the elements
int offset [, int length designated by offset and
[, array replacement]]) length and replaces them

with the supplied array

array_slice(array input, array Returns the elements
int offset [, int length]) specified by offset and

length

Continued

Appendix F: PHP Function Reference 617

TABLE F-3 ARRAY FUNCTIONS (Continued)

Function Return Value Action

array_merge(array arr1, array array Merges the elements from
arr2 [, array ...]) passed arrays into one

array

array_merge_recursive(array array Recursively merges
arr1, array arr2 [, array ...]) elements from passed

arrays into one array

array_keys(array input array Returns just the keys from
[, mixed search_value]) the input array, optionally

only for the specified
search_value

array_values(array input) array Returns just the values
from the input array

array_count_values(array input) array Returns an array using the
values of the input array as
keys and their frequency in
input as values

array_reverse(array input array Returns input as a new
[, bool preserve keys]) array with the order of the

entries reversed

array_pad(array input, array Returns a copy of the input
int pad_size, mixed pad_value) array padded with

pad_value to size
pad_size

array_flip(array input) array Returns an array with the
key <-> value flipped

array_change_key_case(array array Returns an array with all
input [, int case=CASE_LOWER]) string keys rendered in

lower case (or upper cased)

array_unique(array input) array Removes duplicate values
from the array

618 Part V: Appendixes

Function Return Value Action

array_intersect(array arr1, array Returns the entries of
array arr2 [, array ...]) arr1 that have values that

are present in all the other
arguments

array_diff(array arr1, array array Returns the entries of
arr2 [, array ...]) arr1 that have values that

are not present in any of
the other arguments

array_multisort(array ar1 bool Sorts multiple arrays at
[, SORT_ASC|SORT_DESC once, much as the ORDER
[, SORT_REGULAR|SORT_NUMERIC| BY clause does in SQL
SORT_STRING]] [, array ar2
[, SORT_ASC|SORT_DESC
[, SORT_REGULAR|SORT_NUMERIC|
SORT_STRING]], ...])

array_rand(array input mixed Returns the key/keys for
[, int num_req]) random entry/entries in the

array

array_sum(array input) mixed Returns the sum of the
array entries

array_reduce(array input, mixed Iteratively reduces the
mixed callback [, int initial]) array to a single value via

the callback

array_filter(array input array Filters elements from the
[, mixed callback]) array via the callback

array_map(mixed callback, array array Applies the callback to the
input1 [, array input2 ,...]) elements in given arrays

array_key_exists(mixed key, bool Checks if the given key or
array search) index exists in the array

array_chunk(array input, array Splits the array into chunks
int size [, bool preserve_keys])

Appendix F: PHP Function Reference 619

TABLE F-4 DATE/TIME FUNCTIONS

Function Return Value Action

time(void) int Returns the current Unix
timestamp

Mktime(int hour, int min, int int Gets the Unix timestamp
sec, int mon, int day, int year) for a date

gmmktime(int hour, int min, int int Gets the Unix timestamp
sec, int mon, int day, int year) for a GMT date

date(string format string Formats a local time/date
[, int timestamp])

gmdate(string format string Formats a GMT/UTC
[, int timestamp]) date/time

localtime([int timestamp array Returns the results of the
[, bool associative_array]]) C-system call localtime

as an associative array if
the associative_array
argument is set to 1;
otherwise it is a regular
array

getdate([int timestamp]) array Gets date/time information

checkdate(int month, bool Returns true if the given
int day, int year) values represent a valid

date in the Gregorian
calendar

strftime(string format string Formats a local time/date
[, int timestamp]) according to locale

settings

gmstrftime(string format string Formats a GMT/UCT
[, int timestamp]) time/date according to

locale settings

strtotime(string time, int now) int Converts a string
representation of the date
and time to a timestamp

620 Part V: Appendixes

TABLE F-5 DIRECTORY FUNCTIONS

Function Return Value Action

opendir(string path) mixed Opens a directory and
returns a dir_handle

dir(string directory) class Returns a directory
pseudo-class, with
properties handle and
path, and methods
read(), rewind() and
close()

closedir([resource dir_handle]) void Closes the directory
connection identified by
the dir_handle

chroot(string directory) bool Changes the root directory

chdir(string directory) bool Changes the current
directory

getcwd(void) mixed Gets the current directory

rewinddir([resource dir_handle]) void Rewinds dir_handle
back to the start

readdir([resource dir_handle]) string Reads the directory entry
from dir_handle

TABLE F-6 DNS-RELATED FUNCTIONS

Function Return Value Action

gethostbyaddr(string ip_address) string Gets the Internet host
name corresponding to
a given IP address

gethostbyname(string hostname) string Gets the IP address
corresponding to a given
Internet host name

Continued

Appendix F: PHP Function Reference 621

TABLE F-6 DNS-RELATED FUNCTIONS (Continued)

Function Return Value Action

gethostbynamel(string hostname) array Returns a list of IP
addresses that a given host
name resolves to

checkdnsrr(string host int Checks DNS records
[, string type]) corresponding to a given

Internet host name or
IP address

getmxrr(string hostname, int Gets MX records
array mxhosts [, array weight]) corresponding to a given

Internet host name

TABLE F-7 EXECUTION FUNCTIONS

Function Return Value Action

exec(string command [, array string Executes an external
output [, int return_value]]) program

system(string command int Executes an external
[, int return_value]) program and displays

output

passthru(string command void Executes an external
[, int return_value]) program and displays raw

output

escapeshellcmd(string command) string Escapes shell
meta-characters

escapeshellarg(string arg) string Quotes and escapes an
argument for use in a shell
command that has been
opened via popen()

622 Part V: Appendixes

TABLE F-8 FUNCTIONS FOR WORKING WITH FILES

Function Return Value Action

flock(resource fp, int operation bool Portable file locking
[, int wouldblock])

get_meta_tags(string filename array Extracts all metatag
[, bool use_include_path]) content attributes from a

file and returns an array

file(string filename array Reads the entire file into
[, bool use_include_path]) an array

tempnam(string dir, string Creates a unique file name
string prefix) in a directory

tmpfile(void) resource Creates a temporary file
that will be deleted
automatically after use

fopen(string filename, string resource Opens a file or a URL and
mode [, bool use_include_path]) returns a file pointer

fclose(resource fp) bool Closes an open file pointer

popen(string command, resource Executes a command and
string mode) opens either a read or a

write pipe to it

pclose(resource fp) int Closes a file pointer
opened by popen()

feof(resource fp) bool Tests for end-of-file on a
file pointer

socket_set_blocking(resource bool Sets blocking/non-blocking
socket, int mode) mode on a socket

set_socket_blocking(resource bool Sets blocking/non-blocking
socket, int mode) mode on a socket

socket_set_timeout(int bool Sets timeout on socket
socket_descriptor, int seconds, read to seconds plus
int microseconds) microseconds

socket_get_status(resource array Returns an array describing
socket_descriptor) socket status

Continued

Appendix F: PHP Function Reference 623

TABLE F-8 FUNCTIONS FOR WORKING WITH FILES (Continued)

Function Return Value Action

fgets(resource fp[, int length]) string Gets a line from the file
pointer

fgetc(resource fp) string Gets a character from the
file pointer

fgetss(resource fp, int length string Gets a line from the file
[, string allowable_tags]) pointer and strips HTML

tags

fscanf(string str, string mixed Implements a mostly-
format [, string ...]) ANSI-compatible

fscanf()

fwrite(resource fp, string str int Binary-safe file write
[, int length])

fflush(resource fp) bool Flushes output

set_file_buffer(resource int Sets file write buffer
fp, int buffer)

rewind(resource fp) bool Rewinds the position of a
file pointer

ftell(resource fp) int Gets the file pointer’s
read/write position

fseek(resource fp, int offset int Seeks on a file pointer
[, int whence])

mkdir(string pathname bool Creates a directory
[, int mode])

rmdir(string dirname) bool Removes a directory

readfile(string filename int Outputs a file or a URL
[, int use_include_path])

umask([int mask]) int Returns or changes the
umask

fpassthru(resource fp) int Outputs all remaining data
from a file pointer

624 Part V: Appendixes

Function Return Value Action

rename(string old_name, bool Renames a file
string new_name)

unlink(string filename) bool Deletes a file

ftruncate(resource fp, int size) int Truncates file to length
size

fstat(resource fp) int Stat() on a file handle

copy(string source_file, bool Copies a file
string destination_file)

fread(resource fp, int length) string Binary-safe file read

fgetcsv(resource fp, int length array Gets a line from the file
[, string delimiter]) pointer and parses it for

CSV fields

realpath(string path) string Returns the resolved path

TABLE F-9 FILE STATUS FUNCTIONS

Function Return Value Action

disk_total_space(string path) float Gets total disk space for
the file system that path
is on

disk_free_space(string path) float Gets free disk space for
the file system that path
is on

chgrp(string filename, mixed group) bool Changes the file group

chown (string filename, mixed user) bool Changes the file owner

chmod(string filename, int mode) bool Changes the file mode

touch(string filename [, int time bool Sets the modification
[, int atime]]) time for the file

clearstatcache(void) void Clears the file’s stat cache

Continued

Appendix F: PHP Function Reference 625

TABLE F-9 FILE STATUS FUNCTIONS (Continued)

Function Return Value Action

fileperms(string filename) int Gets file permissions

fileinode(string filename) int Gets the file inode

filesize(string filename) int Gets the file size

fileowner(string filename) int Gets the file owner

filegroup(string filename) int Gets the file group

fileatime(string filename) int Gets the last access time
for the file

filemtime(string filename) int Gets the last modification
time for the file

filectime(string filename) int Gets the inode-
modification time for
the file

filetype(string filename) string Gets the file type

is_writable(string filename) int Returns true if the file
can be written

is_readable(string filename) int Returns true if the file
can be read

is_executable(string filename) int Returns true if the file is
executable

is_file(string filename) int Returns true if the file is
a regular file

is_dir(string filename) int Returns true if the file is
a directory

is_link(string filename) int Returns true if the file is
a symbolic link

file_exists(string filename) bool Returns true if the file
name exists

lstat(string filename) array Gives information about a
file or symbolic link

stat(string filename) array Gives information about
a file

626 Part V: Appendixes

TABLE F-10 FSOCK FUNCTIONS

Function Return Value Action

fsockopen(string hostname, int int Opens an Internet or Unix
port [, int errno [, string domain-socket connection
errstr [, float timeout]]])

pfsockopen(string hostname, int int Opens a persistent Internet
port [, int errno [, string errstr or Unix domain-socket
[, float timeout]]]) connection

TABLE F-11 HTTP HEADER FUNCTIONS

Function Return Value Action

header(string header void Sends a raw HTTP header
[, bool replace])

setcookie(string name bool Sends a cookie
[, string value [, int expires
[, string path [, string domain
[, bool secure]]]]])

headers_sent(void) int Returns true if headers
have already been sent,
false otherwise

TABLE F-12 HTML-RELATED FUNCTIONS

Function Return Value Action

htmlspecialchars(string string string Converts special characters
[, int quote_style][, string into HTML entities
charset])

htmlentities(string string string Converts all applicable
[, int quote_style][, string characters into HTML
charset]) entities

Continued

Appendix F: PHP Function Reference 627

TABLE F-12 HTML-RELATED FUNCTIONS (Continued)

Function Return Value Action

get_html_translation_table([int array Returns the internal
table [, int quote_style]]) translation table used by

htmlspecialchars and
htmlentities

TABLE F-13 PHP-INFORMATION FUNCTIONS

Function Return Value Action

phpinfo([int what]) void Outputs a page of useful
information about PHP and
the current request

phpversion([string extension]) string Returns the current PHP
version

phpcredits([int flag]) void Prints the list of people
who’ve contributed to the
PHP project

php_sapi_name(void) string Returns the current SAPI
module name

php_uname(void) string Returns information about
the system PHP was built on

TABLE F-14 MATH FUNCTIONS

Function Return Value Action

abs(int number) int Returns the absolute value
of the number

ceil(float number) float Returns the next highest
integer value from the
number

628 Part V: Appendixes

Function Return Value Action

floor(float number) float Returns the next lowest
integer value from the
number

round(float number float Returns the number rounded
[, int precision]) to the specified precision

sin(float number) float Returns the sine of the
number in radians

cos(float number) float Returns the cosine of the
number in radians

tan(float number) float Returns the tangent of the
number in radians

asin(float number) float Returns the arc sine of the
number in radians

acos(float number) float Return the arc cosine of the
number in radians

atan(float number) float Returns the arc tangent of
the number in radians

atan2(float y, float x) float Returns the arc tangent
of y/x, with the resulting
quadrant determined by the
sines of y and x

sinh(float number) float Returns the hyperbolic
sine of the number, defined
as (exp(number) –
exp(–number))/2

cosh(float number) float Returns the hyperbolic
cosine of the number,
defined as (exp(number) +
exp(–number))/2

tanh(float number) float Returns the hyperbolic
tangent of the number,
defined as sinh(number)/
cosh(number)

Continued

Appendix F: PHP Function Reference 629

TABLE F-14 MATH FUNCTIONS (Continued)

Function Return Value Action

asinh(float number) float Returns the inverse
hyperbolic sine of the
number, that is, the value
whose hyperbolic sine is
number

acosh(float number) float Returns the inverse
hyperbolic cosine of the
number, that is, the value
whose hyperbolic cosine is
number

atanh(float number) float Returns the inverse
hyperbolic tangent of the
number, that is, the value
whose hyperbolic tangent is
number

pi(void) float Returns an approximation
of pi

is_finite(float val) bool Returns whether argument
is finite

is_infinite(float val) bool Returns whether argument
is infinite

is_nan(float val) bool Returns whether argument
is not a number

pow(number base, number number Returns base raised to the
exponent) power of exponent; returns

the integer result when
possible

exp(float number) float Returns e raised to the
power of number

expm1(float number) float Returns exp(number) – 1,
computed in a way that is
accurate even when the
value of number is close
to 0

630 Part V: Appendixes

Function Return Value Action

log1p(float number) float Returns log(1 + number),
computed in a way that is
accurate even when the
value of number is close to 0

log(float number) float Returns the natural
logarithm of the number

log10(float number) float Returns the base-10
logarithm of the number

sqrt(float number) float Returns the square root of
the number

deg2rad(float number) float Converts the number in
degrees to the radian
equivalent

rad2deg(float number) float Converts the radian number
to the equivalent number in
degrees

bindec(string binary_number) int Returns the decimal
equivalent of the binary
number

hexdec(string int Returns the decimal
hexadecimal_number) equivalent of the

hexadecimal number

octdec(string octal_number) int Returns the decimal
equivalent of an octal string

decbin(int decimal_number) string Returns a string containing
a binary representation of
the number

decoct(int decimal_number) string Returns a string containing
an octal representation of
the given number

dechex(int decimal_number) string Returns a string containing a
hexadecimal representation
of the given number

Continued

Appendix F: PHP Function Reference 631

TABLE F-14 MATH FUNCTIONS (Continued)

Function Return Value Action

base_convert(string number, string Converts a number in a
int frombase, int tobase) string from any base smaller

than or equal to 36 to any
base smaller than or equal
to 36

_format(float number string Formats a number with
[, int num_decimal_places grouped thousands
[, string dec_seperator,
string thousands_separator]])

fmod(float x, float y) float Returns the remainder of
dividing x by y as a float

TABLE F-15 RANDOM-NUMBER FUNCTIONS

Function Return Value Action

srand([int seed]) void Seeds the random-number
generator

mt_srand([int seed]) void Seeds the Mersenne Twister
random-number generator

rand([int min, int max]) int Returns a random number

mt_rand([int min, int max]) int Returns a random number
from the Mersenne Twister

getrandmax(void) int Returns the maximum value
a random number can have

mt_getrandmax(void) int Returns the maximum value
a random number from the
Mersenne Twister can have

632 Part V: Appendixes

TABLE F-16 REGULAR EXPRESSION FUNCTIONS

Function Return Value Action

ereg(string pattern, string int Regular expression match
string [, array registers])

eregi(string pattern, string int Case-insensitive regular
string [, array registers]) expression match

ereg_replace(string pattern, string Replaces a regular
string replacement, string expression
string)

eregi_replace(string pattern, string Case-insensitive replace
string replacement, string regular expression
string)

split(string pattern, array Splits the string into an
string string [, int limit]) array by regular expression

spliti(string pattern, array Splits the string into an
string string [, int limit]) array by regular expression

(case-insensitive)

sql_regcase(string string) string Makes a regular expression
for case-insensitive match

TABLE F-17 PERL-COMPATIBLE REGULAR EXPRESSION FUNCTIONS

Function Return Value Action

preg_match(string pattern, int Performs a Perl-style
string subject [, array regular-expression match
subpatterns])

preg_match_all(string pattern, int Performs a Perl-style
string subject, array global-regular-expression
subpatterns [, int order]) match

preg_replace(mixed regex, string Performs a Perl-style
mixed replace, mixed subject regular-expression
[, int limit]) replacement

Continued

Appendix F: PHP Function Reference 633

TABLE F-17 PERL-COMPATIBLE REGULAR EXPRESSION FUNCTIONS (Continued)

Function Return Value Action

preg_replace_(mixed regex, string Performs a Perl-style
mixed callback, mixed subject regular-expression
[, int limit]) replacement using

replacement callback

preg_split(string pattern, array Splits the string into an
string subject [, int limit array using a Perl-style
[, int flags]]) regular expression as a

delimiter

preg_quote(string str, string Quotes regular-expression
string delim_char) characters plus an optional

character

preg_grep(string regex, array Searches the array and
array input) returns entries that match

regex

TABLE F-18 VARIABLE-TYPING FUNCTIONS

Function Return Value Action

gettype(mixed var) string Returns the type of the
variable

settype(mixed var, string type) bool Sets the type of the variable

intval(mixed var [, int base]) int Gets the integer value of a
variable using the optional
base for the conversion

floatval(mixed var) float Gets the float value of a
variable

strval(mixed var) string Gets the string value of a
variable

is_null(mixed var) bool Returns true if the variable
is NULL

634 Part V: Appendixes

Function Return Value Action

is_resource(mixed var) bool Returns true if the variable
is a resource

is_bool(mixed var) bool Returns true if the variable
is a Boolean

is_long(mixed var) bool Returns true if the variable
is a long (integer)

is_float(mixed var) bool Returns true if the variable
is a floating point value

is_string(mixed var) bool Returns true if the variable
is a string

is_array(mixed var) bool Returns true if the variable
is an array

is_object(mixed var) bool Returns true if the variable
is an object

is_numeric(mixed value) bool Returns true if the value is
a number or a numeric
string

is_scalar(mixed value) bool Returns true if the value is
a scalar

is_callable(mixed var [, bool bool Returns true if var is
syntax_only [, string callable
callable_name]])

TABLE F-19 SESSION FUNCTIONS

Function Return Value Action

session_set_cookie_params(int void Sets the session-cookie
lifetime [, string path [, string parameters
domain [, bool secure]]])

session_get_cookie_params(void) array Returns the session-cookie
parameters

Continued

Appendix F: PHP Function Reference 635

TABLE F-19 SESSION FUNCTIONS (Continued)

Function Return Value Action

session_name([string newname]) string Returns the current session
name; if newname is given,
the session name is replaced
with newname

session_module_name([string string Returns the current module
newname]) name used for accessing

session data; if newname is
given, the module name is
replaced with newname

session_set_save_handler(string void Sets the user-level functions
open, string close, string read,
string write, string destroy,
string gc)

session_save_path([string string Returns the current save
newname]) path passed to

module_name; if newname
is given, the save path is
replaced with newname

session_id([string newid]) string Returns the current session
ID; if newid is given, the
session ID is replaced with
newid

session_cache_limiter([string string Returns the current cache
new_cache_limiter]) limiter; if new_cache_

limiter is given, the
current cache limiter is
replaced with new_
cache_limiter

session_cache_expire([int int Returns the current
new_cache_expire]) cache_expire; if

new_cache_expire
is given, the current
cache_expire is replaced
with new_cache_expire

636 Part V: Appendixes

Function Return Value Action

session_register(mixed bool Adds var_name(s) to the
var_names [, mixed ...]) list of variables that are

frozen at the session’s end

session_unregister(string bool Removes varname from the
varname) list of variables that are

frozen at the session’s end

session_is_registered(string bool Checks if a variable is
varname) registered in the session

session_encode(void) string Serializes the current setup
and returns the serialized
representation

session_decode(string data) bool Deserializes data and
reinitializes the variables

session_start(void) bool Begins session — reinitializes
frozen variables, registers
browsers, and so on

session_destroy(void) bool Destroys the current session
and all data associated
with it

session_unset(void) void Unsets all registered
variables

session_write_close(void) void Writes session data and ends
the session

TABLE F-20 XPAT XML FUNCTIONS

Function Return Value Action

xml_parser_create([string int Creates an XML parser
encoding])

xml_parser_create_ns([string int Creates an XML parser
encoding [, string sep]])

Continued

Appendix F: PHP Function Reference 637

TABLE F-20 XPAT XML FUNCTIONS (Continued)

Function Return Value Action

xml_set_object(int pind, int Sets up an object that
object &obj) should be used for callbacks

xml_set_element_handler(int int Sets up start and end
pind, string shdl, string ehdl) element handlers

xml_set_character_data_handler int Sets up a character-data
(int pind, string hdl) handler

xml_set_processing_instruction_ int Sets up a processing-
handler(int pind, string hdl) instruction (PI) handler

xml_set_default_handler(int int Sets up a default handler
pind, string hdl)

xml_set_unparsed_entity_decl_ int Sets up an unparsed-
handler(int pind, string hdl) entity-declaration handler

xml_set_notation_decl_handler int Sets up a notation-
(int pind, string hdl) declaration handler

xml_set_external_entity_ref_ int Sets up an external entity-
handler(int pind, string hdl) reference handler

xml_set_start_namespace_decl_ int Sets up a character-data
handler(int pind, string hdl) handler

xml_set_end_namespace_decl_ int Sets up a character-data
handler(int pind, string hdl) handler

xml_parse(int pind, string int Starts parsing an XML
data [, int isFinal]) document

xml_parse_into_struct(int pind, int Parsing a XML document
string data, array &struct,
array &index)

xml_get_error_code(int pind) int Gets XML parser-error code

xml_error_string(int code) string Gets XML parser-error string

xml_get_current_line_number int Gets the current line number
(int pind) for an XML parser

xml_get_current_column_number int Gets the current column
(int pind) number for an XML parser

638 Part V: Appendixes

Function Return Value Action

xml_get_current_byte_index int Gets the current byte index
(int pind) for an XML parser

xml_parser_free(int pind) int Frees an XML parser

xml_parser_set_option(int pind, int Sets options in an XML
int option, mixed value) parser

xml_parser_get_option(int pind, int Gets options from an XML
int option) parser

utf8_encode(string data) string Encodes an ISO-8859-1
string to UTF-8

utf8_decode(string data) string Converts a UTF-8–encoded
string to ISO-8859-1

TABLE F-21 WDDX FUNCTIONS

Function Return Value Action

wddx_serialize_value(mixed var string Creates a new packet and
[, string comment]) serializes the given value

wddx_serialize_vars(mixed string Creates a new packet and
var_name [, mixed ...]) serializes given variables

into a structure

wddx_packet_start int Starts a WDDX packet with
([string comment]) an optional comment and

returns the packet ID

wddx_packet_end(int packet_id) string Ends the specified WDDX
packet and returns the string
containing the packet

wddx_add_vars(int packet_id, int Serializes given variables
mixed var_names [, mixed ...]) and adds them to the packet

given by packet_id

wddx_deserialize(string packet) mixed Deserializes the given packet
and returns a PHP value

Appendix F: PHP Function Reference 639

TABLE F-22 BC MATH FUNCTIONS

Function Return Value Action

bcadd(string left_operand, string Returns the sum of two
string right_operand [, int arbitrary-precision numbers
scale])

bcsub(string left_operand, string Returns the difference
string right_operand [, int between two arbitrary-
scale]) precision numbers

bcmul(string left_operand, string Returns the product of two
string right_operand arbitrary-precision numbers
[, int scale]) (multiplication)

bcdiv(string left_operand, string Returns the quotient of two
string right_operand arbitrary-precision numbers
[, int scale]) (division)

bcmod(string left_operand, string Returns the modulus of the
string right_operand) two arbitrary-precision

operands

bcpow(string x, string y string Returns the value of an
[, int scale]) arbitrary-precision number

raised to the power of
another

bcsqrt(string operand string Returns the square root of
[, int scale]) an arbitrary-precision

number

bccomp(string left_operand, string Compares two arbitrary-
string right_operand precision numbers
[, int scale])

bcscale(int scale) string Sets the default scale
parameter for all BC math
functions

640 Part V: Appendixes

TABLE F-23 CURL FUNCTIONS

Function Return Value Action

curl_version(void) string Returns the CURL version
string

curl_init([string url]) int Initializes a CURL session

curl_setopt(int ch, string bool Sets an option for a CURL
option, mixed value) transfer

curl_exec(int ch) bool Performs a CURL session

curl_getinfo(int ch, int opt) string Gets information regarding a
specific transfer

curl_error(int ch) string Returns a string containing
the last error for the current
session

curl_errno(int ch) int Returns an integer
containing the last error
number for the current
session

curl_close(int ch) void Closes a CURL session

TABLE F-24 FTP FUNCTIONS

Function Return Value Action

ftp_connect(string host resource Opens an FTP stream
[, int port [, int timeout)]])

ftp_login(resource stream, bool Logs in to the FTP server
string username, string
password)

ftp_pwd(resource stream) string Returns the present working
directory

ftp_cdup(resource stream) bool Changes to the parent
directory

Continued

Appendix F: PHP Function Reference 641

TABLE F-24 FTP FUNCTIONS (Continued)

Function Return Value Action

ftp_chdir(resource stream, bool Changes directories
string directory)

ftp_exec(resource stream, bool Requests execution of a
string command) program on the FTP server

ftp_mkdir(resource stream, string Creates a directory and
string directory) returns the absolute path for

the new directory, or false
on error

ftp_rmdir(resource stream, bool Removes a directory
string directory)

ftp_nlist(resource stream, array Returns an array of file
string directory) names in the given directory

ftp_rawlist(resource stream, array Returns a detailed listing of
string directory) a directory as an array of

output lines

ftp_systype(resource stream) string Returns the system-type
identifier

ftp_fget(resource stream, bool Retrieves a file from the FTP
resource fp, string server and writes it to an
remote_file, int mode) open file

ftp_pasv(resource stream, bool Turns passive mode on or off
bool pasv)

ftp_get(resource stream, bool Retrieves a file from the FTP
string local_file, string server and writes it to a
remote_file, int mode) local file

ftp_fput(resource stream, bool Stores a file from an open
string remote_file, resource file to the FTP server
fp, int mode)

ftp_put(resource stream, bool Stores a file on the FTP
string remote_file, string server
local_file, int mode)

642 Part V: Appendixes

Function Return Value Action

ftp_size(resource stream, int Returns the size of the file,
string filename) or –1 on error

ftp_mdtm(resource stream, int Returns the last
string filename) modification time for the

file, or –1 on error

ftp_rename(resource stream, bool Renames the given file to a
string src, string dest) new path

ftp_delete(resource stream, bool Deletes a file
string file)

ftp_site(resource stream, bool Sends a SITE command to
string cmd) the server

ftp_close(resource stream) void Closes the FTP stream

ftp_set_option(resource stream, bool Sets an FTP option
int option, mixed value)

ftp_get_option(resource stream, mixed Gets an FTP option
int option)

TABLE F-25 CYBERCASH FUNCTIONS

Function Return Value Action

cybercash_encr(string wmk, array CyberCash encrypt
string sk, string data)

cybercash_decr(string wmp, array CyberCash decrypt
string sk, string data)

cybercash_base64_encode(string string base64 encode data for
data) CyberCash

cybercash_base64_decode(string string base64 decode data for
data) CyberCash

Appendix F: PHP Function Reference 643

TABLE F-26 GD FUNCTIONS

Function Return Value Action

imageloadfont(string filename) int Loads a new font

imagesetstyle(resource im, void Sets the line-drawing styles
array styles) for use with imageline()

and IMG_COLOR_STYLED

imagecreatetruecolor(int x_size, int Creates a new true-color
int y_size) image

imagetruecolortopalette(resource void Converts a true-color image
im, bool ditherFlag, to a palette-based image
int colorsWanted) with a number of colors,

optionally using dithering

imagesetthickness(resource void Sets line thickness for
im, int thickness) drawing lines, ellipses,

rectangles, polygons,
and so on

imageellipse(resource im, int void Draws an ellipse
cx, int cy, int w, int h, int
color)

imagefilledellipse(resource void Draws a filled ellipse
im, int cx, int cy, int w,
int h, int color)

imagefilledarc(int im, int cx, int Draws a filled partial ellipse
int cy, int w, int h, int s,
int e, int col, int style)

imagealphablending(resource void Turns alpha-blending mode
im, bool on) on or off for the given image

imagecolorresolvealpha(resource int Resolves/allocates a color
im, int red, int green, int with an alpha level. Works
blue, int alpha) for true-color and palette-

based images

imagecolorclosestalpha(resource int Finds the closest matching
im, int red, int green, int color with alpha
blue, int alpha) transparency

644 Part V: Appendixes

Function Return Value Action

imagecolorexactalpha(resource int Finds an exact match for the
im, int red, int green, int color with transparency
blue, int alpha)

imagecopyresampled(int dst_im, int Copies and resizes part of an
int src_im, int dst_x, int image using resampling to
dst_y, int src_x, int src_y, help ensure clarity
int dst_w, int dst_h, int
src_w, int src_h)

imagesettile(resource image, int Sets the tile image to $tile
resource tile) when filling $image with

the IMG_COLOR_TILED
color

imagesetbrush(resource image, int Sets the brush image to
resource brush) $brush when filling

$image with the
IMG_COLOR_BRUSHED color

imagecreate(int x_size, int Creates a new image
int y_size)

imagetypes(void) int Returns the types of images
supported in a bitfield — 1 =
GIF, 2 = JPEG, 4 = PNG,
8 = WBMP, 16 = XPM

imagecreatefromstring(string int Creates a new image from
image) the image stream in the

string

imagecreatefromgif(string int Creates a new image from a
filename) GIF file or URL

imagecreatefromjpeg(string int Creates a new image from a
filename) JPEG file or URL

imagecreatefrompng(string int Creates a new image from a
filename) PNG file or URL

imagecreatefromxbm(string int Creates a new image from
filename) an XBM file or URL

Continued

Appendix F: PHP Function Reference 645

TABLE F-26 GD FUNCTIONS (Continued)

Function Return Value Action

imagecreatefromxpm(string int Creates a new image from
filename) an XPM file or URL

imagecreatefromwbmp(string int Creates a new image from a
filename) WBMP file or URL

imagecreatefromgd(string int Creates a new image from a
filename) GD file or URL

imagecreatefromgd2(string int Creates a new image from a
filename) GD2 file or URL

imagecreatefromgd2part(string int Creates a new image from a
filename, int srcX, int srcY, given part of a GD2 file or
int width, int height) URL

imagegif(int im [, string int Outputs a GIF image to a
filename]) browser or file

imagepng(int im [, string int Outputs a PNG image to a
filename]) browser or file

imagejpeg(int im [, string int Outputs a JPEG image to a
filename [, int quality]]) browser or file

imagewbmp(int im [, string int Outputs a WBMP image to a
filename, [, int foreground]]) browser or file

imagegd(int im [, string int Outputs a GD image to a
filename]) browser or file

imagegd2(int im [, string int Outputs a GD2 image to a
filename]) browser or file

imagedestroy(int im) int Destroys an image

imagecolorallocate(int im, int Allocates a color for an
int red, int green, int blue) image

imagepalettecopy(int dst, int Copies the palette from the
int src) src image onto the dst

image

imagecolorat(int im, int x, int Gets the index of the color
int y) of a pixel

646 Part V: Appendixes

Function Return Value Action

imagecolorclosest(int im, int int Gets the index of the closest
red, int green, int blue) color to the specified color

imagecolorclosesthwb(int im, int Gets the index of the color
int red, int green, int blue) that has the hue, white, and

blackness nearest to those of
the given color

imagecolordeallocate(int im, int De-allocates a color for an
int index) image

imagecolorresolve(int im, int int Gets the index of the
red, int green, int blue) specified color or its closest

possible alternative

imagecolorexact(int im, int red, int Gets the index of the
int green, int blue) specified color

imagecolorset(int im, int col, int Sets the color for the
int red, int green, int blue) specified palette index

imagecolorsforindex(int im, array Gets the colors for an index
int col)

imagegammacorrect(int im, int Applies gamma correction to
float inputgamma, float a GD image
outputgamma)

imagesetpixel(int im, int x, int Sets a single pixel
int y, int col)

imageline(int im, int x1, int int Draws a line
y1, int x2, int y2, int col)

imagedashedline(int im, int x1, int Draws a dashed line
int y1, int x2, int y2, int col)

imagerectangle(int im, int x1, int Draws a rectangle
int y1, int x2, int y2,
int col)

imagefilledrectangle(int im, int Draws a filled rectangle
int x1, int y1, int x2, int y2,
int col)

Continued

Appendix F: PHP Function Reference 647

TABLE F-26 GD FUNCTIONS (Continued)

Function Return Value Action

imagearc(int im, int cx, int int Draws a partial ellipse
cy, int w, int h, int s, int
e, int col)

imagefilltoborder(int im, int x, int Flood fills the image to the
int y, int border, int col) specific color

imagefill(int im, int x, int y, int Flood fills the image
int col)

imagecolorstotal(int im) int Finds out the number of
colors in an image’s palette

imagecolortransparent(int int Defines a color as
im [, int col]) transparent

imageinterlace(int im int Enables or disables interlace
[, int interlace])

imagepolygon(int im, array int Draws a polygon
point, int num_points, int col)

imagefilledpolygon(int im, int Draws a filled polygon
array point, int num_points,
int col)

imagefontwidth(int font) int Gets the font width

imagefontheight(int font) int Gets the font height

imagechar(int im, int font, int Draws a character
int x, int y, string c,
int col)

imagecharup(int im, int font, int Draws a character rotated
int x, int y, string c, int col) 90 degrees counter-clockwise

imagestring(int im, int font, int Draws a string horizontally
int x, int y, string str,
int col)

imagestringup(int im, int font, int Draws a string vertically
int x, int y, string str, int (rotated 90 degrees
col) counter-clockwise)

648 Part V: Appendixes

Function Return Value Action

imagecopy(int dst_im, int int Copies part of an image
src_im, int dst_x, int dst_y,
int src_x, int src_y, int src_w,
int src_h)

imagecopymerge(int src_im, int Merges one part of an image
int dst_im, int dst_x, int with another
dst_y, int src_x, int src_y,
int src_w, int src_h, int pct

imagecopymergegray(int src_im, int Merges one part of an image
int dst_im, int dst_x, int with another, converting the
dst_y, int src_x, int src_y, pixels of the destination
int src_w, int src_h, int pct) image to grayscale before

copying from the source
image

imagecopyresized(int dst_im, int Copies and resizes part of an
int src_im, int dst_x, int image
dst_y, int src_x, int src_y,
int dst_w, int dst_h, int
src_w, int src_h)

imagesx(int im) int Gets the image width

imagesy(int im) int Gets the image height

imageftbbox(int size, int array Gives the bounding box of a
angle, string font_file, text using fonts via
string text[, array extrainfo]) FreeType2

imagefttext(int im, int size, array Writes text to the image
int angle, int x, int y, int using fonts via FreeType2
col, string font_file, string
text, [array extrainfo])

imagettfbbox(int size, int array Gives the bounding box of a
angle, string font_file, text using TrueType fonts
string text)

imagettftext(int im, int size, array Writes text to the image
int angle, int x, int y, int using a TrueType font
col, string font_file, string
text)

Continued

Appendix F: PHP Function Reference 649

TABLE F-26 GD FUNCTIONS (Continued)

Function Return Value Action

imagepsloadfont(string pathname) int Loads a new font from the
specified file

imagepscopyfont(int font_index) int Makes a copy of a font for
purposes such as extending
or re-encoding

imagepsfreefont(int font_index) bool Frees memory used by a font

imagepsencodefont(int bool Changes a font’s character-
font_index, string filename) encoding vector

imagepsextendfont(int bool Extends or condenses (if
font_index, float extend) extend is greater than 1)

a font

imagepsslantfont(int bool Slants a font
font_index, float slant)

imagepstext(int image, array Rasterizes a string over an
string text, int font, int image
size, int xcoord, int ycoord
[, int space, int tightness,
float angle, int antialias])

imagepsbbox(string text, array Returns the bounding box
int font, int size [, int needed by a string if
space, int tightness, int rasterized
angle])

image2wbmp(int im [, string int Outputs a WBMP image to a
filename [, int threshold]]) browser or file

jpeg2wbmp (string f_org, void Converts a JPEG image to a
string f_dest, int d_height, WBMP image
int d_width, int threshold)

png2wbmp (string f_org, string void Converts a PNG image to a
f_dest, int d_height, int WBMP image
d_width, int threshold)

650 Part V: Appendixes

TABLE F-27 PAYFLOW PRO FUNCTIONS

Function Return Value Action

pfpro_version() string Returns the version of the
Payflow Pro library

pfpro_init() void Initializes the Payflow Pro
library

pfpro_cleanup() void Shuts down the Payflow Pro
library

pfpro_process_raw(string string Raw Payflow Pro transaction
parmlist [, string hostaddress processing
[, int port, [, int timeout
[, string proxyAddress [, int
proxyPort [, string proxyLogon
[, string proxyPassword]]]]]]])

pfpro_process(array parmlist array Payflow Pro transaction
[, string hostaddress [, int processing using arrays
port, [, int timeout [, string
proxyAddress [, int proxyPort
[, string proxyLogon [, string
proxyPassword]]]]]]])

TABLE F-28 PDF FUNCTIONS

Function Return Value Action

pdf_set_info(int pdfdoc, string bool Fills an info field of the
fieldname, string value) document

pdf_set_info_creator(int pdfdoc, bool Fills the creator field of
string creator) the document

pdf_set_info_title(int pdfdoc, bool Fills the title field of the
string title) document

pdf_set_info_subject(int pdfdoc, bool Fills the subject field of
string subject) the document

Continued

Appendix F: PHP Function Reference 651

TABLE F-28 PDF FUNCTIONS (Continued)

Function Return Value Action

pdf_set_info_author(int pdfdoc, bool Fills the author field of the
string author) document

pdf_set_info_keywords(int bool Fills the keywords field of
pdfdoc, string keywords) the document

pdf_close(int pdfdoc) void Closes the PDF document

pdf_begin_page(int pdfdoc, void Starts a page
float width, float height)

pdf_end_page(int pdfdoc) void Ends a page

pdf_show(int pdfdoc, string void Outputs text at the current
text) position

pdf_show_xy(int pdfdoc, void Outputs text at a position
string text, float x_koor,
float y_koor)

pdf_show_boxed(int pdfdoc, int Outputs text formatted in
string text, float x_koor, a box
float y_koor, float width,
float height, string mode
[, string feature])

pdf_set_font(int pdfdoc, void Selects the current font face,
string font, float size, string size, and encoding
encoding [, int embed])

pdf_set_value(int pdfdoc, void Sets an arbitrary value
string key, float value)

pdf_get_value(int pdfdoc, float Gets an arbitrary value
string key, float modifier)

pdf_get_font(int pdfdoc) int Gets the current font

pdf_get_fontname(int pdfdoc) string Gets the current font name

pdf_get_fontsize(int pdfdoc) float Gets the current font size

pdf_set_leading(int pdfdoc, void Sets the distance between
float distance) text lines

pdf_set_text_rendering(int void Determines how text is
pdfdoc, int mode) rendered

652 Part V: Appendixes

Function Return Value Action

pdf_set_horiz_scaling(int void Sets the horizontal scaling
pdfdoc, float scale) of text

pdf_set_text_rise(int pdfdoc, void Sets the text rise
float value)

pdf_set_char_spacing(int pdfdoc, void Sets the character spacing
float space)

pdf_set_word_spacing(int pdfdoc, void Sets the spacing between
float space) words

pdf_set_text_pos(int pdfdoc, void Sets the position of text for
float x, float y) the next pdf_show call

pdf_continue_text(int pdfdoc, void Outputs text in the next line
string text)

pdf_stringwidth(int pdfdoc, float Returns the width of the
string text [, int font, float text in the current font
size])

pdf_save(int pdfdoc) void Saves the current
environment

pdf_restore(int pdfdoc) void Restores the formerly saved
environment

pdf_translate(int pdfdoc, void Sets the origin of the
float x, float y) coordinate system

pdf_scale(int pdfdoc, float void Sets the scaling
x_scale, float y_scale)

pdf_rotate(int pdfdoc, float void Sets the rotation
angle)

pdf_skew(int pdfdoc, float void Skews the coordinate system
xangle, float yangle)

pdf_setflat(int pdfdoc, float void Sets the flatness
value)

pdf_setlinejoin(int pdfdoc, void Sets the linejoin
int value) parameter

pdf_setlinecap(int pdfdoc, void Sets the linecap
int value) parameter

Continued

Appendix F: PHP Function Reference 653

TABLE F-28 PDF FUNCTIONS (Continued)

Function Return Value Action

pdf_setmiterlimit(int pdfdoc, void Sets the miter limit
float value)

pdf_setlinewidth(int pdfdoc, void Sets the line width
float width)

pdf_setdash(int pdfdoc, float void Sets the dash pattern
black, float white)

pdf_moveto(int pdfdoc, float x, void Sets the current point
float y)

pdf_curveto(int pdfdoc, float void Draws a curve
x1, float y1, float x2, float y2,
float x3, float y3)

pdf_lineto(int pdfdoc, float x, void Draws a line
float y)

pdf_circle(int pdfdoc, float x, void Draws a circle
float y, float radius)

pdf_arc(int pdfdoc, float x, void Draws an arc
float y, float radius, float
start, float end)

pdf_rect(int pdfdoc, float x, void Draws a rectangle
float y, float width, float
height)

pdf_closepath(int pdfdoc) void Closes a path

pdf_closepath_stroke(int void Closes a path and draws a
pdfdoc) line along the path

pdf_stroke(int pdfdoc) void Draws a line along a path

pdf_fill(int pdfdoc) void Fills the current path

pdf_fill_stroke(int pdfdoc) void Fills and strokes the current
path

pdf_closepath_fill_stroke(int void Closes, fills, and strokes the
pdfdoc) current path

pdf_endpath(int pdfdoc) void Ends the current path

654 Part V: Appendixes

Function Return Value Action

pdf_clip(int pdfdoc) void Clips to the current path

pdf_set_parameter(int pdfdoc, void Sets arbitrary parameters
string key, string value)

pdf_get_parameter(int pdfdoc, string Gets arbitrary parameters
string key, mixed modifier)

pdf_setgray_fill(int pdfdoc, void Sets the filling color to gray
float value) value

pdf_setgray_stroke(int pdfdoc, void Sets the drawing color to
float value) gray value

pdf_setgray(int pdfdoc, void Sets the drawing and filling
float value) color to gray value

pdf_setrgbcolor_fill(int void Sets the filling color to the
pdfdoc, float red, float green, RGB color value
float blue)

pdf_setrgbcolor_stroke(int void Sets the drawing color to
pdfdoc, float red, float green, the RGB color value
float blue)

pdf_setrgbcolor(int pdfdoc, void Sets the drawing and filling
float red, float green, float color to the RGB color value
blue

pdf_add_bookmark(int pdfdoc, int Adds a bookmark for the
string text [, int parent, current page
int open])

pdf_set_transition(int pdfdoc, void Sets a transition between
int transition) pages

pdf_set_duration(int pdfdoc, void Sets a duration between
float duration) pages

pdf_open_gif(int pdf, string int Opens a GIF file and returns
giffile) an image for placement in a

PDF object

pdf_open_jpeg(int pdf, string int Opens a JPEG file and
jpegfile) returns an image for

placement in a PDF
document

Continued

Appendix F: PHP Function Reference 655

TABLE F-28 PDF FUNCTIONS (Continued)

Function Return Value Action

pdf_open_png(int pdf, string int Opens a PNG file and returns
pngfile) an image for placement in a

PDF document

pdf_open_tiff(int pdf, string int Opens a TIFF file and returns
tifffile) an image for placement in a

PDF document

pdf_open_image_file(int pdf, int Opens an image file of the
string type, string file, string given type and returns an
stringparam, int intparam) image for placement in a

PDF document

pdf_open_memory_image(int pdf, int Takes an GD image and
int image) returns an image for

placement in a PDF
document

pdf_close_image(int pdf, int void Closes the PDF image
pdfimage)

pdf_place_image(int pdf, int void Places an image in the PDF
pdfimage, float x, float y, document
float scale)

pdf_get_image_width(int pdf, int Returns the width of an
int pdfimage) image

pdf_get_image_height(int pdf, int Returns the height of an
int pdfimage) image

pdf_add_weblink(int pdfdoc, void Adds a link to a Web
float llx, float lly, float urx, resource
float ury, string url)

pdf_add_pdflink(int pdfdoc, void Adds a link to a PDF
float llx, float lly, float urx, document
float ury, string filename,
int page, string dest)

pdf_set_border_style(int pdfdoc, void Sets the style of the box
string style, float width) surrounding all kinds of

annotations and links

656 Part V: Appendixes

Function Return Value Action

pdf_set_border_color(int pdfdoc, void Sets the color of the box
float red, float green, float surrounding all kinds of
blue) annotations and links

pdf_set_border_dash(int pdfdoc, void Sets the border-dash style of
float black, float white) all kinds of annotations and

links

pdf_new() int Creates a new PDF object

pdf_get_majorversion() int Returns the major version
number of the PDFlib

pdf_get_minorversion() int Returns the minor version
number of the PDFlib

pdf_delete(int pdfdoc) bool Deletes the PDF object

pdf_open_file(int pdfdoc int Opens a new PDF document;
[, char filename]) if the file name is NULL, the

document is created in
memory

pdf_get_buffer(int pdfdoc) int Fetches the full buffer
containing the generated
PDF data

pdf_findfont(int pdfdoc, string int Prepares the font fontname
fontname, string encoding for later use with
[, int embed]) pdf_setfont()

pdf_setfont(int pdfdoc, int font, void Sets the current font in the
float fontsize) given fontsize

pdf_setpolydash(int pdfdoc, void Sets complicated dash
float darray) pattern

pdf_concat(int pdf, float a, void Concatenates a matrix to
float b, float c, float d, the current transformation
float e, float f) matrix for text and graphics

pdf_open_ccitt(int pdf, int Opens an image file with
string filename, int width, raw CCITT G3– or
int height, int bitreverse, G4–compressed bitmap data
int k, int blackls1)

Continued

Appendix F: PHP Function Reference 657

TABLE F-28 PDF FUNCTIONS (Continued)

Function Return Value Action

pdf_open_image(int pdf, string int Opens an image of the given
type, string source, string data, type and returns an image
long length, int width, int for placement in a PDF
height, int components, int bpc, document
string params)

pdf_attach_file(int pdf, float void Adds a file-attachment
lly, float lly, float urx, annotation at the rectangle
float ury, string filename, specified by the given lower
string description, string left-hand and upper right-
author, string mimetype, hand corners
string icon)

pdf_add_note(int pdfdoc, float void Sets the annotation
llx, float lly, float urx,
float ury, string contents,
string title, string icon,
int open)

pdf_add_locallink(int pdfdoc, void Adds a link annotation to a
float llx, float lly, float target within the current
urx, float ury, int page, PDF file
string dest)

pdf_add_launchlink(int pdfdoc, void Adds a launch annotation to
float llx, float lly, float urx, a target of arbitrary file type
float ury, string filename)

pdf_place_pdi_page(int pdf, int void Places a PDF page with the
page, float x, float y, float lower left-hand corner at
sx, float sy) (x, y) and scales it

pdf_setmatrix(int pdf, float a, void Explicitly sets the current
float b, float c, float d, transformation matrix
float e, float f)

658 Part V: Appendixes

Appendix G

Regular Expressions
Overview
REGULAR EXPRESSIONS PROVIDE a means for pattern matching in strings. Patterns
may be as simple as a literal string (like my dog spot) or a literal string with a wild-
card character (like Mr. .* Baggins), or they can grow to be very complex. How
complex? Check out the following example, which is intended to perform email
validation. If you’re new to regular expressions this may look nasty, but to tell the
truth it’s not nearly nasty enough. In fact, to properly validate an email takes about
200 lines of regular expressions.

^[_\.0-9a-z-]+@([0-9a-z][0-9a-z-]+\.)+[a-z]{2,3}$

When you’re working with PHP and MySQL, three variants of regular expres-
sions exist that you might need to use: the regular PHP regular-expression func-
tions, the Perl-Compatible Regular Expression (PCRE) functions, and MySQL
regular-expression functions. The PHP ereg(), eregi(), ereg_replace(),
eregi_replace(), split(), and spliti() functions use these patterns.

The PCREs are quite different from the standard ereg() functions in places, and
they offer some functionality that can’t be replicated with the ereg() functions.
After you have a good feel for regular expressions, you should probably head over
to http://www.perldoc.com/perl5.6/pod/perlre.html to view some of the dif-
ferences for yourself. The major PCRE functions are preg_match(),
preg_match_all(), and preg_replace().

Finally, another slight variant of the regular expressions used in MySQL exists.
It is described in the Appendix G of the MySQL manual (http://www.mysql.com/
doc/en/Regexp.html).

Literal Patterns
The simplest possible pattern match is to a series of known characters. For instance,
to match jay within a string, you can do the following:

$str = “this is a string with my name: jay”;
if (ereg(“jay”, $str))
{

659

echo “pattern found”;
}
else
{

echo “string not found”;
}

This tests true and prints pattern found. However, with a simple string like
this, you don’t need a regular expression. One of PHP’s string functions works and
is a good deal faster. For example, in the preceding example, strstr($str,
“jay”) works equally well and is faster.

Characters
In regular expressions you can make use of the following characters.

◆ \n— Newline

◆ \t— Tab

◆ \r— Return

◆ \f— Form feed

◆ ^ (Shift+6) — Start of string (also known as caret)

◆ $— End of string

◆ . (dot) — Matches any non-newline character

So if you need to match the word jay at the beginning of a string, you can do this:

ereg(“^jay”, $str)

And if you want to make sure nothing exists before or after jay in the string,
you can do the following:

ereg(“^jay$”, $str)

In the preceding listing, notice the meaning of the dot (.). It stands for any non-
newline character. If you want to print whatever four characters follow jay in a
string, you can do the following:

ereg(“jay(....)”, $str, $arr);
echo $arr[1];

660 Part V: Appendixes

Note that the parentheses here represent a substring. When ereg() is processed
and a match is found, the array in the third argument contains the entire matched
string (including substrings) in $arr[0], and each additional substring indicated by
parentheses in the regular expression is assigned to an additional array element. In
the preceding example, therefore, the four characters following jay are in $arr[1].

Character Classes
Often you need to see if a string contains a group of characters. For instance, you
might need to make sure that a single character or given set of characters is
alphanumeric or consists of a digit or digits. For this you can make use of charac-
ter classes, either the built-in ones or the ones you make yourself. The built-in
character classes are surrounded by two sets of brackets and colons, as seen in the
following section. Character classes of your own making are surrounded by a sin-
gle set of brackets.

Built-in character classes

◆ [[:alpha:]]— Any letter, upper or lower case

◆ [[:digit:]]— Digits (0–9)

◆ [[:space:]]— Matches any whitespace character, including spaces, tabs,
newlines, returns, and form feeds

◆ [[:upper:]]— Matches only uppercase letters

◆ [[:lower:]]— Matches only lowercase letters

◆ [[:punct:]]— Matches any punctuation mark

◆ [[:xdigit:]]— Matches possible hexadecimal characters (0–9, A–F)

For example, suppose you want to make sure a letter contains punctuation after
the salutation “Dear Sir or Madam”:

ereg(“Madam[[:punct:]]”, $str);

Note that if you use the caret symbol (^) within a character class it has the effect
of saying “not.” So, ereg(“Madam[^[:punct:]]”, $str) matches only if “Madam”
is not followed by a punctuation mark.

Appendix G: Regular Expressions Overview 661

The caret symbol can get confusing because it has two distinct meanings.

At the beginning of a regular expression it indicates the start of a string, and

so the following regular expression matches only a string in which a digit is

the first character:

^[[:digit]]

But if the caret is not in the first position in the regular expression, it means

“not.” The following regular expression matches a string that does not con-

tain any digits:

[^[:digit:]]

And to put it all together, the following matches a string that starts with a

digit but has a second character that is not a digit:

^[[:digit:]][^[:digit:]]

Self-made character classes
You can use brackets to construct your own character classes, either by using
ranges of characters or by mixing characters of your choosing. Here are some typ-
ical ranges:

◆ a–z— Any lowercase letter

◆ A–Z— Any uppercase letter

◆ 0–9— Any digit

Note that though these are the ranges you see most frequently, you can specify a
range of a–m or 0–4 if you wish.

Be aware that the ASCII sequence of characters does not always follow

human logic.Therefore, the expression [A-z] does indeed define a range of

ASCII characters that includes all the upper-and lowercase letters, but also a

lot of other, non-alphabetic characters. Better to define the upper- and low-

ercase ranges separately, or use the predefined character classes.

These ranges must be put within brackets to become character classes. So

[a-zA-Z]

is identical to [[:alpha:]].

662 Part V: Appendixes

Self-made classes don’t have to contain a range; they can contain any characters
you want. For example:

[dog0-9]

This class matches the letters d, o, or g, or any digit.

$str=”drat”;
if(ereg(“^[dog0-9]”, $str))
{

echo “true”;
}
else
{

echo “false”;
}

This code prints true, because the first character in $str is in the class we have
defined. If we replaced the d in drat with a b, this code prints false.

If you need to include a hyphen within a class, the hyphen must be the final

character before the closing bracket of the class. For example,[a-zA-Z-].

Multiple Occurrences
The real fun in regular expressions comes when you deal with multiple occurrences,
which is when the syntax starts getting a little thick. We’ll start by looking at three
commonly used special characters.

◆ * (asterisk) — Zero or more of the previous character

◆ +— One or more of the previous character

◆ ?— Zero or one of the previous character

Note that if you want to match any of these characters literally you need to
escape them with a backslash. So, for example, if you want to match the querystring
of a URL http://www.mysqlphpapps.com/index.php?foo=mystring, you can do
the following:

\?.*$

Appendix G: Regular Expressions Overview 663

The first two characters (\?) match the question mark character (?). Note that the
query matches the literal question mark because the question mark is escaped with
a backslash. If the question mark were not escaped, its meaning would be as given
in the previous listing.

Then, the dot matches any non-newline character. The asterisk matches zero or
more of the previous character. So the combination (.*) matches any number of
characters until a new line. The .* combination is a common one. The dollar sign
is the end-of-string character. So .*$ matches every non-newline character to the
end of the string.

You probably want to use a regular expression like the previous one if you need
to make use of the querystring in some other context.

The following is code that retrieves a string from a URL and then picks out the
relevant portion with a regular expression. It then pops that matched portion into
an array and echoes it to output:

$str=”http://domain.com/index.php?foo=mystring&bar=otherstring”;
//see the use of the parenthesized substring
//this will assign the matched portion to $array[1]
if (ereg(“\?(.*)$”, $str, $array))
{

echo “The querystring is “, $array[1];

}

Now that you have the querystring in the variable $array[1], you can do further
processing on it.

Before you incorporate this code into your script, note that you don’t have to.
You can use the PHP variables $_SERVER[‘QUERY_STRING’] or the $_GET array.

Because the plus sign means one or more of the previous character, the follow-
ing code matches a single digit or multiple digits:

[0-9]+

Consider the following statement:

if (ereg(“jay[0-9]+”, $str))

jay1 tests true, but jayg tests false. jay2283092002909303 tests true because
it’s still jay followed by one or more numbers. Even jay8393029jay tests true.

If you need to get more specific about the number of characters you need to
match, you can make use of curly braces.

◆ {3}— If a single digit is surrounded by brackets, it indicates that you want
to match exactly that number of the previous character. j{3} matches
only jjj.

664 Part V: Appendixes

◆ {3,5}— If two digits are surrounded by brackets, it indicates an upper and
lower limit to the matches of the previous character. j{3,5} matches jjj,
jjjj, and jjjjj only.

◆ {3, }— If an integer followed by a comma and no second integer are sur-
rounded by brackets, it matches as many times or more of the previous
character. So j{3, } matches jjj, jjjj, jjjjjjj, and so on.

Specifying “Or”
If you want to specify one combination of characters or another, you need to make
use of the pipe character (|). Most often the pipe is used with parentheses, which
group portions of strings. If you want to match either jay or brad within a string,
you can use the following:

(jay|brad)

Or you might want to check that URLs have a suffix you were familiar with:

(com|org|edu)

Example Regular Expressions
This has been a pretty quick review of regular expressions. If you’re interested,
entire books have been written on the subject. To get more comfortable with regu-
lar expressions, you can take a look at the following practical example.

Suppose you want to write a regular expression that matches the contents of an
href attribute of an anchor tag. An anchor looks something like this:

this is my link text

At first, you might be tempted to look at this link and think all you need to do is
match everything between the href=” and the closing quotation mark. Something
like this:

if (eregi(‘<a href=”(.*)”’, $anchor, $array))
{

echo $array[1];
}

However, you really can’t be sure that the href immediately follows the <a;
another attribute or perhaps a JavaScript event might precede the href. So you
need to account for that possibility in your regular expression.

Appendix G: Regular Expressions Overview 665

if (eregi(‘<a.*href=”(.*)”’, $anchor, $array))
{

echo $array[1];
}

Be aware that because of the greedy nature of POSIX regular expressions (such as
those in MySQL) regular expression could grab several anchors. You might want to
alter your code to check for that possibility, and break it up if that’s what happens.

You’ve seen anchor tags with a space before the equals sign and anchor tags
with a space after the equals sign, so you need to account for both possibilities:

if (eregi(‘<a.*href[[:space:]]?=[[:space:]]?”(.*)”’,
$anchor, $array))
{

echo $array[1];
}

Because the question-mark character means “zero or one of the previous charac-
ter,” the pairing [[:space:]]? means that one whitespace character can exist, or
none. If you want to allow for more than one whitespace character, you can use
[[:space:]]*.

Finally, you need to deal with the actual contents of the href attribute. So far
you’ve accounted only for cases in which the link destination is delimited by dou-
ble quotes. But at the very least you should account for delimiters of either double
quotes or single quotes. To do that you need to put double quotes and single quotes
within a character class. Because you’ve surrounded the entire regular expression with
single quotes, you need to escape single quotes within the regular expression with
backslashes. The class will be [“\’].

if (eregi(‘<a.*href[[:space:]]?=[[:space:]]?[“\’](.*)[“\’]’,
$anchor, $array))

{
echo $array[1];

}

To be even more complete, the regular expression should account for cases in
which no quotation mark at all is used to delimit the value of the href. For exam-
ple, browsers are just fine with a tag like this: . In a case like
this it might be a good idea to add a question mark character after the [“\’] class
that marks the beginning of the href, and to include [:space:] and the greater-
than sign (>) to mark the end of the href. All you need to do is add them to the last
character class:

if (

666 Part V: Appendixes

eregi(
‘<a.*href[[:space:]]?=[[:space:]]?[“\’]?(.*)[“\’>[:space:]]’
, $anchor
, $array
)
)
{

echo $array[1];
}

However, this arrangement presents some problems that you may not have
anticipated. Imagine that the preceding code is attempting to match this string: this is my link text. When you add the greater-
than sign to the character class, the regular expression does not match the first
greater-than sign in the string — it matches the final greater-than sign. This situa-
tion is known as greedy matching, and you can’t get around it using ereg() or
ereg_replace().

If you need to match the first occasion of a character in a string you need to
make use of the PCRE functions. With PCRE, the combination .*? matches all char-
acters until the first occasion of the character you indicate. The following series
matches everything until the first double quote, single quote, or greater-than sign:

.*?[“\’>]

With preg_match() the final function looks like this:

if
(preg_match(‘/<a.*?href[[:space:]]?=[[:space:]]?[“\’]?(.*?)[“\’>]/i’
,

$anchor, $array))
{

echo $array[1];
}

Appendix G: Regular Expressions Overview 667

Appendix H

Helpful User-Defined
Functions
THIS APPENDIX CONTAINS a series of PHP functions and classes that you might find
useful in creating your scripts. It starts with a run-through of the base functions
kept in the /book/functions folder.

Base Functions Set
Used in This Book
We discuss these in detail in Chapter 8, but we include them here for quick reference.

From functions/basic/
These functions deal with authentication and text manipulation.

authenticate()
This function gets a username and password, either from the browser by sending a
401 header or from a regular Web page, and verifies the results against a database
table named admin.

void authenticate([string realm [, string message]])

cleanup_text()
This function removes HTML and PHP tags using the strip_tags() function and
replaces <, >, &, and “ characters with their HTML entities. If the second argument
is not empty strip_tags will not be run, and only the HTML-entity replacement
will occur. The third argument can specify tags that should not be removed.

string cleanup_text ([string value [, string preserve [, string
allowed_tags]]])

669

670 Part V: Appendixes

make_page_title()
This function cleans up a string to make it suitable for use as the value of an HTML
<TITLE> tag, removing any HTML tags and replacing all HTML entities with their
literal-character equivalents by using get_html_translation_table (HTML_
ENTITIES).

string make_page_title ([string title])

money()
This function formats the sole argument as a standard U.S. dollar value, rounding
any decimal value to two decimal places for cents and prepending a dollar sign to
the returned string. Commas serve as thousands separators. However, remember that
you can run into rounding errors with numbers of type float. This is only an issue in
complex applications, though.

string money ([mixed value])

states()
This function returns an associative array, the key being the two-letter abbreviation
of the states, the value being the state name.

array states(void)

From functions/database/
These are common functions that help you work with MySQL databases.

db_connect()
This function creates a database connection using the PEAR DB class. It accepts a
variable list of parameters. The most common one used in the examples in this
book is application, which is used as an index into values retrieved from an .ini
file (typically stored outside the document root of the Web server).

void db_connect ()

db_fetch_record()
This function selects values from the MySQL table specified by the first argument.
If the optional second and third arguments are not empty, the select gets the row
from that table in which the column named in the second argument has the value
given by the third argument. The second and third arguments can also be arrays, in
which case the query builds its where clause using the values of the second array of
arguments as the table-column names and the corresponding values of the third
array of a arguments as the required values for those table columns.

db_fetch_record(string table [,string key [,string value]])

db_values_array()
This function builds an associative array out of the values in the MySQL table spec-
ified in the first argument. The data from the column named in the second argu-
ment are set to the keys of the array. If the third argument is not empty, the data
from the column it names are the values of the array; otherwise, the values are
equal to the keys. If the third argument is not empty, the data are ordered by the
column that is named; otherwise, they are ordered by the key column. The optional
fourth argument specifies any additional qualification for the query against the
database table; if it is empty, all rows in the table are retrieved.

If either the first or second argument is empty, no query is run and an empty
array is returned. The function presumes that whoever calls it knows what he or she
is doing — that the table exists, that all the column names are correct, and so on.

array db_values_array ([string table name [, string value field [,
string label field [, string sort field [, string where clause]]]]])

From functions/html/
These functions create common HTML elements, including anchors and unordered
lists.

font_tag()
This function creates an HTML font tag. Default size is 2; default font face is sans-
serif. Any additional attributes in the third argument are added to the tag. It is
expecting an associative array, the key of which is the name of the attribute; the
value of the array element is the attribute value.

string font_tag ([int size [, string typeface [, array attributes]]])

anchor_tag()
This function creates an HTML anchor tag. The first argument is the href value; the
second the string to be surrounded by the anchor. It is expecting an associative
array, the key of which is the name of the attribute; the value of the array element
is the attribute value.

string anchor_tag ([string href [, string text [, array attributes]]])

image_tag()
This function returns an HTML image tag (). The first argument gives the URL
of the image to be displayed. Additional attributes can be supplied as an array in
the third argument.

string image_tag ([string src [,array attributes]])

Appendix H: Helpful User-Defined Functions 671

672 Part V: Appendixes

subtitle()
This function returns an HTML <h3> tag. It is used for the titles of secondary areas
within pages in our examples. The reason to display these via a function rather
than just literal <h3> tags is that this will enable you to change the format of these
subtitles in one place, instead of in each script.

string subtitle(string string)

paragraph()
This function returns a string inside HTML paragraph (<p>) tags. Attributes for the
<p> tag can be supplied in the first argument. Any additional arguments are
included inside the opening and closing <p> tags, separated by newlines.

string paragraph([array attributes [, mixed ...]])

ul_list()
This function returns an HTML unordered (bulleted) list (tags). If the argument
is an array, each value from the array is included as a list item () in the list.
Otherwise, the argument is simply included inside the tags as is.

string ul_list(mixed values)

The following functions create opening and closing <table> tags, as well as
<tr> and <td> tags.

start_table()
This function returns an opening HTML table tag inside a pair of paragraph
(<p>...</p>) tags. Attributes for the table can be supplied as an array.

string start_table([array attributes])

end_table()
This function returns a closing table tag.

string end_table(void)

table_row()
This function returns a pair of HTML table row (<tr>) tags enclosing a variable
number of table cell (<td>) tags. If any of the arguments to the function is an array,
it is uses as attributes for the <tr> tag. All other arguments are used as values for the
cells of the row. If an argument begins with a <td> tag, the argument is added to the

row as is; otherwise, it is passed to the table_cell() function and the resulting
string is added to the row.

string table_row ([array attributes], [indefinite number of string
arguments])

table_cell()
This function returns an HTML table cell (<td>) tag. The first argument is used as
the value of the tag. Attributes for the <td> tag are supplied as an array in the sec-
ond argument. By default the table cell is aligned left horizontally and to the top
vertically.

string table_cell ([string value [, array attributes]])

From functions/forms/
These functions create all common form elements, as well as the opening and clos-
ing <form> tags.

start_form()
This function returns an HTML <form> tag. If the first argument is empty, the value
of the global Apache variable SCRIPT_NAME is used for the action attribute of the
<form> tag. Other attributes for the form can be specified in the optional second
argument; the default method of the form is post. The behavior of this function on
servers other than Apache has not been tested. It’s likely that it will work, because
SCRIPT_NAME is part of the CGI 1.1 specification.

string start_form ([string action, [array attributes]])

end_form()
This function returns a closing form tag.

string end_form(void)

text_field()
Returns an HTML <input type=text> form element. Default size is 10.

string text_field ([string name [, string value [, int size [, int
maximum length]]]])

textarea_field()
This function returns an HTML textarea field. The default size is 50 columns and
10 rows, and the default wrap mode is soft, which means no hard newline characters

Appendix H: Helpful User-Defined Functions 673

674 Part V: Appendixes

are inserted after line breaks in what the user types into the field. The alternative
wrap mode is hard’, which means that hard newlines are inserted.

string textarea_field([string name [, string value [, int cols [,
int rows [, string wrap mode]]]]])

password_field()
This function returns an HTML password field. This is like a text field, but the value
of the field is obscured (only stars or bullets are visible for each character). The
default size of the field is 10. A starting value and maximum data length may be
supplied.

string password_field ([string name [, string value [, int size [,
int maximum length]]]])

hidden_field()
This function returns an HTML hidden-form element. A name and value may be
supplied.

string hidden_field ([string name [, string value]])

file_field()
This function returns a text field from an HTML form.

string file_field([string name])

This function returns an HTML file field. These are used to specify files on the
user’s local hard drive, typically for uploading as part of the form.

See http://www.zend.com/manual/features.file-upload.php
for more information about how PHP interacts with the local file system.

submit_field()
This function returns an HTML submit field. The value of the field is the string dis-
played by the button displayed by the user’s browser. The default value is Submit.

string submit_field ([string name [, string value]])

image_field()
This function returns an HTML image field. An image field works like a submit
field, except that the image specified by the URL given in the second argument is
displayed instead of a button.

string image_field ([string name [, string src [, string value]]])

reset_field()
This function returns an HTML reset field.

string reset_field ([string name, [string value]])

checkbox_field()
This function returns an HTML checkbox field. The optional third argument is
included immediately after the checkbox field, and the pair are included between a
<nobr> tag and </nobr> tag — meaning that they are displayed together on the
same line. If the value of the second or third argument matches that of the fourth
argument, the checkbox is checked (that is, flipped on).

string checkbox_field ([string name [, string value [, string label
[, string match]]]])

radio_field()
This function returns an HTML radio button field. The optional third argument is
included immediately after the radio button, and the pair are included between a
<nobr> tag and </nobr> tag — meaning that they are displayed together on the
same line. If the value of the second or third argument matches that of the fourth
argument, the radio button is checked (that is, flipped on).

string radio_field ([string name [, string value [, string label [,
string match]]]])

select_field()
This function returns an HTML select field (popup field). If the optional second
argument is an array, each key in the array is set to the value of an option of the
select field, and the corresponding value from the array is the displayed string for
that option. If the key or the value from the array matches the optional third argu-
ment, that option is designated as the default value of the select field.

string select_field ([string name [, array items [, string default
value]]])

Appendix H: Helpful User-Defined Functions 675

676 Part V: Appendixes

Additional Functions
Not Used in This Book
Here are a couple of functions that may make dealing with common queries a bit
easier.

insert_row()
This is a generic function to run SQL insert statements.

function insert_row($table=””, $atts=””)
{

if(empty($table) || !is_array($atts))
{

return False;
}
else
{

while (list ($col, $val) = each ($atts))
{

//if null go to the next array item
if ($val==””)
{

continue;
}
$col_str .= $col . “,”;
if (is_int($val) || is_double($val))
{

$val_str .= $val . “,”;
}
else
{

$val_str .= “‘$val’,”;
}

}
$query = “insert into $table

($col_str)
values($val_str)”;

//trim trailing comma from both strings
$query = str_replace(“,)”, “)”, $query);

}
safe_query($query);

return mysql_affected_rows();
}

This function takes two attributes: the first is the table name, and the second
should be an associative array, with the key being the column name and the value
being the value to be inserted. Single quotes that should surround a string are
included if the variable is not an integer or a double. The function returns false if
the query fails to perform an action. It does not work in all circumstances, because
it doesn’t check for the column type from the database. But it can be nice for creat-
ing pages quickly.

Empty values in the array are not added to the query. For columns left out of the
query, MySQL inserts either null values or empty strings, depending on whether or
not the column allows nulls.

Note that you can create the associative array from a set of variables using the
compact() function. For example, the following creates an associative array named
$array and then inserts a row into a table named mytable. (It’s assumed that you
have already connected to the database.)

$category=””;
$category_id=6;
$category_name=”my category”;
$array=compact(“category”, “category_id”, “category_name”);
if (!insert_row(“mytable”, $array))
{

echo “insert failed”;
}

update_row()
This function will run SQL update statements.

function update_row($table=””, $atts=””, $where=””)
{

if(empty($table) || !is_array($atts))
{

return FALSE;
}
else
{

while(list ($col, $val) = each ($atts))
{

if ($val==””)
{

continue;
}
if(is_int($val) || is_double($val))
{

$str .= “$col=$val,”;

Appendix H: Helpful User-Defined Functions 677

678 Part V: Appendixes

}
elseif($val==”NULL” || $val==”null”)
{

$str .= “$col=NULL,”;
}
else
{

$str .= “$col=’$val’,”;
}

}
}
$str = substr($str, 0, -1);
$query = “update $table set $str”;
if (!empty($where))
{

$query .= “ where $where”;
}
mysql_query($query) or

die (mysql_error());
return mysql_affected_rows();

}

This function takes three arguments: $table, a string, $atts, an associative
array containing keys of column names and values to be inserted, and $where,
which is the condition — for example column_id = 1.

Again, this function is not robust enough to work in all circumstances.

delete_row()
This function takes two arguments: $table, the table name, and $where, the value
in the where clause. It returns false on failure or 0 if nothing was deleted.

function delete_row($table=””, $where=””)
{

if (empty($table) || empty($where))
{

return FALSE;
}
$query = “delete from $table where $where”;
mysql_query($query) or die (mysql_error());
return mysql_affected_rows();

}

select_to_table()
This function takes a query and lays it out in a simple HTML table. It assumes that
a database connection has already been made.

function select_to_table($query)
{

$result=mysql_query($query);
$number_cols = mysql_num_fields($result);
echo “query: $query”;
//layout table header
echo “<table border = 1>\n”;
echo “<tr align=center>\n”;
for ($i=0; $i<$number_cols; $i++)
{

echo “<th>” . mysql_field_name($result, $i). “</th>\n”;
}
echo “</tr>\n”;//end table header
//layout table body
while ($row = mysql_fetch_row($result))
{

echo “<tr align=left>\n”;
for ($i=0; $i<$number_cols; $i++)
{
echo “<td>”;

if (!isset($row[$i])) //test for null value
{
echo “NULL”;

}
else

{
echo $row[$i];

}
echo “</td>\n”;

} echo “</tr>\n”;
}
echo “</table>”;

}

enum_to_array()
This function returns the values defined in an enum field into an array.

Appendix H: Helpful User-Defined Functions 679

680 Part V: Appendixes

function enum_to_array($table=””, $col = “”)
{

if (empty($table) || empty($col))
{ return False; }
else
{

$query = “describe $table $col”;
$result = mysql_query($query);
list(, $col) = mysql_fetch_array($result);
echo $col;
if (substr($col, 0, 4) != “enum”)
{

return false;
}
$col = str_replace (“‘“,”” ,

substr($col, 5, -1)
);
$col = explode(“,”, $col);

}
return $col;

}

You can use the enum field type in MySQL to limit possible values in a column,
which might be helpful for restricting column values to Y or N, for example. But to
get at these values in PHP you need to run one of the MySQL queries that retrieves
column information. In the preceding example we use the describe query, and we
assume that the column of interest is included in the query.

The query returns six columns. In order, they are as follows: Field, Type, Null,
Key, Default, and Extra. The second, Type, contains the column type — something
like enum(‘yes’,’no’). In the preceding function, this value is assigned to $col.
That string can then be stripped of the extraneous parentheses and the letters enum.
The remainder is exploded into an array.

You can then use the array however you wish, perhaps in a drop-down box.

Session handling with MySQL
If you wish to use these functions, set your session.save_handler to user in
your php.ini. This set of functions is intended to work with a table that looks some-
thing like this:

create table sessions (
session_id char(32) not null primary key,
sess_data text,
last_update timestamp

);

function mysql_session_open()
{

mysql_pconnect(“localhost”, “root”, “”)
or die (mysql_error());

$db_sess = mysql_select_db(“test”)
or die (mysql_error());

}

//this function receives the session_id as the only argument
function mysql_session_read($id)
{

$data = “”;
$query = “select sess_data from sessions

where session_id = ‘$id’”;
$result= mysql_query($query) or die (mysql_error());
if ($row = mysql_fetch_row($result))
{

$data=session_decode($row[0]);
}
return $data;

}

//this takes the sessionid and the session data
//as arguments
function mysql_session_write($id, $data)
{

$data = session_encode($data);
$query = “replace into sessions (session_id, sess_data)

values (‘$id’, ‘$data’)”;
mysql_query($query) or

die(mysql_error ());
return true;

}

function mysql_session_close()
{

return true;
}

//takes only the session id for an argument

Appendix H: Helpful User-Defined Functions 681

682 Part V: Appendixes

function mysql_session_destroy($id)
{

$query = “delete from sessions where session_id = ‘$id’”;
mysql_query($query) or

die (mysql_error());
return true;

}

//this function receives the maximum lifetime setting
//from php.ini. It is by default set to 1440 seconds.
//the session.gc_probability setting in the php.ini determines
//what percentage of the time this function will run.
function mysql_session_gc($time)
{

$query = “delete from sessions where
last_update < (subdate(now(),
INTERVAL $time SECOND))”;

mysql_query($query) or
die (mysql_error())_;

}
session_set_save_handler(

“mysql_session_open”,
“mysql_session_close”,
“mysql_session_read”,
“mysql_session_write”,
“mysql_session_destroy”,
“mysql_session_gc”

);

Email Validation
A lot of simple regular expressions can be used to ensure that a string more or less
resembles the format of a proper email address, but if you want something that is a
bit more thorough, try this function. It is not entirely RFC-compliant, but it is pretty
close. It is included in the /book/functions folder.

#CheckEmail
#
#mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec
#
#route-addr = “<” [route] addr-spec “>”
#
#route = 1#(“@” domain) “:” ; path-relative

#
#addr-spec = local-part “@” domain ; global address
#
#local-part = word *(“.” word) ; uninterpreted
; case-preserved
#
#domain = sub-domain *(“.” sub-domain)
#
#sub-domain = domain-ref / domain-literal
#
#domain-ref = atom ; symbolic reference
#
#atom = 1*<any CHAR except specials, SPACE and CTLs>
#
#specials = “(“ / “)” / “<” / “>” / “@” ; Must be in quoted-
/ “,” / “;” / “:” / “\” / <”> ; string, to use
/ “.” / “[“ / “]” ; within a word.
#
; (Octal, Decimal.)
#CHAR = <any ASCII character> ; (0-177, 0.-127.)
#ALPHA = <any ASCII alphabetic character>
; (101-132, 65.- 90.)
; (141-172, 97.-122.)
#DIGIT = <any ASCII decimal digit> ; (60- 71, 48.- 57.)
#CTL = <any ASCII control ; (0- 37, 0.- 31.)
character and DEL> ; (177, 127.)
#CR = <ASCII CR, carriage return> ; (15, 13.)
#LF = <ASCII LF, linefeed> ; (12, 10.)
#SPACE = <ASCII SP, space> ; (40, 32.)
#HTAB = <ASCII HT, horizontal-tab> ; (11, 9.)
#<”> = <ASCII quote mark> ; (42, 34.)
#CRLF = CR LF
#
#LWSP-char = SPACE / HTAB ; semantics = SPACE
#
#linear-white-space = 1*([CRLF] LWSP-char) ; semantics = SPACE
; CRLF => folding
#
#delimiters = specials / linear-white-space / comment
#
#text = <any CHAR, including bare ; => atoms, specials,
CR & bare LF, but NOT ; comments and
including CRLF> ; quoted-strings are
; NOT recognized.
#

Appendix H: Helpful User-Defined Functions 683

684 Part V: Appendixes

#quoted-string = <”> *(qtext/quoted-pair) <”>; Regular qtext or
; quoted chars.
#
#qtext = <any CHAR excepting <”>, ; => may be folded
“\” & CR, and including
linear-white-space>
#
#domain-literal = “[“ *(dtext / quoted-pair) “]”
#
#
#
#
#dtext = <any CHAR excluding “[“, ; => may be folded
“]”, “\” & CR, & including
linear-white-space>
#
#comment = “(“ *(ctext / quoted-pair / comment) “)”
#
#ctext = <any CHAR excluding “(“, ; => may be folded
“)”, “\” & CR, & including
linear-white-space>
#
#quoted-pair = “\” CHAR ; may quote any char
#
#phrase = 1*word ; Sequence of words
#
#word = atom / quoted-string
#

#mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec
#route-addr = “<” [route] addr-spec “>”
#route = 1#(“@” domain) “:” ; path-relative
#addr-spec = local-part “@” domain ; global address

#validate_email(“insight\@bedrijfsnet.nl”);

function print_validate_email ($eaddr=””)
{

$result = validate_email($eaddr) ? “is valid” : “is not valid”;
print “<h4>email address (“.htmlspecialchars($eaddr).”)

$result</h4>\n”;
}

function validate_email ($eaddr=””)

{

if (empty($eaddr))
{

#print “[$eaddr] is not valid\n”;
return false;

}
$laddr = “”;
$laddr = $eaddr;

if the addr-spec is in a route-addr, strip away the phrase and <>s

$laddr = preg_replace(‘/^.*</’,’’, $laddr);
$laddr = preg_replace(‘/>.*$/’,’’,$laddr);
if (preg_match(‘/^\@.*:/’,$laddr)) #path-relative domain
{

list($domain,$addr_spec) = preg_split(‘/:/’,$laddr);
$domain = preg_replace(‘/^\@/’,’’,$domain);
if (!is_domain($domain)) { return false; }
$laddr = $addr_spec;

}
return(is_addr_spec($laddr));

}

function is_addr_spec ($eaddr = “”)
{

list($local_part,$domain) = preg_split(‘/\@/’,$eaddr);
if (!is_local_part($local_part) || !is_domain($domain))
{

#print “[$eaddr] is not valid\n”;
return false;

}
else
{

#print “[$eaddr] is valid\n”;
return true;

}
}

#local-part = word *(“.” word) ; uninterpreted
function is_local_part ($local_part = “”)
{

if (empty($local_part)) { return false; }

$bit_array = preg_split(‘/\./’,$local_part);

Appendix H: Helpful User-Defined Functions 685

686 Part V: Appendixes

while (list(,$bit) = each($bit_array))
{

if (!is_word($bit)) { return false; }
}
return true;

}

#word = atom / quoted-string
#quoted-string = <”> *(qtext/quoted-pair) <”>; Regular qtext or
; quoted chars.
#qtext = <any CHAR excepting <”>, ; => may be folded
“\” & CR, and including
linear-white-space>
#quoted-pair = “\” CHAR ; may quote any char
function is_word ($word = “”)
{

if (preg_match(‘/^”.*”$/i’,$word))
{

return(is_quoted_string($word));
}
return(is_atom($word));

}

function is_quoted_string ($word = “”)
{

$word = preg_replace(‘/^”/’,’’,$word); # remove leading quote
$word = preg_replace(‘/”$/’,’’,$word); # remove trailing

quote
$word = preg_replace(‘/\\+/’,’’,$word); # remove any quoted-

pairs
if (preg_match(‘/\”\\\r/’,$word)) # if “, \ or CR, it’s bad

qtext
{

return false;
}
return true;

}

#atom = 1*<any CHAR except specials, SPACE and CTLs>
#specials = “(“ / “)” / “<” / “>” / “@” ; Must be in quoted-
/ “,” / “;” / “:” / “\” / <”> ; string, to use
/ “.” / “[“ / “]” ; within a word.
#SPACE = <ASCII SP, space> ; (40, 32.)

#CTL = <any ASCII control ; (0- 37, 0.- 31.)
character and DEL> ; (177, 127.)
function is_atom ($atom = “”)
{

if (
(preg_match(‘/[\(\)\<\>\@\,\;\:\\\”\.\[\]]/’,$atom)) #

specials
|| (preg_match(‘/\040/’,$atom)) # SPACE
|| (preg_match(‘/[\x00-\x1F]/’,$atom)) # CTLs

)
{

return false;
}
return true;

}

#domain = sub-domain *(“.” sub-domain)
#sub-domain = domain-ref / domain-literal
#domain-ref = atom ; symbolic reference
function is_domain ($domain = “”)
{

if (empty($domain)) { return false; }

this is not strictly required, but is 99% likely sign of a bad
domain

if (!preg_match(‘/\./’,$domain)) { return false; }

$dbit_array = preg_split(‘/./’,$domain);
while (list(,$dbit) = each($dbit_array))
{

if (!is_sub_domain($dbit)) { return false; }
}
return true;

}
function is_sub_domain ($subd = “”)
{

if (preg_match(‘/^\[.*\]$/’,$subd)) #domain-literal
{

return(is_domain_literal($subd));
}
return(is_atom($subd));

}
#domain-literal = “[“ *(dtext / quoted-pair) “]”

Appendix H: Helpful User-Defined Functions 687

688 Part V: Appendixes

#dtext = <any CHAR excluding “[“, ; => may be folded
“]”, “\” & CR, & including
linear-white-space>
#quoted-pair = “\” CHAR ; may quote any char
function is_domain_literal ($dom = “”)
{

$dom = preg_replace(‘/\\+/’,’’,$dom); # remove quoted
pairs

if (preg_match(‘/[\[\]\\\r]/’,$dom)) # bad dtext characters
{

return false;
}
return true;

}

?>

You would probably want to put all of these functions in one file and then
include it when needed. It returns 1 (for true) or nothing (for false). You’d probably
want to use it like so:

if (!validate_email(“myaddress@mydomain.com”))
{

echo “this is not a valid email”;
}

sitemap.php
We wrote the following code to help us take a look at all the documents installed on
the Web server. It prints every document and provides a link to these documents.

<?php include(‘book.php’); ?>
back to directory
<h2>Site Map</h2>
<?php
function printdir($dir=’.’,$path=NULL, $print_ok=FALSE)
{

if ($path === NULL)
$path = $dir;

$pursue = TRUE;
$old_print_ok = $print_ok;
if ($print_ok)
{

// np

}
elseif (strpos($path, BOOK_ROOT) === FALSE)
{

if (strpos($path, DSN_ROOT) === FALSE)
{

if (strpos(BOOK_ROOT, $path) === FALSE
&& strpos(DSN_ROOT, $path) === FALSE

)
{

$pursue = FALSE;
}

}
else
{

$print_ok = TRUE;
}

}
else
{

$print_ok = TRUE;
}
$printdir = $dir;
if ($print_ok && !$old_print_ok)

$printdir = $path;
$url = NULL;
if (strpos($path, DOC_ROOT) !== FALSE)
{

$url = str_replace(DOC_ROOT, ‘’, $path);
$printdir = “$printdir”;

}
if ($dh = opendir($path))
{

if ($print_ok)
print “$printdir/\n\n”;

while (($file = readdir($dh)) !== FALSE)
{

if ($file == ‘.’ or $file == ‘..’ or $file == ‘CVS’ or
substr($file,-4) == ‘.swp’)

continue;

$wholefile = “{$path}/{$file}”;
if ($url)

if (substr($file,-4) == ‘.php’)
$printfile = ‘<a href=”’

. BOOK_URL_ROOT

Appendix H: Helpful User-Defined Functions 689

690 Part V: Appendixes

. ‘/source’

. str_replace(BOOK_URL_ROOT, ‘/book/’,
“{$url}/{$file}”)

. ‘“>’

. $file

. ‘’
;

else
$printfile = “$file”;
else

$printfile = $file;

if (is_link($wholefile))
{

if ($print_ok)
print “@{$printfile}\n”;

}
elseif (is_dir($wholefile))
{

if ($pursue)
printdir($file, $wholefile, $print_ok);

}
elseif ($print_ok)
{

print “$printfile\n”;
}

}
closedir($dh);
if ($print_ok)

print “\n”;
}
else
{

print “could not open ‘$dir’\n”;
}

}
printdir(‘/usr/local/book/apache’);
?>

Appendix I

PHP and MySQL Resources
THIS APPENDIX PRESENTS SOME resources that should be extremely useful in increas-
ing your knowledge of both PHP and MySQL.

PHP Resources
Here are some sites that are great for all things PHP.

php.net
This site, along with its many international mirrors, should be your home away
from home. From the home page, you can search the manual or one of the many
mailing lists. Among the many helpful resources are the following:

◆ PHP Annotated Manual (http://www.php.net/manual/) — The online
manual is really terrific; it includes user comments, some of which clarify
the use of some of the trickier functions in PHP.

◆ Downloads (http://www.php.net/downloads.php) — Here you can find
not only the various distributions, but also an HTML manual that you can
download and put on your local machine.

◆ Daily snapshots (http://snaps.php.net) — PHP is an active open-source
project, and features and bug fixes are constantly added to the code base.
Before official releases are made, you can get the most up-to-date code
here: Source code is updated daily. Note that this service is best for the
true hacker with a box devoted to development; if you have room for only
one installation, get the most recent stable source code. A link to the most
recent stable source is always available from http://www.php.net/.

◆ Bug database (http://bugs.php.net) — Wondering if there is a problem
with a function? Head over to this site to search through the bug reports,
or to add one yourself — but be very sure that you’ve found a bug before
submitting a report.

◆ FAQ (http://www.php.net/FAQ.php) — Before you post to any mailing
list or start writing an application, read the FAQ.

691

PHP mailing lists
One of the great things about the Web, and about open-source projects in particu-
lar, is the quality of the advice available on the mailing lists. Many lists, covering
many specific topics, are available. The ones discussed in this section are all part of
php.net and use the lists.php.net mail domain. You can subscribe to any of
these lists on http://www.php.net/mailing-lists.php, and they are all archived
at http://marc.theaimsgroup.com/. The core developers monitor the list and
respond to questions and complaints.

If you want to keep up with the goings-on of any of the lists but would

rather not stuff up your inbox, you can also get to these mailing lists via a

newsgroup reader. Just connect to news.php.net.

◆ PHP general — This is the generic support area. Over the course of a typi-
cal day over 100 emails are posted to this list. It is amazingly helpful,
even if you don’t have an interest in posting questions or supplying
answers. Your comrades have some interesting techniques and knowledge,
which they share daily.

Please practice good etiquette when posting to the mailing lists. First check

one of the searchable archives to make sure your question is something

resembling unique. And please, read the FAQ.

◆ Database list — This one is a natural for most everyone reading this book
because it has to do with how PHP interacts with databases. This is key to
almost all Web applications.

◆ Installation list — If you are having problems getting PHP installed on
your box, this is the place to go.

zend.com
At the core of the PHP is the Zend engine, which was built by Zeev Suraski and
Andi Gutmans. Their work became the foundation for a company that is offering
products that make PHP even more powerful. Zend products include a cache, which
can really increase speed, an optimizer, which can help make badly written code

692 Part V: Appendixes

run faster, a compiler, which makes PHP unreadable (which is great if you’re plan-
ning on distributing code that you would rather not be open source), and an inte-
grated development environment (IDE). And who wouldn’t want that?

The zend.com site includes some valuable resources:

◆ Code Gallery (http://zend.com/codex.php) — This is one of the better
code galleries out there. Browse it and see if it contains functions that will
make your life easier.

◆ Applications (http://zend.com/apps.php) — What? What you have here
isn’t enough?

◆ Tutorials (http://zend.com/zend/tut/) — Zend provides a growing
number of very informative tutorials that cover a variety of topics.

◆ Weekly Summary (http://zend.com/zend/week/) — Avi Lewin writes a
weekly article that summarizes the major issues the core developers dis-
cussed over the past week. It’s interesting stuff, and can give you a heads-
up about what will be happening in PHP’s future.

phpbuilder.com
PHPBuilder was once the best source for PHP articles. Tim Perdue, who used to run
PHPBuilder, built a great base of articles that cover topics including databases,
Cascading Style Sheets, and other topics of interest to developers who work in the
Web environment. PHPBuilder also has discussion boards, job boards, and a code
library. It is really worth checking with frequently, although the quality has
dropped off over the past year or so.

phpMyAdmin on Sourceforge
Earlier in the book we recommended the phpMyAdmin, a PHP tool for Web-based
administration of MySQL. Tobias Ratschiller and Till Gerken provide several other
useful tools. It’s all on SourceForge at http://sourceforge.net/projects/
phpmyadmin/.

PEAR
PEAR stands for the PHP Extension and Application Repository, and we’ve men-
tioned it many times already in this book. It is a set of code being written by some
very skilled programmers whose goal is a common set of well-written extensions the
rest of us can incorporate into our own PHP applications. The extensions include a
templating engine, a database-abstraction layer, and much much more. Stig Bakken,
one of the core developers, is heading up the project.

Appendix I: PHP and MySQL Resources 693

You can most easily obtain a current copy of PEAR through the PHP CVS repos-
itory (cvs.php.net).

PHPclasses
A Portuguese programmer named Manuel Lemos is among the most prolific PHP
coders on the planet, and he shares his code at http://www.phpclasses.org. In
fact, PHPclasses is now a code repository for anyone who has classes to share with
the PHP world. The following are of particular note:

◆ Manuel’s Form Processing Class — This class provides a uniform method
for creating and validating forms. It accounts for about every type of
validation imaginable.

◆ Metabase — This is a very complete database-abstraction layer.

◆ Mail Class — This class makes sending e-mail with attachments quite a bit
easier.

Midgard
The Midgard project team is building a content-management system with PHP and
MySQL. If you need content management, http://www.midgard-project.com is
definitely worth a look. Or you can just work on the application we created in
Chapter 11.

Phorum
Phorum (www.phorum.org) has an excellent discussion server written in PHP and
MySQL. You might want to compare it to the threaded discussion application in
Chapter 10.

weberdev.com
Of the many Web-development sites that have PHP articles, tutorials, and code,
weberdev.com (http://weberdev.com/) is among the most extensive.

Webmonkey
Both Brad and Jay have worked at Webmonkey. Jay is a former producer of the site,
and Brad has written several articles. Check out its PHP-related material at
http://hotwired.lycos.com/webmonkey/programming/php/.

694 Part V: Appendixes

MySQL Resources
There’s no shortage of resources here either. We’ve mentioned mainly Web-based
resources in this appendix; however, we must mention one hard-copy MySQL
resource. Jay Greenspan, the co-author of this book, also wrote MySQL Weekend
Crash Course (Wiley 2002).

mysql.com
Predictably, this is probably the best place to find answers to any questions you
might have about MySQL. Some specific portions of the site are worth particular
note:

◆ Downloads (http://www.mysql.com/downloads/) — This is the place to
find the latest version of MySQL in all the popular formats, including
rpms, source code, and Windows binaries.

◆ Contributions (http://www.mysql.com/downloads/contrib.html) —
A lot of developers have put together tools that you might be able to use
when working with MySQL. Of these, the GUI clients are particularly
interesting.

◆ Documentation (http://www.mysql.com/documentation/) — The online
manual for MySQL is pretty good and available in several languages. It
covers many topics that this book did not. For example, the manual’s
language reference should be bookmarked on your browser.

Both PHP and MySQL have downloadable HTML manuals.We keep them on

our local machine so we don’t have to connect to the Web every time we

have a question.

Mailing lists
The MySQL mailing list is monitored by many of the core developers. If you have a
question about the product and post it on the mailing list, someone who is working
on the product itself will surely see it. In addition, they’re really a very nice bunch
of guys. Information about subscribing to any of the mailing lists can be found
here: http://www.mysql.com/documentation/lists.html. A searchable archive
of the mailing lists can be found here: http://lists.mysql.com.

Appendix I: PHP and MySQL Resources 695

General Client-Side Resources
Here are a few of the sites we find ourselves returning to frequently.

HTML 4.0 character entity references
About the most comprehensive list we know of can be found here: http://
www.hclrss.demon.co.uk/demos/ent4_frame.html.

Netscape’s tag reference
If you are still dealing with the mess that is Netscape 4, this tag reference should be
of some assistance:

http://devedge.netscape.com/library/manuals/1998/htmlguide/

Apache References
Apache will likely be your Web server, and when you are new to it, it can be tricky.
Apache.org (www.apache.org) is the home site for the Apache Software Foundation,
which is now working on many interesting projects. In particular, some very cool
things are happening in the XML space. Apache can be opaque when you first come
to it, but when you grow accustomed to using its documentation, you will see that
it really isn’t very difficult to work with.

696 Part V: Appendixes

Appendix J

MySQL Function Reference
MYSQL HAS MANY FUNCTIONS, and only some of these were used in the course of
this book. You should, however, have a good idea of what other MySQL functions
are available, as you might find they come in handy at times. To see the complete
MySQL function reference check out MySQL AB’s documentation at http://
www.mysql.com/documentation/mysql/bychapter/manual_Reference.html.

String Comparison Functions
This set of functions should not be confused with PHP’s string handling functions.
Normally, if any expression in a string comparison is case-sensitive, the compari-
son is performed in a case-sensitive way.

LIKE
This function conducts a pattern match using basic SQL wildcard characters:

expr LIKE pattern
RETURNS: int

With like you can use the following two wildcard characters in the pattern: %,
which matches any number of characters, even zero characters, and _, which
matches exactly one character. To test for literal instances of a wildcard character,
precede the character with the escape character, usually a backslash (\).

In MySQL you can specify a different escape character, but this is rarely useful.
This function returns 1 (true) if the pattern is found or 0 (false) if not:

mysql> select ‘jay greenspan’ like ‘jay%’;
+-----------------------------+
| ‘jay greenspan’ like ‘jay%’ |
+-----------------------------+
| 1 |
+-----------------------------+
1 row in set (0.00 sec)

697

NOT LIKE
A NOT LIKE pattern match uses the same syntax and escaping as like.

expr NOT LIKE pattern
RETURNS: int

As you could probably have predicted, NOT LIKE returns true if the pattern and
the expression do not match:

mysql> select ‘jay greenspan’ NOT LIKE ‘jay%’;
+---------------------------------+
| ‘jay greenspan’ NOT LIKE ‘jay%’ |
+---------------------------------+
| 1 |
+---------------------------------+

REGEXP
This function performs a pattern match of a string expression (expr) against a reg-
ular expression (pat). See Appendix G for a discussion of regular expressions. But
be aware that MySQL does not support regular expressions to the extent you find
in PHP.

expr REGEXP pat
RETURNS: int

REGEXP returns 1 (true) if the pattern is found or 0 (false) if not:

mysql> select name from guestbook WHERE name regexp ‘^j.*g’;
+---------------+
| name |
+---------------+
| Jay Greenspan |
| Jay Green |
+---------------+
2 rows in set (0.00 sec)

NOT REGEXP
This function works identically to REGEXP, except that patterns that fail to match
the expression test true and those that do match test false.

698 Part V: Appendixes

STRCMP
This function compares two strings, like the PHP function of the same name:

STRCMP(expr1,expr2) (used in examples)
RETURNS: int

STRCMP returns 0 if the strings are the same, -1 if the first argument is smaller
than the second, and 1 if the second argument is smaller than the first:

mysql> select strcmp(‘foo’, ‘bar’);
+----------------------+
| strcmp(‘foo’, ‘bar’) |
+----------------------+
| 1 |
+----------------------+
1 row in set (0.11 sec)

mysql> select strcmp(‘bar’, ‘bar’);
+----------------------+
| strcmp(‘bar’, ‘bar’) |
+----------------------+
| 0 |
+----------------------+
1 row in set (0.00 sec)

mysql> select strcmp(‘bar’, ‘foo’);
+----------------------+
| strcmp(‘bar’, ‘foo’) |
+----------------------+
| -1 |
+----------------------+
1 row in set (0.00 sec)

MATCH...AGAINST
Starting in MySQL version 3.23, MySQL incorporates full-text searching. Using
full-text searching you test the relevance of given rows against a string pattern. We
didn’t use full-text searching in the applications in this book, but if you’re inter-
ested in this feature we recommend reading Section 6.8 of the MySQL manual,
available at http://www.mysql.com/doc/F/u/Fulltext_Search.html.

Appendix J: MySQL Function Reference 699

Cast Operators
You will encounter only one cast operator in MySQL.

BINARY
BINARY
RETURNS: string

The BINARY operator casts the string following it to a binary string. Using it is an
easy way to force a column comparison to be case-sensitive even if the column
isn’t defined as BINARY or BLOB.

mysql> select binary(‘Foo’) = ‘foo’, binary(‘Foo’) = ‘Foo’;
+-----------------------+-----------------------+
| binary(‘Foo’) = ‘foo’ | binary(‘Foo’) = ‘Foo’ |
+-----------------------+-----------------------+
| 0 | 1 |
+-----------------------+-----------------------+
1 row in set (0.06 sec)

Control Flow Functions
Two functions allow for varying results depending on conditions.

IFNULL
IFNULL(expr1,expr2) (used in examples)
RETURNS: type of expr1 or expr2

If expr1 is not NULL, IFNULL() returns expr1; otherwise, it returns expr2.
IFNULL() returns either a numeric or a string value depending on the context in
which it is used.

mysql> select ifnull(1/0, ‘exp 1 is null’);
+------------------------------+
| ifnull(1/0, ‘exp 1 is null’) |
+------------------------------+
| exp 1 is null |
+------------------------------+
1 row in set (0.00 sec)

mysql> select ifnull(1/1, ‘exp 1 is not null’);
+----------------------------------+

700 Part V: Appendixes

| ifnull(1/1, ‘exp 1 is not null’) |
+----------------------------------+
| 1.00 |
+----------------------------------+
1 row in set (0.00 sec)

IF
Lots of times, you need to do something only if one or more conditions are true. IF
serves that purpose in MySQL queries.

IF(expr1,expr2,expr3) (used in examples)

If expr1 is true (expr1 <> 0 and expr1 <> NULL), IF() returns expr2; other-
wise it returns expr3. IF() returns a numeric or string value depending on the con-
text in which it is used. expr1 is evaluated as an integer value, which means that if
you are testing floating-point or string values you should do so using a comparison
operation.

mysql> select if(name like ‘jay%’, ‘Yes’, ‘No’) as ‘Jay Names’
-> from guestbook;

+-----------+
| Jay Names |
+-----------+
| Yes |
| Yes |
| No |
| Yes |
| No |
| No |
| No |
+-----------+
10 rows in set (0.00 sec)

NULLIF
NULLIF(expr1,expr2)

The NULLIF function compares the two expressions. If they are equal the func-
tion returns a NULL value. If they are not equal it returns the value of expr1.

mysql> select NULLIF(‘jay’, ‘jay’);
+----------------------+
| NULLIF(‘jay’, ‘jay’) |
+----------------------+
| NULL |

Appendix J: MySQL Function Reference 701

+----------------------+
1 row in set (0.00 sec)

mysql> select NULLIF(‘jay’, ‘jack’);
+-----------------------+
| NULLIF(‘jay’, ‘jack’) |
+-----------------------+
| jay |
+-----------------------+
1 row in set (0.00 sec)

Mathematical Functions
You can see the most current list of MySQL’s math functions at http://www.
mysql.com/doc/M/a/Mathematical_functions.html. All mathematical functions
return NULL in case of an error.

ABS
This function returns the absolute value of X:

ABS(X)
RETURNS: type of X

mysql> select abs(22), abs(-22);
+---------+----------+
| abs(22) | abs(-22) |
+---------+----------+
| 22 | 22 |
+---------+----------+

SIGN
This function returns the sign of the argument as -1, 0, or 1, depending on whether
X is negative, 0, or positive:

SIGN(X)RETURNS: intmysql> select sign(10), sign(-10), sign(0);
+----------+-----------+---------+
| sign(10) | sign(-10) | sign(0) |
+----------+-----------+---------+
| 1 | -1 | 0 |
+----------+-----------+---------+
1 row in set (0.00 sec)

702 Part V: Appendixes

MOD
Modulo is like the % operator in C. It returns the remainder of N divided by M:

MOD(N,M) or N % M
RETURNS: int

mysql> select mod(10,3), mod(10,4);
+-----------+-----------+
| mod(10,3) | mod(10,4) |
+-----------+-----------+
| 1 | 2 |
+-----------+-----------+
1 row in set (0.05 sec)

FLOOR
This function returns the largest integer value not greater than X:

FLOOR(X)
RETURNS: int

mysql> select floor(8.5);
+------------+
| floor(8.5) |
+------------+
| 8 |
+------------+
1 row in set (0.00 sec)

CEILING
This function returns the smallest integer value not less than X:

CEILING(X)
RETURNS: int

mysql> select ceiling(8.5);
+--------------+
| ceiling(8.5) |
+--------------+
| 9 |
+--------------+
1 row in set (0.00 sec)

Appendix J: MySQL Function Reference 703

ROUND
This function returns the argument X, rounded to an integer, rounded to the speci-
fied number of decimal places (or zero places by default):

Round ROUND(X [,D])
RETURNS: int or float

ROUND returns the argument X rounded to a number with D decimals. If D is 0, or
does not exist, the result will have no decimal point or fractional part.

mysql> select round(8.53), round(8.47), round(8.534,2);
+-------------+-------------+----------------+
| round(8.53) | round(8.47) | round(8.534,2) |
+-------------+-------------+----------------+
| 9 | 8 | 8.53 |
+-------------+-------------+----------------+
1 row in set (0.33 sec)

TRUNCATE
TRUNCATE returns the number X truncated to D decimals. If D is 0, the result will
have no decimal point or fractional part.

TRUNCATE(X,D)
RETURNS: decimal

mysql> select truncate(8.53,0), truncate(8.43,0), truncate(8.534,2);
+------------------+------------------+-------------------+
| truncate(8.53,0) | truncate(8.43,0) | truncate(8.534,2) |
+------------------+------------------+-------------------+
| 8 | 8 | 8.53 |
+------------------+------------------+-------------------+
1 row in set (0.05 sec)

EXP
This function returns the value of e (the base of natural logarithms) raised to the
power of X:

EXP(X)
RETURNS: float

704 Part V: Appendixes

LOG
This function returns the natural logarithm of X. If you want the log of a number X
to some arbitrary base B, use the formula LOG(X)/LOG(B).

LOG(X)
RETURNS: float

LOG10
LOG10 returns the base-10 logarithm of X:

LOG10(X)
RETURNS: float

POW
This function returns the value of X raised to the power of Y:

POW(X,Y)
RETURNS: float

SQRT
This function returns the non-negative square root of X:

SQRT(X)
RETURNS: float

PI
This function returns an approximation of pi:

PI()
RETURNS: float

By default, only five decimal places of precision are returned. Additional preci-
sion can be gained by adding the result of PI() to 0, formatted as a floating point
number with many decimal places:

SELECT PI() + 0.0000000000

Appendix J: MySQL Function Reference 705

COS
COS returns the cosine of X, where X is given in radians:

COS(X)
RETURNS: float

SIN
SIN returns the sine of X, where X is given in radians:

SIN(X)
RETURNS: float

TAN
This function returns the tangent of X, where X is given in radians:

TAN(X)
RETURNS: float

ACOS
This function returns the arc cosine of X— that is, the value whose cosine is X. It
returns NULL if X is not in the range -1 to 1.

ACOS(X)
float

ASIN
This returns the arc sine of X— that is, the value whose sine is X. It returns NULL if X
is not in the range -1 to 1.

ASIN(X)
RETURNS: float

ATAN
ATAN returns the arc tangent of X— that is, the value whose tangent is X:

ATAN(X)
RETURNS: float

706 Part V: Appendixes

ATAN2
ATAN2 returns the arc tangent of the two arguments X and Y. The process is similar
to that of calculating the arc tangent of Y/X, except that the sines of both arguments
are used to determine the quadrant of the result.

ATAN2(X,Y)
RETURNS: float

COT
This function returns the cotangent of X:

COT(X)
RETURNS: float

RAND
This function returns a random floating-point value in the range 0 to 1.0.

RAND()

or

RAND(N)
RETURNS: float

If an integer argument N is specified, it is used as the seed value. You can’t use a
column with RAND() values in an order by clause because in that case order by
would evaluate the column multiple times. In MySQL 3.23 and later you can, how-
ever, do the following: select * from table_name order by RAND(). This is use-
ful for getting a random sample. Note that a RAND() in a WHERE clause will be
reevaluated every time the WHERE is executed.

LEAST
With two or more arguments, this function returns the smallest (minimum-valued)
argument:

LEAST(X,Y,...)
RETURNS: type of X

Appendix J: MySQL Function Reference 707

Some unusual stuff goes on with LEAST, most of it having to do with casting
arguments into alternate forms before comparison. Here are some examples of the
behavior of this function:

◆ LEAST(22, 2.2) returns 2.2.

◆ LEAST(now(), ‘a’) returns the current date/time as a string.

◆ LEAST(now(), 50000000000000) returns the current date as a number.

◆ LEAST(‘a’, 10) returns 0.

◆ LEAST(‘a’, ‘10’) returns 10.

◆ LEAST(2.2, ‘22’) returns 2.2.

mysql> select least(2,7,9,1);
+----------------+
| least(2,7,9,1) |
+----------------+
| 1 |
+----------------+
1 row in set (0.00 sec)

GREATEST
GREATEST returns the largest (maximum-valued) argument. In MySQL versions
prior to 3.22.5, you can use MAX() instead of GREATEST. Type conversion and cast-
ing works in the same way it does with LEAST, discussed previously.

GREATEST(X,Y,...)
RETURNS: type of X

mysql> select greatest(2,7,9,1);
+-------------------+
| greatest(2,7,9,1) |
+-------------------+
| 9 |
+-------------------+
1 row in set (0.00 sec)

DEGREES
This function returns the argument X, converted from radians to degrees:

DEGREES(X)
RETURNS: float

708 Part V: Appendixes

RADIANS
This function returns the argument X, converted from degrees to radians:

RADIANS(X)
RETURNS: float

String Functions
MySQL’s string functions return NULL if the length of the result would be greater
than the max_allowed_packet server parameter. You can set this parameter by
starting MySQL with a command like this:

safe_mysqld -O max_allowed_packet=16M

For functions that operate on string positions, the first position is numbered 1.

ASCII
This function returns the ASCII-code value of the leftmost character in the string
str. It returns 0 if str is the empty string and NULL if str is NULL.

ASCII(str)
RETURNS: int

mysql> select ascii(‘\n’);
+-------------+
| ascii(‘\n’) |
+-------------+
| 10 |
+-------------+
1 row in set (0.00 sec)

ORD
If the leftmost character in the string str is a multi-byte character, this function
returns the code of the multi-byte character by returning the ASCII-code value of
the character in the following format: ((first byte ASCII code)*256+(second
byte ASCII code))[*256+third byte ASCII code...]. If the leftmost character
is not a multi-byte character, ORD returns the same value as the similar ASCII()
function.

ORD(str)
RETURNS: int

Appendix J: MySQL Function Reference 709

CONV
This function converts numbers between different number bases:

CONV(N,from_base,to_base)
RETURNS: string

It returns a string representation of the number N, converted from base
from_base to base to_base. It returns NULL if any argument is NULL. The argument
N is interpreted as an integer, but may be specified as an integer or as a string. The
minimum base is 2, and the maximum base is 36. If to_base is a negative number,
N is regarded as a signed number; otherwise N is treated as unsigned. CONV works
with 64-bit precision.

mysql> select conv(3,10,2);
+--------------+
| conv(3,10,2) |
+--------------+
| 11 |
+--------------+

BIN
This function returns the value of N as a binary (base-2) number. BIN treats N as a
64-bit signed integer value. Any decimal remainder is discarded. Negative numbers
consist of 64 bits. Positive numbers have leading zeroes discarded. It returns NULL
if N is NULL.

BIN(N)
RETURNS: string

mysql> select bin(3);
+--------+
| bin(3) |
+--------+
| 11 |
+--------+

OCT
This function returns a string representation of the octal value of N, where N is a long
(BIGINT) number. It is equivalent to CONV(N,10,8). It returns NULL if N is NULL.

OCT(N)
RETURNS: string

710 Part V: Appendixes

HEX
This function returns a string representation of the hexadecimal value of N, where N
is a long (BIGINT) number. This is equivalent to CONV(N,10,16). It returns NULL if
N is NULL.

HEX(N)
RETURNS: string

mysql> select hex(1000);
+-----------+
| hex(1000) |
+-----------+
| 3E8 |
+-----------+
1 row in set (0.00 sec)

CHAR
This function interprets the arguments as integers and returns a string consisting of
the ASCII-code values of those integers. NULL values are skipped.

CHAR(N,...)
RETURNS: string

mysql> select char(74,65,89);
+----------------+
| char(74,65,89) |
+----------------+
| JAY |
+----------------+
1 row in set (0.00 sec)

CONCAT
This function returns the string that results from the concatenation of the argu-
ments. It returns NULL if any argument is NULL. CONCAT may have more than two
arguments. A numeric argument is converted to the equivalent string form.

CONCAT(str1,str2,...) (used in examples)
RETURNS: string

Appendix J: MySQL Function Reference 711

This function is used in the following example to prepend a wildcard character
onto the column in the WHERE clause of a query:

select 1 from blocked_domains
WHERE ‘$REMOTE_HOST’ like concat(‘%’,domain)
and release_dt is null

LENGTH
This function returns the length of the string str. If a numeric value is used as the
argument, it’s converted to a string first. Note that for CHAR_LENGTH() multi-byte
characters are counted only once.

LENGTH(mixed)

or

CHAR_LENGTH(mixed)

RETURNS: int
mysql> select length(‘mysql functions’);
+---------------------------+
| length(‘mysql functions’) |
+---------------------------+
| 15 |
+---------------------------+
1 row in set (0.00 sec)

LOCATE
This function returns the position of the first occurrence of substring substr in
string str. Returns 0 if substr is not in str.

LOCATE(substr,str [,pos])

or

POSITION(substr IN str)
RETURNS: int

The optional third argument enables you to specify an offset at which to start
the search:

mysql> select locate(‘s’, ‘mysql functions’) as example1,
-> locate(‘s’, ‘mysql functions’,4) as example2;

+----------+----------+

712 Part V: Appendixes

| example1 | example2 |
+----------+----------+
| 3 | 15 |
+----------+----------+
1 row in set (0.00 sec)

INSTR
This function returns the position of the first occurrence of substring substr in
string str. It is the same as LOCATE(), except that the arguments are swapped and
no argument that indicates position is allowed.

INSTR(str,substr)
RETURNS: int

LPAD
This function returns the string str, left-padded with the string padstr until str is
len characters long.

LPAD(str,len,padstr)
RETURNS: string

mysql> select lpad(‘foo’, 15, ‘k’);
+----------------------+
| lpad(‘foo’, 15, ‘k’) |
+----------------------+
| kkkkkkkkkkkkfoo |
+----------------------+
1 row in set (0.00 sec)

RPAD
This function returns the string str, right-padded with the string padstr until str
is len characters long.

RPAD(str,len,padstr)
RETURNS: string

LEFT
This function returns the leftmost len characters from the string str:

LEFT(str,len)
RETURNS: string

Appendix J: MySQL Function Reference 713

mysql> select left(‘mysql functions’, 10);
+-----------------------------+
| left(‘mysql functions’, 10) |
+-----------------------------+
| mysql func |
+-----------------------------+
1 row in set (0.02 sec)

RIGHT
This function returns the rightmost len characters from the string str:

RIGHT(str,len)
RETURNS: string

SUBSTRING
This function returns a substring len characters long from string str, starting at
position pos and continuing for len number of characters. The variant form that
uses FROM is ANSI SQL92 syntax.

SUBSTRING(str,pos[,len])

or

SUBSTRING(str FROM pos FOR len)

or

MID(str,pos,len) (used in examples)
RETURNS: string

mysql> select mid(‘mysqlfunctions’,6,8);
+---------------------------+
| mid(‘mysqlfunctions’,6,8) |
+---------------------------+
| function |
+---------------------------+
1 row in set (0.00 sec)

SUBSTRING_INDEX
This function returns the substring from string str after count occurrences of the
delimiter delim. If count is positive, everything to the left of the final delimiter
(counting from the left) is returned; if count is negative, everything to the right of

714 Part V: Appendixes

the final delimiter (counting from the right) is returned. If count is 0, nothing is
returned.

SUBSTRING_INDEX(str,delim,count) (used in examples)
RETURNS: string

mysql> select substring_index(‘mysqlfunctionsmysql’, ‘fu’, 1);
+---+
| substring_index(‘mysqlfunctions’, ‘fu’, 1) |
+---+
| mysql |
+---+
1 row in set (0.00 sec)

mysql> select substring_index(‘mysqlfunctionsmysql’, ‘fu’, -1);
+--+
| substring_index(‘mysqlfunctionsmysql’, ‘fu’, -1) |
+--+
| nctionsmysql |
+--+
1 row in set (0.00 sec)

LTRIM
This function returns the string str with leading spaces (and only spaces — no other
whitespace characters) removed:

LTRIM(str)
RETURNS: string

RTRIM
This function returns the string str with trailing-space characters removed:

RTRIM(str)
RETURNS: string

TRIM
This function returns the string str with all remstr prefixes and/or suffixes
removed. If none of the specifiers BOTH, LEADING, and TRAILING is given, BOTH is
assumed. If remstr is not specified, spaces are removed.

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str) (used in
examples)
RETURNS: string

Appendix J: MySQL Function Reference 715

mysql> select trim(both ‘\n’ from ‘\n mystring’);
+------------------------------------+
| trim(both ‘\n’ from ‘\n mystring’) |
+------------------------------------+
| mystring |
+------------------------------------+
1 row in set (0.00 sec)

Note that remstr will exactly match only the exact sequence of characters. So
putting \t\n\ in the remstr argument in the preceding example removes only
occurrences where tabs and newlines appear consecutively.

REPLACE
This function returns the string str with all occurrences of the string from_str
replaced by the string to_str:

REPLACE(str,from_str,to_str)
RETURNS: string

SOUNDEX
This function returns a soundex string from str:

SOUNDEX(str)
RETURNS: string

Two strings that sound “about the same” in English should have identical
soundex strings. A “standard” soundex string is four characters long, but the
SOUNDEX() function returns a string of arbitrary length. You can use SUBSTRING()
on the result to get a “standard” soundex string. All non-alphanumeric characters
are ignored in the given string. All international alpha characters outside the A–Z
range are treated as vowels.

mysql> select soundex(‘functions’), soundex(‘junctions’),
soundex(‘fiction’);
+----------------------+----------------------+--------------------+
| soundex(‘functions’) | soundex(‘junctions’) | soundex(‘fiction’) |
+----------------------+----------------------+--------------------+
| F52352 | J52352 | F235 |
+----------------------+----------------------+--------------------+
1 row in set (0.00 sec)

716 Part V: Appendixes

SPACE
This function returns a string consisting of N space characters:

SPACE(N)
RETURNS: string

REPEAT
This function returns a string consisting of the string str repeated count times. If
count is less than or equal to 0, it returns an empty string. It returns NULL if str or
count are NULL.

REPEAT(str,count)
RETURNS: string

mysql> select repeat(‘foo’, 10);
+--------------------------------+
| repeat(‘foo’, 10) |
+--------------------------------+
| foofoofoofoofoofoofoofoofoofoo |
+--------------------------------+

REVERSE
This function returns the string str with the order of the characters reversed:

REVERSE(str)
RETURNS: string

INSERT
This function returns the string str, with the substring len characters long begin-
ning at position pos replaced by the string newstr:

INSERT(str,pos,len,newstr)
RETURNS: string

mysql> select insert(‘mysqlfunctions’, 6,2,’FU’);
+------------------------------------+
| insert(‘mysqlfunctions’, 6,2,’FU’) |
+------------------------------------+
| mysqlFUnctions |
+------------------------------------+
1 row in set (0.44 sec)

Appendix J: MySQL Function Reference 717

ELT
This function returns str1 if N equals 1, str2 if N equals 2, and so on. It returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the com-
plement of FIELD().

ELT(N,str1,str2,str3,...)
RETURNS: string

mysql> select elt(2, ‘foo’, ‘bar’, ‘foobar’);
+--------------------------------+
| elt(2, ‘foo’, ‘bar’, ‘foobar’) |
+--------------------------------+
| bar |
+--------------------------------+
1 row in set (0.00 sec)

FIELD
This function returns the index of str in the str1, str2, str3, ... list. It
returns 0 if str is not found. FIELD() is the complement of ELT().

FIELD(str,str1,str2,str3,...)
RETURNS: int

mysql> select field(‘foobar’, ‘foo’, ‘bar’, ‘foobar’);
+---+
| field(‘foobar’, ‘foo’, ‘bar’, ‘foobar’) |
+---+
| 3 |
+---+
1 row in set (0.01 sec)

LCASE
This function returns the string str with all characters changed to lower case
according to the current character-set mapping (the default is ISO-8859-1 Latin1):

LCASE(str) or LOWER(str) (used in examples)
RETURNS: string

718 Part V: Appendixes

UCASE
This function returns the string str with all characters changed to upper case
according to the current character-set mapping (the default is ISO-8859-1 Latin1):

UCASE(str) or UPPER(str)
RETURNS: string

Date and Time Functions
MySQL offers many functions for calculating dates. Of all the MySQL functions
available, these are the ones you will probably use most frequently.

The DATE_FORMAT function enables you to format dates to take the form of
MySQL timestamps. In addition, several functions will enable you to get specific
date information from a column with ease. For example, to find the day of the week
of all the entries in a timestamp column, you could use the following code:

mysql> select dayname(created) from guestbook;
+------------------+
| dayname(created) |
+------------------+
| Sunday |
| Sunday |
| Wednesday |
| Sunday |
| Sunday |
| Wednesday |
| Wednesday |
| Wednesday |
+------------------+

DAYOFWEEK
This function returns the weekday index for date (1 for Sunday, 2 for Monday, and
so on up to 7 for Saturday). These index values correspond to the ODBC standard.
If an invalid date is supplied to the date functions, they return null.

DAYOFWEEK(date) (used in examples)
RETURNS: int
mysql> select dayofweek(‘2001-01-01’);
+-------------------------+
| dayofweek(‘2001-01-01’) |

Appendix J: MySQL Function Reference 719

+-------------------------+
| 2 |
+-------------------------+
1 row in set (0.33 sec)

WEEKDAY
This function returns the weekday index for date (0 for Monday, 1 for Tuesday, and
so on up to 6 for Sunday):

WEEKDAY(date) (used in examples)
RETURNS: int

DAYOFMONTH
This function returns the day of the month for date, in the range of 1 to 31:

DAYOFMONTH(date)
RETURNS: int

DAYOFYEAR
This function returns the day of the year for date, in the range of 1 to 366:

DAYOFYEAR(date)
RETURNS: int

mysql> select dayofmonth(‘02-01-2000’);
+--------------------------+
| dayofmonth(‘02-01-2000’) |
+--------------------------+
| 20 |
+--------------------------+
1 row in set (0.00 sec)

MONTH
This function returns the month for date, in the range of 1 to 12:

MONTH(date)
RETURNS: int

720 Part V: Appendixes

DAYNAME
This function returns the full name of the weekday for date:

DAYNAME(date)
RETURNS: string

mysql> select dayname(‘10/01/2000’);
+-----------------------+
| dayname(‘10/01/2000’) |
+-----------------------+
| Wednesday |
+-----------------------+
1 row in set (0.00 sec)

MONTHNAME
This function returns the full English-language name of the month for date:

MONTHNAME(date)
RETURNS: string

QUARTER
This function returns the quarter of the year for date, in the range of 1 to 4:

QUARTER(date)
RETURNS: int

To find all the people who signed your guestbook in the second quarter of the
year, you could use the following command:

select name from guestbook WHERE quarter(created) = 2;

WEEK
With a single argument, this function returns the week for date, in the range of 0
to 53:

WEEK(date [, first])
RETURNS: int

The optional second argument enables you to specify whether the week starts on
Sunday or Monday. The week starts on Sunday if the second argument is 0 and on
Monday if the second argument is 1.

Appendix J: MySQL Function Reference 721

YEAR
This function returns the year for date, in the range of 1000 to 9999:

YEAR(date) (used in examples)
RETURNS: int

YEARWEEK
This function returns the year and week for a date, in the format YYYYWW. The sec-
ond argument works exactly like the second argument in WEEK().

YEARWEEK(date [,first])
RETURNS: int

HOUR
This function returns the hour for time, in the range of 0 to 23:

HOUR(time)
RETURNS: int

MINUTE
This function returns the minute for time, in the range of 0 to 59:

MINUTE(time)
RETURNS: int

SECOND
This function returns the second for time, in the range of 0 to 59:

SECOND(time)
RETURNS: int

PERIOD_ADD
This function adds N months to period P (in the format YYMM or YYYYMM) and returns
a value in the format YYYYMM:

PERIOD_ADD(P,N)
RETURNS: int

Note that the period argument P is not a date value.

722 Part V: Appendixes

mysql> select period_add(200006,7);
+------------------------+
| period_add(200006,7) |
+------------------------+
| 200101 |
+------------------------+
1 row in set (0.00 sec)

PERIOD_DIFF
This function returns the number of months between periods P1 and P2. P1 and P2
should be in the format YYMM or YYYYMM.

PERIOD_DIFF(P1,P2)
RETURNS: int

Note that the period arguments P1 and P2 are not date values.

mysql> select period_diff(200106,200001);
+--------------------------------+
| period_diff(200106,200001) |
+--------------------------------+
| 17 |
+--------------------------------+
1 row in set (0.00 sec)

DATE_ADD
These functions perform date arithmetic.

DATE_ADD(date,INTERVAL expr type)

or

DATE_SUB(date,INTERVAL expr type)

or

ADDDATE(date,INTERVAL expr type)

or

SUBDATE(date,INTERVAL) (used in examples)
RETURNS: date

Appendix J: MySQL Function Reference 723

ADDDATE() and SUBDATE() are identical to DATE_ADD() and DATE_SUB(),
respectively. In all versions of MySQL since version 3.23 you can use + and - sym-
bols, respectively, instead of DATE_ADD() and DATE_SUB(). (See the following
example.) date is a DATETIME or DATE value specifying the starting date. expr is an
expression specifying the interval value to be added or subtracted from the starting
date. expr is a string; it may start with a - for negative intervals. type is a keyword
indicating how the expression should be interpreted.

Table J-1 shows how the type and expr arguments are related.

TABLE J-1 DATE_ADD() OPERATORS

Type Meaning Expected expr Format Value

SECOND Seconds SS

MINUTE Minutes MM

MINUTE_SECOND Minutes and seconds MM:SS

HOUR Hours HH

HOUR_SECOND Hours, minutes, seconds HH:MM:SS

HOUR_MINUTE Hours and minutes HH:MM

DAY Days DAYS

DAY_SECOND Days, hours, minutes, seconds DAYS HH:MM:SS

DAY_MINUTE Days, hours, minutes DAYS HH:MM

DAY_HOUR Days and hours DAYS HH

MONTH Months MONTHS

YEAR Years YEARS

YEAR_MONTH Years and months YEARS-MONTHS

MySQL allows any punctuation delimiter in the expr format. The ones shown in
the table are the suggested delimiters. If the date argument is a DATE value and
your calculations involve only YEAR, MONTH, and DAY parts (that is, no time parts),
the result is a DATE value. Otherwise, the result is a DATETIME value.

724 Part V: Appendixes

mysql> select ‘2001-01-01 13:00:00’ + interval 10 m
+--+
| ‘2001-01-01 13:00:00’ + interval 10 minute |
+--+
| 2001-01-01 13:10:00 |
+--+
1 row in set (0.39 sec)

mysql> select ‘2000-01-01 00:00:00’ - interval 1 second;
+---+
| ‘2000-01-01 00:00:00’ - interval 1 second |
+---+
| 1999-12-31 23:59:59 |
+---+
1 row in set (0.00 sec)

mysql> select date_add(‘2000-01-01 00:00:00’, interval ‘1:1:1’
hour_second);
+---+
| date_add(‘2000-01-01 00:00:00’, interval ‘1:1:1’ hour_second) |
+---+
| 2000-01-01 01:01:01 |
+---+
1 row in set (0.00 sec)

mysql> select date_sub(‘2000-01-01 00:00:00’, interval ‘1’ month);
+---+
| date_sub(‘2000-01-01 00:00:00’, interval ‘1’ month) |
+---+
| 1999-12-01 00:00:00 |
+---+
1 row in set (0.00 sec)

If you specify an interval value that is too short (one that does not include all the
interval parts that would be expected from the type keyword), MySQL assumes you
have left out the leftmost parts of the interval value. For example, if you specify a
type of DAY_SECOND, the value of expr is expected to have days, hours, minutes,
and seconds parts. If you specify a value like 1:10, MySQL assumes that the days
and hours parts are missing and that the value represents minutes and seconds.

Appendix J: MySQL Function Reference 725

TO_DAYS
Given a date date, this function returns a daynumber (the number of days since
year 0):

TO_DAYS(date) (used in examples)
RETURNS: int

mysql> select to_days(‘2003-01-01’);
+-----------------------+
| to_days(‘2003-01-01’) |
+-----------------------+
| 731581 |
+-----------------------+

TO_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582). Note that it is not the same as the PHP mktime() func-
tion, which gets the date relative to January 1, 1970. See the entry for the MySQL
UNIX_TIMESTAMP function, later in this appendix, if you need that information.

FROM_DAYS
Given a daynumber N, this function returns a DATE calculated from year 0:

FROM_DAYS(N) (used in examples)
RETURNS: date

mysql> select from_days(‘731581’);
+---------------------+
| from_days(‘731581’) |
+---------------------+
| 2003-01-01 |
+---------------------+

FROM_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582).

DATE_FORMAT
This function formats the date value according to the format string:

DATE_FORMAT(date,format) (used in examples)
RETURNS: string

726 Part V: Appendixes

The specifiers in Table J-2 can be used in the format string.

TABLE J-2 DATE_FORMAT SPECIFIERS

Specifier Meaning

%M Month name (January through December)

%W Weekday name (Sunday through Saturday)

%D Day of the month with English ordinal suffix (1st, 2nd, 3rd, and so on)

%Y Year, numeric, four digits

%y Year, numeric, two digits

%a Abbreviated weekday name (Sun...Sat)

%d Day of the month, two numeric digits (01...31)

%e Day of the month, numeric (1...31)

%m Month, two numeric digits (01...12)

%c Month, numeric (1...12)

%b Abbreviated month name (Jan...Dec)

%j Day of year (001...366)

%H Hour (00...23)

%k Hour (0...23)

%h Hour (01...12)

%I Hour (01...12)

%i Minutes, numeric (00...59)

%r Time, 12-hour (hh:mm:ss [AP]M)

%T Time, 24-hour (hh:mm:ss)

%S Seconds (00...59)

%s Seconds (00...59)

%p AM or PM

%w Day of the week (0=Sunday...6=Saturday)

%U Week (0...53), where Sunday is the first day of the week

Continued

Appendix J: MySQL Function Reference 727

TABLE J-2 DATE_FORMAT SPECIFIERS (Continued)

Specifier Meaning

%u Week (0...53), where Monday is the first day of the week

%V Week (1...53), where Sunday is the first day of the week; used with %X

%v Week (1...53), where Monday is the first day of the week; used with %x

%X Year for the week, where Sunday is the first day of the week; numeric,
four digits, used with %V

%x Year for the week, where Monday is the first day of the week; numeric,
four digits, used with %v

%% A literal %

All other characters are just copied to the result without interpretation:

mysql> select date_format(‘2001-01-01’, ‘%W %M %d, %Y’);
+---+
| date_format(‘2001-01-01’, ‘%W %M %d, %Y’) |
+---+
| Monday January 01, 2001 |
+---+
1 row in set (0.00 sec)

mysql> select date_format(‘2001-01-01 15:30:20’,
->’%W %M %d, %Y %I:%i:%S %p’);

+--+
| date_format(‘2001-01-01 15:30:20’, ‘%W %M %d, %Y %I:%i:%S %p’) |
+--+
| Monday January 01, 2001 03:30:20 PM |
+--+
1 row in set (0.00 sec)

For MySQL 3.23 and later versions, the % character is required before format-
specifier characters. In earlier versions of MySQL, % was optional.

TIME_FORMAT
This function is used like the DATE_FORMAT() function just discussed, but the format
string can contain only those format specifiers that handle hours, minutes, and

728 Part V: Appendixes

seconds. If specifiers other than those for hours, minutes, and seconds are included,
the function will return a NULL value.

TIME_FORMAT(time,format) (used in examples)
RETURNS: string

CURDATE
This function returns today’s date as a value in YYYY-MM-DD or YYYYMMDD format,
depending on whether the function is used in a string or a numeric context:

CURDATE() or CURRENT_DATE (used in examples)
RETURNS: mixed

CURTIME
This function returns the current time as a value in HH:MM:SS or HHMMSS format,
depending on whether the function is used in a string or a numeric context:

CURTIME() or CURRENT_TIME
RETURNS: mixed

NOW
This function returns the current date and time as a value in YYYY-MM-DD HH:MM:SS
or YYYYMMDDHHMMSS format, depending on whether the function is used in a string
or a numeric context:

NOW()

or

SYSDATE()

or

CURRENT_TIMESTAMP (used in examples)
RETURNS: string

UNIX_TIMESTAMP
If this function is called with no argument, it returns a Unix timestamp (seconds
since 1970-01-01 00:00:00 GMT). If UNIX_TIMESTAMP() is called with a date argu-
ment, it returns the value of the argument as seconds since 1970-01-01 00:00:00
GMT. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in
the format YYMMDD or YYYYMMDD in local time.

Appendix J: MySQL Function Reference 729

UNIX_TIMESTAMP([date])
RETURNS: int

FROM_UNIXTIME
This function returns a representation of the unix_timestamp argument as a value
in “YYYY-MM-DD HH:MM:SS” or “YYYYMMDDHHMMSS” format, depending on whether
the function is used in a string or numeric context:

FROM_UNIXTIME(unix_timestamp) (used in examples)
RETURNS: string

SEC_TO_TIME
This function returns the seconds argument, converted to hours, minutes, and sec-
onds, as a value in HH:MM:SS or HHMMSS format, depending on whether the function
is used in a string or numeric context:

SEC_TO_TIME(seconds)
RETURNS: string

TIME_TO_SEC
This function returns the time argument, converted to seconds:

TIME_TO_SEC(time) (used in examples)
RETURNS: int

The date portion of a supplied date/time value is discarded.

Miscellaneous Functions
Here are a few other functions that don’t fall under any of the previous categories.

DATABASE
This function returns the current database name. If no current database exists,
DATABASE() returns the empty string.

DATABASE()
RETURNS: string

730 Part V: Appendixes

USER
This function returns the current MySQL username. In MySQL 3.22.11 or later, it
includes the client host name as well.

USER()

or

SYSTEM_USER()

or

SESSION_USER() (used in examples)
RETURNS: string

VERSION
This function returns a string indicating the MySQL server version:

VERSION()
RETURNS: string

PASSWORD
This function calculates a password string from the plain-text password str:

PASSWORD(str) (used in examples)
RETURNS: string

This is the function that encrypts MySQL passwords for storage in the Password
column of the user table. PASSWORD() encryption is one-way. PASSWORD() does not
perform password encryption in the same way in which Unix passwords are
encrypted. You should not assume that if your Unix password and your MySQL
password are the same, PASSWORD() will result in the same encrypted value that is
stored in the Unix password file. See ENCRYPT().

ENCRYPT
This function encrypts str using the Unix crypt() system call:

ENCRYPT(str[,salt])
RETURNS: string

Appendix J: MySQL Function Reference 731

The salt argument should be a string with two characters. (As of MySQL
3.22.16, salt may be longer than two characters.) If crypt() is not available on
your system, ENCRYPT() always returns NULL. ENCRYPT() ignores all but the first
eight characters of str on most systems.

ENCODE
This function encrypts str using pass_str as the password:

ENCODE(str,pass_str)
RETURNS: binary string

To decrypt the result, use DECODE(). The result is a binary string. If you want to
save it in a column, use a BLOB column type.

DECODE
This function decrypts the encrypted string crypt_str using pass_str as the pass-
word. crypt_str should be a string returned from ENCODE().

DECODE(crypt_str,pass_str)
RETURNS: string

MD5
This function calculates an MD5 checksum for the string. The value is returned as
a 32-character alphanumeric string. This is the same as the md5() function used
by PHP.

MD5(string)
RETURNS: string

LAST_INSERT_ID
This function returns the last automatically generated value that was inserted into
an AUTO_INCREMENT column:

LAST_INSERT_ID()
RETURNS: int

GET_LOCK
This function tries to obtain a lock with a name given by the string str, with a time-
out of timeout seconds. It returns 1 if the lock was obtained successfully, 0 if the
attempt timed out, and NULL if an error occurred (such as running out of memory or

732 Part V: Appendixes

the thread being killed with mysqladmin kill). A lock is released, RELEASE_LOCK()
is executed, a new GET_LOCK() is executed, or the thread terminates.

GET_LOCK(str,timeout)
RETURNS: int

RELEASE_LOCK
This function releases the lock named by the string str that was obtained with
GET_LOCK(). It returns 1 if the lock was released, 0 if the lock wasn’t locked by this
thread (in which case the lock is not released), and NULL if the named lock didn’t
exist.

RELEASE_LOCK(str)
RETURNS: int

Functions for Use with
GROUP BY Clauses
Most of the functions used with the GROUP BY clause were covered in Chapter 3.
There are three additional functions that we did not cover there.

STD/STDDEV
This function returns the standard deviation of expr. It is an extension of ANSI
SQL. The STDDEV() form of this function is provided for Oracle compatibility.

STD(expr)

or

STDDEV(expr)
RETURNS: float

BIT_OR
This function returns the bitwise OR of all bits in expr. The calculation is performed
with 64-bit (BIGINT) precision.

BIT_OR(expr)
RETURNS: int

Appendix J: MySQL Function Reference 733

BIT_AND
This function returns the bitwise AND of all bits in expr. The calculation is per-
formed with 64-bit (BIGINT) precision.

BIT_AND(expr)
RETURNS: int

734 Part V: Appendixes

Symbols
$ (dollar sign), 91
“ (double quotes), 94
= (equals sign), 92
(space character), 717
=== (triple equals sign), 93

A
absolute pathname, returning (REALPATH()), 175
absolute value, 702
abstract classes, 212–215
access key, 568
action, object. See method
active projects, showing, 544–545
active threads, viewing, 589–590
adding

to beginning of array (ARRAY_UNSHIFT()),
160

column to table, 42
to end of array (ARRAY_PUSH()), 160
files automatically, 581–582
index to table, 43
survey questions (admin/questions.php),

298–303
user to project, 545

address book, 4
address, file or Web page. See URL
Address table, manipulating, 490–491
administrative tasks, 389–392, 586–587
alias (as), 76
alphabetical order

array (SORT()), 163
list of entries in table, 73

anchor tag, 671
AND, bitwise (BIT_AND), 734
anomalies, 5, 8, 10
anonymous users, 257
Apache, 109–111, 696
application design

Guestbook 2003, 229–230
NuSOAP, 527–528
problem-tracking system, 441–444
project management, 537–541
shopping cart, 477–479
survey, 261–266, 294–298
threaded discussion, 312–315
XML parsing, 506–508

arc cosine (ACOS), 706
arc sine (ASIN), 706
arc tangent (ATAN), 706
arc tangent of two arguments (ATAN2), 707
argument

arc tangent of two (ATAN2), 707
concatenation of (CONCAT), 711–712
handling, HTML survey functions, 276–281
PHP functions, 134–135
printing (PRINT_INPUT_FIELDS()), 249–250
replacing (STR_REPLACE()), 140
script control functions, obtaining

information (func_get_arg(),
func_get_args(), and
func_num_args()), 176–177

string, outputting and then terminating
script (die()), 176

value in first is found in second
(IN_ARRAY()), 159

variable number, 205–206
array

adding to beginning (ARRAY_UNSHIFT()),
160

assigning, PHP scripts, 96–99
associative, 162, 671
browser-passed variables, 102–104
common elements (ARRAY_INTERSECT()), 159
concatenating in a string (JOIN()), 154
converting into variables (COMPACT()), 153
counting (ARRAY_COUNT()), 157–158
creating and populating (RANGE()), 154
cursor, resetting (RESET()), 162
described, 615–619
differences (ARRAY_DIFF()), 159
end, adding to (ARRAY_PUSH()), 160
filtering (ARRAY_FILTER()), 157–158
first element, return and remove

(ARRAY_SHIFT()), 160
key

returning all (ARRAY_KEYS()), 158
true/false whether exists

(ARRAY_KEY_EXISTS()), 158
key/value pair

exchanging (ARRAY_FLIP()), 155–156
pulling and making into standalone

variables (EXTRACT()), 153–154

continued
735

Index

array continued
returning (EACH()), 161
seeking (ARRAY_KEY_EXISTS()), 159–160

last element, return and remove
(ARRAY_POP()), 160

of matched subpatterns, assigning
(PREG_MATCH()), 147

matching (PREG_GREP()), 147
merging or concatenating

(ARRAY_MERGE()), 156
passing through function (ARRAY_WALK()),

161
Perl regular expression string, transforming

into (PREG_SPLIT()), 152–153
of properties (get_object_vars()), 164
random elements, picking (ARRAY_RAND()),

162–163
randomizing elements (SHUFFLE()), 163
regular expression string, transforming into

(SPLIT()), 151–152
removing specific elements

(ARRAY_SPLICE()), 156–157
return values generated by called function,

in original order (ARRAY_MAP()),
158–159

returning values defined in enum field
(enum_to_array()), 679–680

sorting in ascending or alphabetical
order, 163

string, transforming (EXPLODE()), 150–151
testing (is_array()), 113
turning into string (IMPLODE()), 151
two-dimensional arrays, assigning, 99
type other than, testing (is_scalar()), 114
user-defined function, passing

(call_user_func_array()), 176
value in first argument is found in second

argument (IN_ARRAY()), 159
values, returning all (ARRAY_VALUES()), 161
variable functions, testing (is_array(),

is_numeric(), and is_string()), 148
ascending order, array, sorting (SORT()), 163
ASCII

integers, values of (CHAR), 711
string function values, 709
string, specially-formatted (ORD), 709

associative array
database (db_values_array()), 671
defined, 97–98
values, returning (ARRAY_COUNT_VALUES()),

162

atomic value, 11
authentication

project management code, 546–548
user for content-management system

(content/authenticate.php), 387–389
user-defined functions, 669–670

author
creating or updating records

(write_author()), 381–382
finding all stories by (function

fetch_author()), 378
average (avg()), group by and aggregate

functions, 78–79

B
Babelfish application, 532–534
Barnes & Noble application, 528–531
base

numbers, converting (CONV), 710
path elements, cutting off all but

(BASENAME()), 175
base-10 logarithm (LOG10), 705
BC math function, 640
BEGIN(), catalog classes, 422
beginning of array, adding to

(ARRAY_UNSHIFT()), 160
BerkeleyDB, 40–41
BINARY cast operator, 700
binary installation, 572–575
binary objects (tinytext/tinyblob,

text/blob, mediumtext/mediumblob,
longtext), 31–32

binary value, string functions, returning
(BIN), 710

bitmask, constant, defining to use
(get_constant()), 345–347

bitwise operators, 733–734
blocking. See security
body, SOAP (Simple Object Access Protocol),

521–522
Boolean, testing for (is_bool()), 113–114
border

HTML form text surrounded by thin line
(fieldset), 569

page, 201
break, HTML adding after each newline

(NL2BR()), 141–142
break loop, 131, 132
browser

arrays, 102–104
HTML forms, 100–102

736 Index

HTTP header, 179–180
information stored by, 104–106, 180
sessions, 106–107
username and password, getting

(authenticate()), 669
buffering, PHP output, 187–189
bulleted list (ul_list()), 672
bytes, file pointer reading to specified

(FREAD()), 172

C
calculating. See also mathematical functions

MD5 checksum, 732
valid dates (MKTIME()), 168–169

called function, return values, generated in
original order (ARRAY_MAP()), 158–159

capitalization, changing
characters, (LCASE), 718
functions (UCASE), 719
string (STRTOLOWER(), STRTOUPPER(),

UCFIRST(), and UCWORDS()), 141
case-insensitivity

pattern match (split()), 155
regular expression functions, altering

(sql_regcase()), 145–146
cast operator, BINARY, 700
casting, variable types, changing, 114–115
catalog

classes
base, 412–413, 431–432
BEGIN(), COMMIT(), and ROLLBACK(),

422
inherited (LEGAL_VALUES()), 420–421
values, saving (WRITE_TO_DB()), 420

data, 403–407
deleting record (DELETE_FROM_DB()), 417
described, 397, 411–412
empty properties, leaving out

(DATA_FIELDS()), 418
file system, accessing, 408
ID value, getting record by

(FETCH_FROM_DB()), 416–417
image, extending, 432–433
list of fields (FIELDLIST()), 417–418
matching field value, getting all

(FETCH_ALL()), 417
multi-statement transaction

(TRANSACTION()), 421–422
new objects, instantiating (__CONSTRUCT()),

413

new record, creating (CREATE_RECORD()), 419
object-oriented approach, 408, 410–411
products, 422–431
property values, setting (BUILD()), 414
query for later-named table

(FETCH_SIMPLE_QUERY()), 415
sample script, 434–439
scope and goals, determining, 398–403
single record, returning (FETCH_RECORD()),

416
static variables, using in methods (DBH()),

413–414
style, 433–434
table name, returning result

(FETCH_SIMPLE()), 415–416
updating record (UPDATE_RECORD()), 419
uploading files, 409–410
values, saving them (WRITE_TO_DB()), 420

categories, shopping cart, 492–493
CD, back-of-the-book

applications, 558–559
eBook version of text, 560
example applications, 558
system requirements, 557
troubleshooting, 560
using, 558

cell tag, 673
certificates, security, 481–482
changes, recording most recent (timestamp),

date and time columns, 36
character

counting string (STRLEN()), 140
decimals, storing as, 35
escape sequences, 54
escaping string, 94
HTML 4.0 entity references, 696
matching to series of known patterns,

659–660
non-alphanumeric, 185
order, reversing, 717
position of last occurrence in string

(STRRPOS()), 140–141
regular expressions, 660–661
separating directory names

(path_separator()), HTML survey, 292
character classes, 661–663
character-set, 238–239
checkbox

default status, 290–291
form, 675
multiple before pressing Submit button, 104

Index 737

checking and moving uploaded file
(MOVE_UPLOADED_FILE()), 175

checkout, shopping cart, 495–504
child products, catalog, printing, 437–439
children, listing, catalog products class, 423–424
claim code, survey winner, checking

(claim.php), 304–308
class

abstract, 212–215
catalog

Base, 412–413
BEGIN(), COMMIT(), and ROLLBACK(),

422
deleting record (DELETE_FROM_DB()), 417
described, 411–412
empty properties, leaving out

(DATA_FIELDS()), 418
ID value, getting record by

(FETCH_FROM_DB()), 416–417
inherited (LEGAL_VALUES()), 420–421
list of fields (FIELDLIST()), 417–418
matching field value, getting all

(FETCH_ALL()), 417
multi-statement transaction

(TRANSACTION()), 421–422
new objects, instantiating

(__CONSTRUCT()), 413
new record, creating

(CREATE_RECORD()), 419
property values, setting (BUILD()), 414
query for later-named table

(FETCH_SIMPLE_QUERY()), 415
single record, returning

(FETCH_RECORD()), 416
static variables, using in methods

(DBH()), 413–414
table name, returning result

(FETCH_SIMPLE()), 415–416
updating record (UPDATE_RECORD()),

419
values, saving them (WRITE_TO_DB()),

420
described, 210
determining (is_a()), 164
inheritance, 215–218
interfaces, 211–212
shopping cart

Address table, 490–491
database record tree structure, 488–490

described, 486
orders, 491–492
requests, 487–488

class functions
described, 163–164
determining (is_a()), 164
method, whether defined

(method_exists()), 164
name, returning (get_class()), 164

cleaning up
output buffering (FLUSH()), 188
string for use as HTML tag

(make_page_title()), 670
text, reversing (REVERSE_CLEANUP_TEXT()),

239–240
client file, Barnes & Noble application, 529–531
cloning, 218–219
closing tag, 561–562, 672
Codd, E.F. (relational database inventor), 3
code

blocks, indenting, 192–194
catalog

file system, accessing, 408
files, uploading, 409–410
object-oriented approach, 408

comments, 221–224
content-management system, 361–362
external files, including, 197–200
Guestbook 2003, 235–236
HTML survey initialization, 293–294
indenting, 191–197
object-oriented programming, 209–220
problem-tracking system, 452
procedural versus object-oriented code,

220–221
project management

active projects, showing, 544–545
authentication, 546–548
file contents, displaying, 553
logging in and establishing

session, 544
new project, creating, 545
projects’ status, viewing, 548–552
session management, 545–546
uploading files, 545, 552
user, adding, 545
viewing files, 545

stored in variable, executing (eval()), 176
survey, 270–273, 274–276

738 Index

threaded discussion, main functions,
320–321

user-defined functions, 200–208
code class. See class
column

date and time, 35–37
definitions, changing, 43–44
dependencies, 11
dropping, 43
excessive use of, 19
indexes, creating, 37–38
numeric, 33–35
sum of given, returning (sum() function),

77–78
table, adding, 42
text strings, 29–33
viewing, 46

command, terminating (G), 176
command-line interface (mysql), 583–586
commands, bundle. See transaction
comments, code, organized and readable,

221–224
COMMIT(), catalog classes, 422
common elements, array functions

(ARRAY_INTERSECT()), 159
comparison operators, 69, 122
complex data types, SOAP (Simple Object

Access Protocol), 523–524
complex if statement, 123–124
concatenating

arguments (CONCAT), 711–712
array elements in a string (JOIN()), 154
arrays (ARRAY_MERGE()), 156
string input (STR_REPEAT()), 139–140

conditions, checking, 125–127
configuration

option (ini_get()), 189
PHP, 580–581
value, assigning (ini_set()), 189

connection
database, 670
persistent, 365–368
string, 362–365

constant
defining to use in bitmask

(get_constant()), 345–347
Guestbook 2003 (FROM

/GUESTBOOK2K/GLOBALS.PHP), 241–242
value of defined, 149

constructor, 213–214, 422–423

content-management system
administrator functions (content/admin/

user.php), 389–392
application scope and goals, 350–353
author, finding all stories by (function

fetch_author()), 378
authors table, creating or updating records

(write_author()), 381–382
code overview, 361–362
connection string, 362–365
customization, need for, 349–350
database design, 355–361
editorial review (content/story.php),

392–394
error handling (db_error_handler()),

368–369
NULL value, checking for (nullop()),

373–374
persistent connection, creating

(db_connect()), 365–368
query, shorthand (db_values_array()),

372–373
records, getting (db_fetch_record()),

369–372
security, 353–355
stages, looking up (stage(), stage_id(),

stages()), 379–380
stories table, creating or updating records

(write_story()), 382–387
story record, getting (fetch_story()),

375–376
table, building for workflow stages

(stage_table_name()), 380–381
user and password validation

(connect_validate_login()),
374–375

user authentication
(content/authenticate.php),
387–389

user postings, finding all (fetch_user()),
378–379

version of story, getting
(fetch_story_version()), 376–378

continue loop, 131–132
control characters, 186
converting

array elements into variables (COMPACT()),
153

current time to seconds (SEC_TO_TIME), 730

continued

Index 739

converting continued
floating-point numbers to formatted string

(NUMBER_FORMAT()), 154
type when comparing variables, 92–93

cookie
browser-passed variables, accessing, 104–106
HTTP header, setting (setcookie()), 180

copy, joining tables to itself (self), 85–86
copying

files (COPY()), 173–174
part of image (IMAGECOPYRESIZED()),

181–182
cosine (COS), 706
cotangent (COT), 707
counting

array functions (ARRAY_COUNT()), 157–158
characters in string (STRLEN()), 140
number of rows in each group (count()

function), 74–77
repeating string certain number of times

(REPEAT), 717
credit-card processor, shopping cart, 486
C-style pattern string, formatting (SPRINTF()),

166
CURL function, 641
current date and time (NOW), 729
current date (CURDATE), 729
current time, 169, 729, 730
cursor array, resetting (RESET()), 162
customer

ID, finding by (fetch_customer()),
454–455

identifying by phone number or email
address (find_customer()), 457–459

response in (write_customer.php),
466–473

sending email (notify_customer()),
461–462

CyberCash function, 643

D
daemon, MySQL, checking for alive and

running, 588
data

catalog, 403–407
complex types, SOAP, 523–524
deleting from tables, 59–61
eliminating duplicate from tables (distinct

clause), 70
inserting into tables, 53–55

replacing in tables, 61–64
retrieving from tables (select), 64–67
shopping cart, 479–480
simple table, 6
threaded discussion, 316–320
tracking updates (history_entry()),

459–461
updating tables, 55–59

Data Definition Language. See DDL
data stream, thumbnails, retrieving as

(EXIF_THUMBNAIL()), 183
database

call, putting together (SELECT_ENTRIES()),
253–254

defining default working (use command), 27
design

anomalies, 5–10
content-management system, 355–361
Guestbook 2003, 234–235
normalization, 10–14
problem-tracking system, 444–452
project management, 541–544
referential integrity, 19–20
relational databases, benefits of, 3–5
relationships, 15–19
stored procedures, 21–22
survey, 266–270
transactions, 20–21

examining (show command), 44–48
form data, inserting for threaded discussion

(create_topic()), 329–332
functions, user-defined, 670–671
GUI tools, 48–52
name, current, 730
record tree structure, 488–490
table

creating, 26–27
user administration, 600–601
username and password, verifying

against (authenticate()), 669
variable format (SESSION_ENCODE()), 485

date and time
calculations

arithmetic (DATE_ADD), 723–725
day from specified year (FROM_DAYS), 726
difference of months in period

(PERIOD_DIFF), 723
months, adding to period (PERIOD_ADD),

722–723
valid dates (MKTIME()), 168–169

740 Index

changes, recording most recent
(timestamp), 36

current, 169, 729
date, current (CURDATE), 729
day number (TO_DAYS), 726
day of the month, 720
day of year, 720
described, 620
format

current time as seconds (TIME_TO_SEC),
730

full name of month, 721
full name of weekday (DAYNAME), 721
hour, 722
hour, minute, second (time), 37
setting (DATE_FORMAT), 726–728
two-digit year (year[(2|4)]), 37
week beginning with Monday index

(WEEKDAY), 720
week beginning with Sunday index

(DAYOFWEEK), 719–720
week of year (YEARWEEK), 722
year, 722
year, month, day, 36
year, month, day, time, 36

insert statements, 35
interpretation, 35
location in manual, 170
minute, 722
month, 720
PHP scripts, 166–170
quarter of year, 721
returning (DATE()), 166–168
second, 722
seconds, converting to (SEC_TO_TIME), 730
seconds since Unix Epoch (MICROTIME()),

169–170
since UNIX time, 730
UNIX timestamp, 729–730
week, 721

DDL (Data Definition Language), 23
debugging

constant, defining to use in bitmask
(get_constant()), 345–347

described, 332–333
function, calling when error occurs

(error_handler()), 337–345
level displayed and logged, 333
simplifying (push_handler() and

pop_handler()), 337
tracking responses to types, 333–336

decimals
rounding to integer with specified number

(ROUND), 704
storing as characters (decimal), 35
truncating to D (TRUNCATE), 704

declaring variables, PHP scripts, 91–93
decomposition, 5
decrypting password, 732
default path, adding to directory

(ADD_TO_INCLUDE_PATH()), 292–293
defined constants, 149
defining, variable with specified name and

value (define()), 149
definitions, column, changing, 43–44
degrees

radians, converting segment to (RADIANS),
709

segment, converting from radian (DEGREES),
708

delete anomaly, 8, 9
deleting

all path elements but base (BASENAME()),
175

from arrays
first element (ARRAY_SHIFT()), 160
last element from array (ARRAY_POP()),

160
catalog records (DELETE_FROM_DB()), 417
control characters from URL functions

(base64_encode()), 186
Guestbook 2003 entries, 257–258
highest value (max() function), 78
HTML and PHP tags (cleanup_text()), 669
leading and trailing spaces (TRIM), 715–716
lowest value (min() function), 78
slashes from insert and update queries

(STRIPSLASHES()), 138–139
specific elements (ARRAY_SPLICE()),

156–157
from strings

HTML and PHP tags (STRIP_TAGS()),
137–138

leading spaces (LTRIM), 715
trailing-space characters (RTRIM), 715

survey questions (admin/questions.php),
298–303

from tables
data, 59–61
duplicate data (distinct clause), 70
in SQL (delete_row()), 678

dependencies, 11, 13–14

Index 741

descriptions of object. See properties
destructors, described, 219
deviation, standard of expr (STD/STDDEV), 733
differences

array functions (ARRAY_DIFF()), 159
of months in period (PERIOD_DIFF), 723

dimensions, image, 182
directory

adding to default path
(ADD_TO_INCLUDE_PATH()), 292–293

creating (MKDIR()), 174
existing, testing for (IS_DIR()), 174
functions, 621
name, returning (DIRNAME()), 174
names, character separating

(path_separator()), HTML survey, 292
disconnecting, Guestbook library

(MYSQL_DBCONNECT()), 242–243
display

active projects in project management,
544–545

file contents, 553
image matching catalog product

(THUMBNAIL()), 430
threaded discussion (display_kids()),

321–326
XML parsing, 512–518

DNS functions, 621–622
document, Web server, 688–690
documentation, PHP functions, 136–137
dollar sign ($), 91
domain-socket connection (fsock), 627
double numbers, testing for (is_double()), 113
double quotes (“), 94
double-precision floating-point numbers

(double/doubleprecision/real), 35
do...while loop, 129
duplicate data

joining tables, 85–86
removing (distinct clause), 70

E
e (base of natural logarithms) raised to the

power of X (EXP), 704
eBook version of text, 560
editing survey questions

(admin/questions.php), 298–303
editorial review, content-management system

(content/story.php), 392–394

element
adding to beginning (ARRAY_UNSHIFT()),

160
array, creating and populating with

(RANGE()), 154
first, return and remove (ARRAY_SHIFT()),

160
passing through function (ARRAY_WALK()),

161
path, cutting off all but base (BASENAME()),

175
random, picking (ARRAY_RAND()), 162–163
removing specific from arrays

(ARRAY_SPLICE()), 156–157
Ellison, Larry (Oracle founder), 3
email

address
identifying customer by

(find_customer()), 457–459
validating versus non-validating, 266

message, sending to customer
(notify_customer()), 461–462

validation, 682–688
empty

properties, leaving out (DATA_FIELDS()), 418
setting, testing variables for, 112–113
variable functions, 148–149

encoding
character-set value (CHARSET()), 238–239
control characters, undoing in URL

functions (base64_decode()), 186
undoing URL functions (urldecode()), 185
URL functions (urlencode()), 185

encryption
certificates, 481–482
described, 480–481
password, 235, 732
public-key/private-key, 481
tools, 482

end
array, adding elements to (ARRAY_PUSH()),

160
file pointer reading to (FREAD()), 172
form, 673

end of file, testing (FEOF()), 172
E-NOTICE level error message, 92
entries

deleting, 257–259
PHP configuration, 580–581

742 Index

problem script (problem.php), 464–465
viewing, 255–257

enum field, array, returning values defined in
(enum_to_array()), 679–680

envelope, SOAP (Simple Object Access
Protocol), 520–521

equals sign (=), 92
error functions

custom functions, specifying
(set_error_handler()), 187

logging (error_log()), 186–187
PHP, 186–187
reporting level (error_reporting()), 186
user-level error message, sending

(trigger_error() and user_error()),
187

error-handling
content-management system

(db_error_handler()), 368–369
threaded discussion

constant, defining to use in bitmask
(get_constant()), 345–347

described, 332–333
function, calling when error occurs

(error_handler()), 337–345
level displayed and logged, 333
simplifying (push_handler() and

pop_handler()), 337
tracking responses to types, 333–336

escape codes, translating characters into
(HTMLENTITIES() and
HTMLSPECIALCHARS()), 139

escape sequences, character, 54
examining database (show command)

columns, viewing, 46
index, viewing, 46–47
server, availability on, 44–45
statement used to create table, 47–48
table status, 47

exceptions, object-oriented programming, 219–220
executing

code stored in variable, executing (eval()),
176

functions, 622
time, 581

existence, testing for
directory (IS_DIR()), 174
file (FILE_EXISTS()), 173
of script control functions

(function_exists()), 177

expr, 733–734
eXtensible Markup Language. See XML parsing
extensions, listing loaded, 189
external files, including

described, 197–199
only once, 199–200
required files, 199

F
false. See true or false
fields, 417–418
file

adding automatically, 581–582
contents, displaying, 553
form field, 674
functions, working with, 623–625
project management database, 543–544
status, 625–626
uploading, 409–410, 545, 552
viewing, 545

file pointer
closing (FCLOSE()), 172
opening to indicated file or URL (FOPEN()),

171–172
reading to specified number of bytes or to

the end (FREAD()), 172
file system

absolute pathname, returning (REALPATH()),
175

catalog, accessing, 408
checks and then moves uploaded file

(MOVE_UPLOADED_FILE()), 175
close pointer to file (FCLOSE()), 172
copying (COPY()), 173–174
described, 170
end of file, testing (FEOF()), 172
existence, testing for (FILE_EXISTS()), 173
file name, creating (TEMPNAM()), 174
file pointer, opening to indicated file or URL

(FOPEN()), 171–172
HTTP, whether uploaded

(IS_UPLOADED_FILE()), 174
path elements, cutting off all but base

(BASENAME()), 175
PHP functions, 170–175
reading from file pointer to specified

number of bytes or to the end
(FREAD()), 172

reading line by line (FILE()), 173

continued

Index 743

file system continued
single line indicated by pointer (FGETS()),

172–173
unmask value, setting (UMASK()), 173
value of string argument, writing to file

(FWRITE()), 172
filtering, array functions, 157–158
finding

stories by author in content-management
system (function fetch_author()),
378

user postings in content-management
system (fetch_user()), 378–379

value (isset()), 112
first element, return and remove

(ARRAY_SHIFT()), 160
first normal form, 10–11
floating-point number

converting to formatted string
(NUMBER_FORMAT()), 154

double-precision, storing (double/
doubleprecision/real), 35

numeric columns, storing, 34–35
rounding down (floor()), 149
scalar, returning as (FLOATVAL()), 153
testing (is_double()), 113

flow control, 700–702
Flush commands, 590–591
font tag, HTML element functions, 671
for loop, 129–130
foreach loop, 130–131
foreign key, 19–20
form

data, inserting into database
(create_topic()), 329–332

elements
checkbox, 675
ending, 673
file field, 674
hidden element, 674
image, 675
password field, 674
radio button, 675
reset, 675
select (popup) field, 675
starting, 673
submit field, 674
text, 673
text box (textarea_field()), 673–674
text field, 674

input, blocking vandals, 231–234
PHP functions, 134
problem-tracking system

(problem_entry_form.php), 465–466
formatting

ASCII string (ORD), 709
date and time

current time as seconds (TIME_TO_SEC),
730

full name of month, 721
full name of weekday (DAYNAME), 721
hour, 722
hour, minute, second (time), 37
setting (DATE_FORMAT), 726–728
two-digit year (year[(2|4)]), 37
week beginning with Monday index

(WEEKDAY), 720
week beginning with Sunday index

(DAYOFWEEK), 719–720
week of year (YEARWEEK), 722
year, 722
year, month, day, 36
year, month, day, time, 36

shopping cart database variable
(SESSION_ENCODE()), 485

string according to C-style pattern
(SPRINTF()), 166

U.S. dollar value (money()), 670
from, replacing with to in string (REPLACE), 716
FTP functions, 641–643
function. See also specific functions listed by

type
BC math, 640
calling when error occurs

(error_handler()), 337–345
calls, indenting, 194–196
displayed and described (display_kids()),

321–326
execution, 622
GROUP BY clause, 733–734
incremental value, returning last

automatically generated, 732
reusable, threaded discussion, 321
timeout lock, 732–733

G
gate-keeping. See security
GD functions, 644–650
GD library configuration (IMAGETYPES()), 183
global variables, 205–208, 580

744 Index

grant statement, user administration, 602–604
graphical user interface. See GUI database tools
graphics. See image
group by and aggregate functions

average (avg()), 78–79
counting number of rows in each group

(count() function), 74–77
grouped rows, restricting (having

predicate), 80
highest value, removing (max() function), 78
lowest value, removing (min() function), 78
subset of columns, grouping (group by

options), 79–80
sum of given column, returning (sum()

function), 77–78
grouping, caption for (legend), HTML form

input, 569
Guestbook 2003

application, designing, 229–230
code overview, 235–236
database call, putting together

(SELECT_ENTRIES()), 253–254
database design, 234–235
defensive and text-handling functions

character-set-encoding value
(CHARSET()), 238–239

constant (FROM /GUESTBOOK2K/
GLOBALS.PHP), 241–242

header (FROM /GUESTBOOK2K/
HEADER.PHP), 240–241

malicious text, barring
(CLEANUP_TEXT()), 239

reversing text cleanup
(REVERSE_CLEANUP_TEXT()),
239–240

title tags (MAKE_PAGE_TITLE()), 240
described, 229
entries, 255–259
form input, blocking vandals, 231–234
general utility functions, 236–238
header (FROM /GUESTBOOK2K/HEADER.PHP),

240–241
library, viewing (FROM /GUESTBOOK2K/

FUNCTIONS.PHP)
arguments, printing

(PRINT_INPUT_FIELDS()), 249–250
database call, putting together

(SELECT_ENTRIES()), 253–254
disconnecting (MYSQL_DBCONNECT()),

242–243

navigational elements, creating (NAV()),
254–255

queries, writing safely
(SAFE_MYSQL_QUERY()), 243–244

query, printing (PRINT_ENTRY()),
248–249

user authentication
(GUESTBOOK_AUTHENTICATE()),
244–248

verifying user information
(CREATE_ENTRY()), 250–253

necessary pages, 230–231
scripts, 259
title tags (MAKE_PAGE_TITLE()), 240

GUI (graphical user interface) database tools,
48–52

H
handlers, session, 485
hash, one-way string (CRYPT()), 139
header

file, Barnes & Noble application, 529
functions, 627
Guestbook 2003 (FROM /GUESTBOOK2K/

HEADER.PHP), 240–241
HTML, typical, 197
HTTP, PHP functions, 179–181
including, 255–256

Heap, 41
height, image (GETIMAGESIZE()), 181
heredoc syntax, 95
hexadecimal value (HEX), 711
hidden element, form, 674
highest value, removing (max() function), 78
hot key. See access key
hours, formatting, 37, 722
HTML (HyperText Markup Language)

break, adding after each newline (NL2BR()),
141–142

element functions
anchor tag, 671
font tag, 671
image tag, 671
paragraphs, 672
subtitles, 672
unordered (bulleted list) (ul_list()), 672

escape codes, translating characters into
(HTMLENTITIES() and
HTMLSPECIALCHARS()), 139

continued

Index 745

HTML (HyperText Markup Language) continued
forms

access key, 568
browser-passed variables, accessing,

100–102
buttons with text and image, 569
caption for grouping (legend), 569
opening and closing tags (form),

561–562
overview, 562–565
select, multiple select, 565–566
Tab key (tabindex), 568
text entry (textarea), 566–567
text surrounded by thin line (fieldset),

569
4.0 character entity references, 696
functions, 627–628
removing tags

general(cleanup_text()), 669
string for use as (make_page_title()),

670
string (STRIP_TAGS()), 137–138

survey
arguments, handling, 276–281
character separating directory names

(path_separator()), 292
checkbox, default status, 290–291
directory, adding to default path

(ADD_TO_INCLUDE_PATH()), 292–293
initialization code, 293–294
site configuration, sharing information

(book_constants()), 291
tags, creating common (FROM /BOOK/

FUNCTIONS/HTML/), 281–289
text field, printing, 289–290

tables
cell tag, 673
closing tag, 672
inside paragraph tags (start_table()),

672
row tags, 672–673

user-defined functions, 671–673
HTTP (HyperText Transfer Protocol) file, testing

(IS_UPLOADED_FILE()), 174
HTTP (HyperText Transfer Protocol) header

browser or other HTTP servers,
communicating with (header()),
179–180

cookie, setting (setcookie()), 180
functions, 627

PHP functions, 179–181
text, blocking further headers

(header_sent()), 180
HyperText Markup Language. See HTML

I
ID

customer, problem-tracking system
(fetch_customer()), 454–455

getting catalog record by
(FETCH_FROM_DB()), 416–417

of new catalog image (UPLOAD()), 430
identifier, 76
if statement

checking against several conditions
(if...elseif statement), 125–126

comparison operators, 122
complex, 123–124
described, 701
syntax, 117–118
true or false, determining, 118–122
when condition is false (if...else

statement), 125
IFNULL flow control, 700–701
image

catalog
extending, 432–433
ID value of new (UPLOAD()), 430
matching display (THUMBNAIL()), 430
products (IMG()), 429–430

HTML form, 569, 671, 675
PHP functions

copying part of (IMAGECOPYRESIZED()),
181–182

creating new from image stream
(IMAGECREATEFROMSTRING()), 182

dimensions, 182
GD library configuration

(IMAGETYPES()), 183
outputting in PNG format (IMAGEPNG()),

182
thumbnails, retrieving as data stream

(EXIF_THUMBNAIL()), 183
type, checking (EXIF_IMAGETYPE()),

183
width, height, type, and text string

(GETIMAGESIZE()), 181
incremental value, returning last automatically

generated, 732

746 Index

indenting
code blocks, 192–194
described, 191
function calls, 194–196
SQL statements, 196–197

index
adding, 43
columns, creating, 37–38
described, 26
dropping, 43
string (FIELD), 718
viewing, 46–47

information
about given discussion topic, displaying

(display_topic()), 326–329
functions

assigning value to configuration option
(ini_set()), 189

configuration option (ini_get()), 189
loaded extensions

(extension_loaded()), 189
PHP environment, guide to all

(phpinfo()), 188
SAPI interface, returning

(php_sapi_name()), 189
MySQL, 588
PHP, 628

inheritance, 215–218, 420–421
initialization code, HTML survey, 293–294
InnoDB, 40–41
input

concatenating (STR_REPEAT()), 139–140
HTML forms

access key, 568
buttons with text and image, 569
caption for grouping (legend), 569
overview, 562–565
select, multiple select, 565–566
Tab key (tabindex), 568
text entry (textarea), 566–567
text surrounded by thin line (fieldset),

569
insert anomalies, 8, 10
insert queries, slashes

adding to (ADDSLASHES()), 138
removing (STRIPSLASHES()), 138–139

inserting
catalog product style (MAP_STYLE()), 429
data to tables, 53–55
date and time into columns, 35

with SQL statement, 676–677
strings, 717

installation, MySQL/PHP
Unix/Mac OS X, 575–580
Windows (Microsoft), 571–575

integer
ASCII-code values of (CHAR), 711
rounding to integer with specified number

of decimal places (ROUND), 704
scalar, returning (INTVAL()), 153
storing (int/integer, tinyint,

mediumint, bigint), 34
testing variables for (is_int()), 113

interfaces, 23, 211–212

J
joining tables

to copy of itself (self), 85–86
correlated subqueries, 86–87
multiple tables, 81–82
outer join, 82–85
queries, returning in one result set

(union), 86
two (equi-join), 80–81

K
key

in array, returning all (ARRAY_KEYS()), 158
arrays, seeking (ARRAY_KEY_EXISTS()),

159–160
foreign, 19–20
primary, defined, 10, 11
two-dimensional arrays, 99
and values, exchanging (ARRAY_FLIP()),

155–156
whether exists in array

(ARRAY_KEY_EXISTS()), 158
key/value pair

array, returning (EACH()), 161
pulling from array and making into

standalone variables (EXTRACT()),
153–154

killing sessions (SESSION_DESTROY()), 485

L
language construct, 165, 177
large strings, storing, 31–32
largest argument (GREATEST), 708
largest integer value not greater than X (FLOOR),

703

Index 747

last array element, return and remove
(ARRAY_POP()), 160

leading and trailing spaces, removed (TRIM),
715–716

leading spaces, removed from string (LTRIM),
715

leaving out empty properties (DATA_FIELDS()),
418

leftmost len characters (LEFT), 713–714
left-padded string (LPAD), 713
len characters, 713–714
length, string functions, 712
level

errors displayed and logged, 333
threaded discussion, simplifying

(push_handler() and pop_handler()),
337

library, Guestbook 2003
arguments, printing

(PRINT_INPUT_FIELDS()), 249–250
database call, putting together

(SELECT_ENTRIES()), 253–254
disconnecting (MYSQL_DBCONNECT()),

242–243
navigational elements, creating (NAV()),

254–255
printing query (PRINT_ENTRY()), 248–249
user authentication

(GUESTBOOK_AUTHENTICATE()),
244–248

verifying user information
(CREATE_ENTRY()), 250–253

writing safe queries
(SAFE_MYSQL_QUERY()), 243–244

limited potential values (enum), text strings,
storing, 32

line, single, 172–173
Linux, CD, back-of-the-book, 557
list

of catalog fields (FIELDLIST()), 417–418
of categories or specific products, printing

(DISPLAY.PHP), 492–493
of databases (show databases), 45

listing
catalog products mappings

(LIST_MAPPED_STYLES()), 426–428
children, catalog products class, 423–424
unmapped root-level catalog styles

(LIST_UNMAPPED_STYLES()), 425

literal patterns, 659–660
logarithm

base-10 (LOG10), 705
e raised to the power of X (EXP), 704
natural logarithm (LOG), 705

logging
error functions (error_log()), 186–187
Flush activities, 591

logical operator, 123
loops, 127–132
lowercase

characters, changing to (LCASE), 718
string, changing to (STRTOLOWER()), 141

lowest values, removing (min() function), 78

M
M remainder of # divided by (MOD), 703
Macintosh, 557, 575–578
MacSQL, 50–52
mailing lists, 692, 695–696
malicious text, barring (CLEANUP_TEXT()), 239
many-to-many relationships, 17–19
mappings, retrieving catalog

(LIST_MAPPED_STYLES()), 426–428
match

array, returning (PREG_GREP()), 147
field value, getting all (FETCH_ALL()), 417
string to a pattern (PREG_MATCH_ALL()),

148
testing string (ereg()), 143–144

mathematical functions
arc cosine (ACOS), 706
arc sine (ASIN), 706
arc tangent (ATAN), 706
arc tangent of two arguments (ATAN2), 707
base-10 logarithm (LOG10), 705
BC, 640
cosine (COS), 706
cotangent (COT), 707
dates (DATE_ADD), 723–725
described, 628–632
difference of months in period

(PERIOD_DIFF), 723
e raised to the power of X (EXP), 704
largest argument (GREATEST), 708
largest integer value not greater than X

(FLOOR), 703
months, adding to period (PERIOD_ADD),

722–723

748 Index

natural logarithm (LOG), 705
negative or positive (SIGN), 702
non-negative square root (SQRT), 705
pi, approximating, 705
raising to power of Y (POW), 705
random floating-point value (RAND), 707
remainder of # divided by M (MOD), 703
rounding to integer and specified number of

decimal places (ROUND), 704
segments, 708–709
sine (SIN), 706
smallest argument (LEAST), 707–708
smallest integer value not greater than X

(CEILING), 703
tangent (TAN), 706
truncating to D decimals (TRUNCATE), 704
X, absolute value of, 702

MD5 checksum, calculating string, functions
(MySQL), 732

measuring string (ELT), 718
merging arrays (ARRAY_MERGE()), 156
message, sending error (trigger_error() and

user_error()), 187
method

defined, 209
object/class functions, whether defined

(method_exists()), 164
overloading (__GET() and __CALL()),

430–431
static variables, using (DBH()), 413–414

Microsoft Windows. See Windows (Microsoft)
Midgard project, 694
minimum value/maximum value, returning

random number (mt_rand()), 178
Monday, week beginning (WEEKDAY), 720
month

day of, 720
difference of in period (PERIOD_DIFF), 723
full name of, 721

moving file, after checking uploaded
(MOVE_UPLOADED_FILE()), 175

multiple conditions, 125–127
multiple occurrences, regular expressions,

663–665
multiple select, HTML form input, 565–566
multiple tables, deleting data, 60
multiple while loop, 129
multi-statement transaction (TRANSACTION()),

421–422

MyISAM, 39–40
MySQL

checking for alive and running, daemon,
588

PHP functions, 179
resources, 695–696

MySQL Control Center, 50
mysqldump, 591–595

N
name

absolute pathname, returning (REALPATH()),
175

catalog table, returning (FETCH_SIMPLE()),
415–416

of class, returning (get_class()), 164
database

creating, 26–27
current, 730

directory
character separating

(path_separator()), HTML survey,
292

returning (DIRNAME()), 174
file, creating (TEMPNAM()), 174
index, 37
of month, 721
state, assigning, 670
tables, changing, 41–42
username, current, 731
and value of all defined constants

(get_defined_constants()), 149
variable, defining (define()), 149
weekday (DAYNAME), 721

natural logarithm
e raised to the power of X (EXP), 704
function (LOG), 705

navigational elements, Guestbook 2003 library,
254–255

negative number (SIGN), 702
Netscape tag references, 696
new project, creating, 545
new record, creating (CREATE_RECORD()), 419
newline operator

errors, 196
HTML break, adding after (NL2BR()),

141–142
non-negative square root (SQRT), 705

Index 749

normalization
multi-column primary keys (second normal

form), 11–13
table structure (first normal form), 10–11
transitive dependencies (third normal form),

13–14
notes, adding to catalog products, 424–425
notifying survey winner (admin/winners.php),

303–304
NULL value

allowing or forbidding, 28
checking content for (nullop()), 373–374
E-NOTICE level error message, 92
flow control based on, 701–702
outer joins, 82–85
tables, 24–25
variables, testing for, 113

number of rows in each group, counting
(count() function), 74–77

numbers
columns, storing

decimals as characters (decimal), 35
described, 33
double-precision floating-point (double/

doubleprecision/real), 35
floating-point (float), 34–35
integers (int/integer, tinyint,

mediumint, bigint), 34
converting

bases (CONV), 710
floating-point to formatted string

(NUMBER_FORMAT()), 154
random, generating, 177–178, 632
variable functions, testing (is_array(),

is_numeric(), and is_string()), 148
NuSOAP

application goals, determining, 527–528
Babelfish application, 532–534
Barnes & Noble application, 528–531
described, 524–526
server application, writing, 534–535
service call, sample, 526–527

NuSphere, 572

O
object

cloning, 218–219
determining (is_object()), 164

functions
described, 163–164
determining (is_object()), 164
method, whether defined

(method_exists()), 164
testing for (is_object()), 114
type other than, testing for (is_scalar()),

114
object-oriented programming

catalog code, 408
classes, 210–218
described, 209–210
destructors, 219
exceptions, 219–220
object cloning, 218–219
theory, 410–411

octal value (OCT), 710
one-to-many relationships, 15–16
one-to-one relationships, 16–17
one-way hash of string, returning (CRYPT()),

139
opening tags, HTML forms (form), 561–562
or

bitwise of all bits in expr (BIT_OR), 733
regular expressions, specifying, 665

Oracle database, 3–4, 19
order

of columns, 42
of rows, specifying, 73
shopping cart, 491–492

OS X, 575–578
outer join, tables, 82–85
output buffering, 187–189
outputting

argument string and then terminating script
(die()), 176

image in PNG format (IMAGEPNG()), 182
overloading methods (__GET() and __CALL()),

430–431

P
pages, maintaining state between. See session
paragraph, HTML, 672
parser, 194, 508–509
password

form field, 674
function, 731
getting from browser or verifying against

database table (authenticate()), 669

750 Index

guestbook, verifying, 257–258
strings, encrypting and decrypting, 732
validation, content-management system

(connect_validate_login()),
374–375

path
absolute pathname, returning (REALPATH()),

175
elements, cutting off all but base

(BASENAME()), 175
including, 582

pattern matching
case-insensitive (split()), 155
replacing string based on complex

(EREG_REPLACE()), 144–145
to series of known characters, 659–660
string (PREG_MATCH_ALL()), 148
wildcard characters (LIKE and NOT LIKE),

697
Payflow Pro functions, 651
PCRE (Perl-compatible regular expression)

array of matched subpatterns, assigning
(PREG_MATCH()), 147

array, returning match (PREG_GREP()), 147
benefits of using, 146
functions, 633–634
replacements (PREG_REPLACE()), 147
string for matches to a pattern

(PREG_MATCH_ALL()), 148
PDF functions, 651–658
PEAR (PHP Extension and Application

Repository)
connection, database (db_connect()), 670
described, 224, 361–365
functions, 693–694
persistent connection, content-management

system (db_connect()), 365–368
Perl regular expression string, transforming

into array (PREG_SPLIT()), 152–153
Perl-compatible regular expression. See PCRE
phone number, identifying customer by,

457–459
Phorum discussion server, 694
PHP

control structures
conditions, checking against multiple

(switch...case), 126–127
if statement, 117–126
loops, 127–132

environment, guide to all (phpinfo()), 188

functions
arguments, 134–135
array, 155–163
date/time, 166–170
described, 133
documentation, 136–137
error, 186–187
file system, 170–175
form, 134
HTTP header, 179–181
image, 181–184
MySQL, 179
object/class, 163–164
output buffering, 187–189
print, 164–166
random number generator, 177–178
regular expression, 142–148
return values, 135–136
script control, 175–177
session, 179
string handling, 137–142
URL, 184–186
variable, 148–155

information functions, 628
resources

mailing lists, 692
Midgard project, 694
PEAR, 693–694
Phorum discussion server, 694
PHPBuilder, 693
PHPclasses, 694
phpMyAdmin on Sourceforge, 693
php.net Web site, 691
Web-development site, 694
Webmonkey Web site, 695
zend.com Web site, 692–693

scripts
browser-passed variables, accessing,

100–107
built-in variables, 108–112
testing variables, 112–114
variable types, changing, 114–115
variable variables, 115–116
variables, assigning simple, 91–99

tags
removing (cleanup_text()), 669
removing from string (STRIP_TAGS()),

137–138
variables, creating (SESSION_DECODE()), 485
version, 188

Index 751

PHP Extension and Application Repository.
See PEAR

phpdev bundle, 571–572
pi, approximating, 705
picture. See image
placeholders, 369
PNG image format, 182
popup form field, 675
position

of last occurrence of search character in
string (STRPOS()), 140–141

of string (LOCATE, STRPOS()), 712–713
of substring (INSTR), 713

positive number (SIGN), 702
postings, finding users’ (fetch_user()),

378–379
predicate values, retrieving with (in/not in),

71–72
preventative measures. See security
price, catalog products class, 423
primary keys

defined, 10, 11
index, creating, 37–38
multi-column (second normal form), 11–13
repeating groups of data versus, 14
replace statement, 61–63

print functions
basic (PRINT()), 165
described, 164–165
language construct (ECHO()), 165
string, formatting according to C-style

pattern (SPRINTF()), 166
variable

contents of (VAR_DUMP()), 166
printing entire contents to screen

(PRINT_R()), 166
printing

catalog
child products, 437–439
product, 435–436
styles, 436–437

Guestbook 2003 library
arguments (PRINT_INPUT_FIELDS()),

249–250
query (PRINT_ENTRY()), 248–249

HTML survey text field, 289–290
shopping cart categories or products

(DISPLAY.PHP), 492–493
private-key encryption, 481

privileges, Flush, 591
problems, data-storage methods. See anomalies
problem-tracking system

blocking, needed, 444
code overview, 452
customer ID (fetch_customer()), 454–455
customer, identifying by phone number or

email address (find_customer()),
457–459

database design, 444–452
described, 441–442
email, sending to customer

(notify_customer()), 461–462
necessary elements, 442–444
problem and related information

(fetch_problem()), 455–456
scripts

customer response
(write_customer.php), 466–473

enter or updating problem
(problem.php), 464–465

form (problem_entry_form.php),
465–466

staff members, logging in
(staff/problems.php), 473–475

staff table (fetch_staff()), 453–454
status, tracking (status_change()),

462–464
updates, entering (history_entry()),

459–461
procedural code, 21–22, 220–221
process, ending, 590
products

catalog records
constructor (__CONSTRUCT()), 422–423
ID value of new image (UPLOAD()), 430
image matching display (THUMBNAIL()),

430
images (IMG()), 429–430
LIST_ALL_CHILDREN() and

LIST_CHILDREN(), 423–424
mappings, retrieving

(LIST_MAPPED_STYLES()), 426–428
notes, adding (ADD_NOTES()), 424–425
overloading methods (__GET() and

__CALL()), 430–431
PRICE(), 423
record, saving (WRITE_TO_DB()),

428–429

752 Index

style, inserting (MAP_STYLE()), 429
unmapped root-level styles, retrieving

(LIST_UNMAPPED_STYLES()), 425
printing

catalog, 435–436
list in shopping cart (DISPLAY.PHP),

492–493
project management

application goals, 537–541
code

active projects, showing, 544–545
authentication, 546–548
file contents, displaying, 553
logging in and establishing session, 544
new project, creating, 545
projects’ status, viewing, 548–552
session management, 545–546
uploading files, 545, 552
user, adding, 545
viewing files, 545

database design
application users, 542
described, 541
files, 543–544
mapping to users, 543
projects, 542
status, 542
tasks, 543
user types, 541–542

properties
array of (get_object_vars()), 164
defined, 209
empty, leaving out (DATA_FIELDS()), 418
value, setting in catalog classes (BUILD()),

414
protocol, encryption and security, 482
public-key encryption, 481

Q
query

common, dealing with, 676–680
for later-named table

(FETCH_SIMPLE_QUERY()), 415
laying out in table (select_to_table()),

679
printing (PRINT_ENTRY()), 248–249
returning in one result set (union), 86
shorthand (db_values_array()), 372–373
writing safely (SAFE_MYSQL_QUERY()),

243–244

questions, survey, 298–303
quotation marks, magic, 581

R
radians

degrees, converting segment from, 709
segment, converting to degrees, 708

radio button, 675
raising to power of Y (POW), 705
random array elements

creating (SHUFFLE()), 163
picking (ARRAY_RAND()), 162–163

random floating-point value (RAND), 707
random number generator, 177–178, 632
random winner, drawing (admin/

get_winner.php), 303
range, retrieving values within (between),

70–71
reading

file line by line (FILE()), 173
from file pointer to specified number of

bytes or to the end (FREAD()), 172
record

catalog
classes, updating (UPDATE_RECORD()),

419
creating (CREATE_RECORD()), 419
deleting (DELETE_FROM_DB()), 417
getting by ID value (FETCH_FROM_DB()),

416–417
returning single (FETCH_RECORD()), 416
saving (WRITE_TO_DB()), 428–429

content-management system
getting (db_fetch_record()), 369–372
story (fetch_story()), 375–376

shopping cart tree structure, 488–490
recording most recent changes in date and time

columns (timestamp), 36
referential integrity, 19–20
regular expression

character classes, 661–663
characters, 660–661
described, 659
example, 665–667
functions

altering to use in case-insensitive
expressions (sql_regcase()),
145–146

described, 142–143, 633

continued

Index 753

regular expression continued
match, testing string (ereg()), 143–144
PCRE, 146–148, 633–634
string, replacing based on complex

patterns (EREG_REPLACE()), 144–145
multiple occurrences, 663–665
patterns, matching to series of known

characters (literal patterns), 659–660
Perl string, transforming into array

(PREG_SPLIT()), 152–153
specifying “or”, 665
string expression, matching (REGEXP and

NOT REGEXP), 698
string, transforming into array (SPLIT()),

151–152
relational databases, benefits of, 3–5
relationships, database design

many-to-many, 17–19
one-to-many, 15–16
one-to-one, 16–17

reloading user grants, 605
remainder of # divided by M (MOD), 703
removing. See deleting
repeating string, 717
replacing

arguments in strings (STR_REPLACE()), 140
non-alphanumeric characters in URL

functions (rawurlencode()), 185
PCRE (PREG_REPLACE()), 147
string based on complex patterns

(PREG_REPLACE()), 144–145
table data, 61–64

reporting level, error functions
(error_reporting()), 186

request
shopping cart code, 487–488
SOAP, 522–523

required files, 199
reset form, 675
resource

testing for (is_resource()), 114
type other than, testing for (is_scalar()),

114
response

SOAP, 523
tracking, 333–336

restricting
grouped rows (having predicate), 80
number of rows returned (limit), 73

retrieving
handlers (SESSION_SET_SAVE_HANDLER()),

485
limited rows (where clause) from table,

67–70
mappings, catalog products

(LIST_MAPPED_STYLES()), 426–428
table data (select), 64–67
unmapped root-level styles, catalog

products (LIST_UNMAPPED_STYLES()),
425

values
with predicate (in/not in), 71–72
within a range (between), 70–71
with wildcard characters (like

clause), 72
return values

generated by called function, in original
order (ARRAY_MAP()), 158–159

PHP functions, 135–136
user-defined functions, 203–205

reusable functions, 321
reversing

character order (REVERSE), 717
string (STRREV()), 141
text cleanup (REVERSE_CLEANUP_TEXT()),

Guestbook 2003, 239–240
revoke statement, user privileges, 602, 604
rightmost len characters (RIGHT), 714
right-padded string (RPAD), 713
rights, granting to users, 597–598
ROLLBACK() catalog classes, 422
rounding

floating-point (floor()) variable functions,
149

to integer and specified number of decimal
places (ROUND), 704

row
counting number in each group (count()

function), 74–77
grouped, restricting (having predicate), 80
HTML tags, 672–673
restricting number returned (limit

parameter), 73
retrieving limited (where clause) from table,

67–70
specifying order returned (order by

command), 73
Runtime Labs, 50

754 Index

S
SAPI (Server Application Programming

Interface), 189
saving

catalog class values (WRITE_TO_DB()), 420
record (WRITE_TODB()), catalog products

class, 428–429
scalar variable, returning as integer or

floating-point variable (INTVAL() and
FLOATVAL()), 153

screen, variable, printing entire contents
(PRINT_R()), 166

script
control functions

argument string, outputting and then
terminating script (die()), 176

code stored in variable, executing
(eval()), 176

function’s arguments, obtaining
information (func_get_arg(),
func_get_args(), and
func_num_args()), 176–177

language constructs (include(),
include_once(), require(), and
require_once()), 177

testing for existence
(function_exists()), 177

user-defined function, 176
Guestbook 2003, 259
problem-tracking system

customer response
(write_customer.php), 466–473

enter or updating problem
(problem.php), 464–465

form (problem_entry_form.php),
465–466

staff members, logging in
(staff/problems.php), 473–475

sample catalog, 434–439
shopping cart

checkout, 495–504
creating cart (CART.PHP), 493–495
list of categories or specific products,

printing (DISPLAY.PHP), 492–493
terminating after outputting argument

string (die()), 176
searching, full-text, string comparison

functions (MATCH...AGAINST), 699
second normal form, 11–13

seconds
converting time to (SEC_TO_TIME), 730
formatting current time (TIME_TO_SEC), 730
since Unix Epoch (MICROTIME()), 169–170

security
catalog, determining, 402–403
certificates, 481–482
content-management system, 353–355
described, 480–481
global variables, problems with, 101
malicious text, barring (CLEANUP_TEXT()),

239
password, 235, 732
problem-tracking system, 444
public-key/private-key, 481
reversing text cleanup

(REVERSE_CLEANUP_TEXT()), 239–240
secure protocol, 482
shopping cart, 479
survey application, 265–266
threaded discussion, 314–315
tools, 482

seeding random number generator
(mt_srand()), 178

segment
degrees, converting to radians (RADIANS),

709
radians, converting to degrees (DEGREES),

708
select

form field, 675
HTML form input, 565–566
query, testing, 124

selecting database values
(db_fetch_record()), 670

self join tables, 85–86
self-made character classes, 662–663
sending

email to customer (notify_customer()),
461–462

error message (trigger_error() and
user_error()), 187

server
application, writing, 534–535
availability on, 44–45
HTTP, communicating with (header()),

179–180
version, finding, 731

Server Application Programming Interface.
See SAPI

Index 755

service call, 526–527
session

browser-passed variables, accessing,
106–107

establishing, 544
functions, 635–637
handling, user-defined functions, 680–682
PHP functions, 179
project management code, 545–546
settings, changing, 582
shopping cart

database variable format
(SESSION_ENCODE()), 485

described, 483
handlers, storing, retrieving,

and writing custom
(SESSION_SET_SAVE_HANDLER()),
485

killing (SESSION_DESTROY()), 485
PHP variables, creating

(SESSION_DECODE()), 485
start (SESSION_START()), 485

sharing information (book_constants()), 291
shopping cart

Apache, configuring for credit-card
authorization, 482–483

application scope and goals, 477–479
code classes, 486–492
credit-card processor, 486
data, 479–480
encryption and security configuration,

480–482
scripts

checkout, 495–504
creating cart (CART.PHP), 493–495
printing categories or specific products

(DISPLAY.PHP), 492–493
sessions, 483–485

Simple Object Access Protocol. See SOAP
Simplexml, 509–511
sine (SIN), 706
single record, returning (FETCH_RECORD()), 416
site configuration, sharing information

(book_constants()), HTML survey,
291

Slashdot headline, 511–512
slashes

adding to insert and update queries in
strings (ADDSLASHES()), 138

insert and update queries, adding to
(ADDSLASHES()), 138

removing from insert and update queries
(STRIPSLASHES()), 138–139

Sleepycat software, 41
smallest argument (LEAST), 707–708
smallest integer value not greater than X

(CEILING), 703
SOAP (Simple Object Access Protocol)

body, 521–522
complex data types, 523–524
described, 519
envelope, 520–521
NuSOAP

application goals, determining, 527–528
Babelfish application, 532–534
Barnes & Noble application, 528–531
described, 524–526
server application, writing, 534–535
service call, sample, 526–527

request, 522–523
response, 523

socket domain connection (fsock), 627
sorting

by any column type (order by), 73
array by ascending or alphabetical order, 163

soundex string, 716
space character (#), 717
SQL statements

indenting, 196–197
running

insert, 676–677
update, 677–678

square root, non-negative (SQRT), 705
staff members

logging in (staff/problems.php),
473–475

table (fetch_staff()), 453–454
stages, content-management system, looking up

(stage(), stage_id(), stages()),
379–380

standard deviation of expr (STD/STDDEV), 733
start

form, 673
output buffering (OB_START()), 188
shopping cart session (SESSION_START()),

485
state name function, 670
statement used to create table, 47–48

756 Index

status
file, 625–626
information commands, 587–590
MySQL, 589
problem-tracking system, tracking

(status_change()), 462–464
project, viewing, 548–552
table, 47
tasks within projects, 542

stopping sessions (SESSION_DESTROY())
stored procedures, 21–22
storing, handlers

(SESSION_SET_SAVE_HANDLER()),
shopping cart session, 485

story, content-management system
finding by author (function

fetch_author()), 378
record, getting (fetch_story()), 375–376
table of, creating or updating

(write_story()), 382–387
version, getting (fetch_story_version()),

376–378
stream, image, 182
string

argument, value writing to file (FWRITE()),
172

array elements, concatenating (JOIN()), 154
array, turning into (IMPLODE()), 151
cleaning up for use as HTML tag

(make_page_title()), 670
connection, content-management system,

362–365
date, 36
delimiting, PHP scripts, 94–96
encrypting for Unix, 731–732
formatting according to C-style pattern

(SPRINTF()), 166
match, testing for (ereg()), 143–144
for matches to a pattern

(PREG_MATCH_ALL()), 148
MD5 checksum, calculating, 732
one-way hash, returning (CRYPT()), 139
password, encrypting and decrypting, 732
Perl regular expression string, transforming

into array (PREG_SPLIT()), 152–153
regular expression, transforming into array

(SPLIT()), 151–152
replacing based on complex patterns

(EREG_REPLACE()), 144–145

transforming into array (EXPLODE()),
150–151

type of variable, returning as (GETTYPE()),
153

URL functions, encoding (urlencode()),
185

variable functions, testing (is_array(),
is_numeric(), and is_string()),
148

zero-length, 24
string functions

ASCII-code value, 709
character count (STRLEN()), 140
comparison

full string (STRCMP), 699
full-text searching (MATCH...AGAINST),

699
string expression, matching against

regular expression (REGEXP and NOT
REGEXP), 698

wildcard characters, pattern matching
(LIKE and NOT LIKE), 697

concatenation of arguments (CONCAT),
711–712

conversion
capitalization (STRTOLOWER(),

STRTOUPPER(), UCFIRST(), and
UCWORDS()), 141

character order, reversing (REVERSE), 717
from, replacing with to (REPLACE), 716
HTML break, adding after each newline

(NL2BR()), 141–142
HTML escape codes, translating

characters into (HTMLENTITIES()
and HTMLSPECIALCHARS()), 139

lower case, changing characters to
(LCASE), 718

numbers, converting bases (CONV), 710
replacing arguments (STR_REPLACE()),

140
reversing (STRREV()), 141

hexadecimal value (HEX), 711
HTML and PHP tags, removing

(STRIP_TAGS()), 137–138
index (FIELD), 718
input, concatenating (STR_REPEAT()),

139–140
INSERT, 717

continued

Index 757

string functions continued
integers, ASCII-code values of (CHAR), 711
leading and trailing spaces, removed (TRIM),

715–716
leading spaces, removed (LTRIM), 715
leftmost len characters (LEFT), 713–714
left-padded (LPAD), 713
len characters long (SUBSTRING), 714
length, 712
manipulation, 610–614
measuring (ELT), 718
octal value (OCT), 710
one-way hash of string, returning

(CRYPT()), 139
position

of last occurrence of search character
(STRRPOS()), 140–141

LOCATE, 712–713
STRPOS(), 140
of substring (INSTR), 713

repeating certain number of times (REPEAT),
717

returning as binary value (BIN), 710
rightmost len characters (RIGHT), 714
right-padded (RPAD), 713
slashes, 138–139
soundex string, 716
space characters (#), 717
specially-formatted ASCII string (ORD), 709
STRCHR() and STRSTR(), 140
substring, returning (SUBSTR()), 141
SUBSTRING_INDEX, 714–715
text, image (GETIMAGESIZE()), 181
trailing-space characters, removed (RTRIM),

715
upper case, changing characters to (UCASE),

719
white spaces, trimming (TRIM()), 139

style, catalog
class, 433–434
inserting (MAP_STYLE()), 429
printing, 436–437

submit field, form, 674
subpattern, 147
subqueries, correlated, 86–87
subset of columns, grouping (group by

options), 79–80
substring

position (INSTR), 713
returning (SUBSTR()), 141

SUBSTRING_INDEX, 714–715

subtitles, HTML element, 672
sum of given column, returning (sum()

function), 77–78
Sunday, week beginning (DAYOFWEEK), 719–720
superset, text values (set), 32–33
survey application

claim code, checking (claim.php), 304–308
code overview, 270–273, 274–276
database design, 266–270
described, 294–298
HTML functions

arguments, handling, 276–281
character separating directory names

(path_separator()), 292
checkbox, default status, 290–291
directory, adding to default path

(ADD_TO_INCLUDE_PATH()), 292–293
initialization code, 293–294
site configuration, sharing information

(book_constants()), 291
tags, creating common (FROM

/BOOK/FUNCTIONS/HTML/), 281–289
text field, printing, 289–290

questions, adding, editing and deleting
(admin/questions.php), 298–303

random winner, drawing
(admin/get_winner.php), 303

scope and goals, 261–266
winner, notifying (admin/winners.php),

303–304
system requirements, back-of-the-book CD, 557

T
table

BerkeleyDB, 40–41
catalog

inherited classes (LEGAL_VALUES()),
420–421

query for later-named
(FETCH_SIMPLE_QUERY()), 415

columns
adding, 42
definitions, changing, 43–44
dropping, 43
types, 29–37

content-management system
authors (write_author()), 381–382
building for workflow stages

(stage_table_name()), 380–381
of stories, creating or updating

(write_story()), 382–387

758 Index

creating, 26–29, 47–48
data storage, simple and problematic, 6
default working, defining (use command), 27
deleting data, 59–61
described, 600–601
eliminating duplicate data (distinct

clause), 70
Flush, 591
group by and aggregate functions, 74–80
Heap, 41
HTML tags

cell, 673
closing, 672
row, 672–673
table inside paragraph

(start_table()), 672
indexes

adding, 43
creating, 37–38
dropping, 43

InnoDB, 40–41
inserting data, 53–55
interfaces, 23
joining, 80–87
MyISAM, 39–40
name

changing, 41–42
returning result (FETCH_SIMPLE()),

415–416
null values, 24–25
query, laying out in (select_to_table()),

679
replacing data, 61–64
retrieving values

with predicate (in/not in), 71–72
within a range (between), 70–71
select statement, 64–67
with wildcard characters (like clause), 72

rows
restricting number returned (limit

parameter), 73
retrieving limited (where clause), 67–70
returned, restricting number (limit), 73
specifying order returned (order by

command), 73
selecting values (db_fetch_record()), 670
separating into multiple new, 5
SQL, deleting from (delete_row()), 678
staff (fetch_staff()), 453–454
status (show command), 47

updating data, 55–59
user, 599–600
username and password, verifying against

(authenticate()), 669
viewing, 45

table structure (first normal form), 10–11
tags

creating common for HTML survey (FROM
/BOOK/FUNCTIONS/HTML/), 281–289

HTML and PHP, removing
(cleanup_text()), 669

Netscape references, 696
string, cleaning up for use as HTML

(make_page_title()), 670
title (MAKE_PAGE_TITLE()), 240

tangent (TAN), 706
tasks

project management database, 543
status, project management database, 542

terminating
command (G), 176
script after outputting argument string

(die()), 176
testing

for array (is_array()), 113
for Boolean (is_bool()), 113–114
end of file (FEOF()), 172
for existence

of directory (IS_DIR()), 174
of file (FILE_EXISTS()), 173
of script control functions

(function_exists()), 177
for floating-point or double number

(is_double()), 113
for NULL value (nullop()), 373–374
for object (is_object()), 114
for resource (is_resource()), 114
for text string (is_string()), 113
for type of variable (gettype()), 114
for type other than array, object, or resource

(is_scalar()), 114
variable functions for type (is_array(),

is_numeric(), and is_string()),
148

variables
for empty setting, 112–113
for integer (is_int()), 113
for NULL, 113
value, finding (isset()), 112

whether values identical, 119

Index 759

text
buttons, 569
form, 673
HTTP, blocking further headers

(header_sent()), 180
manipulating with user-defined functions,

669–670
testing contents, 119–121

text box, form (textarea_field()), 673–674
text entry, HTML form input (textarea),

566–567
text field

form, 674
printing, HTML survey, 289–290

text file, address book, creating, 4
text string

image function (GETIMAGESIZE()), 181
storing

char, 30
described, 29
large strings and binary objects

(tinytext/tinyblob, text/blob,
mediumtext/mediumblob,
longtext), 31–32

limited potential values (enum), 32
values, defined superset (set), 32–33
varchar, 30

testing for (is_string()), 113
third normal form, 13–14
threaded discussion

application scope and goals, 312–316
code, main functions, 320–321
data, 316–320
described, 311–312
error-handling and debugging

constant, defining to use in bitmask
(get_constant()), 345–347

described, 332–333
function, calling when error occurs

(error_handler()), 337–345
level displayed and logged, 333
simplifying (push_handler() and

pop_handler()), 337
tracking responses to types, 333–336

form data, inserting into database
(create_topic()), 329–332

function displayed and described
(display_kids()), 321–326

information about given topic, displaying
(display_topic()), 326–329

reusable functions, 321

threads, viewing active, 589–590
thumbnails images, 183, 430
time, current (CURTIME), 729
timeout lock, 732–733
timestamp, UNIX, 729–730
title, Guestbook 2003 tags

(MAKE_PAGE_TITLE()), 240
to, replacing from in string (REPLACE), 716
token replacement, 369
topic, information about given topic, displaying

(display_topic()) threaded discussion,
326–329

tracking error responses, 333–336
transaction, 20–21, 421–422
translating, escape code characters into HTML

(HTMLENTITIES() and
HTMLSPECIALCHARS()), 139

tree structure, 488–490
trimming white space, 139
triple equals sign (===), 93
troubleshooting, CD, back-of-the-book, 560
true or false

if statement, 118–122
variable functions (isset()), 148
whether key exists in array

(ARRAY_KEY_EXISTS()), 158
truncating to D decimals (TRUNCATE), 704
turning off, output buffering (OB_END_CLEAN(),

OB_END_FLUSH()), 188
two-digit year format (year[(2|4)]), date and

time columns, 37
two-dimensional arrays, assigning, PHP

scripts, 99
type

image, checking (EXIF_IMAGETYPE()), 183
image function (GETIMAGESIZE()), 181
of variable

returning as string (GETTYPE()), 153
setting, 634–635
testing (is_array(), is_numeric(),

and is_string(), gettype()),
114, 148

type-conversion functions
array

creating and populating with elements
(RANGE()), 154

turning into string (IMPLODE()), 151
array elements

concatenating in a string (JOIN()), 154
converting into variables (COMPACT()),

153

760 Index

case-insensitive pattern match (split()),
155

comparing variables, 92–93
described, 149–150
floating-point numbers, converting to

formatted string (NUMBER_FORMAT()),
154

key/value pairs, pulling from array and
making into standalone variables
(EXTRACT()), 153–154

Perl regular expression string, transforming
into array (PREG_SPLIT()), 152–153

regular expression string, transforming into
array (SPLIT()), 151–152

scalar variable, returning as integer or
floating-point variable (INTVAL() and
FLOATVAL()), 153

setting to specified (SETTYPE()), 153
string, transforming into array (EXPLODE()),

150–151
type of variable, returning as string

(GETTYPE()), 153

U
unencoding non-alphanumeric characters in

URL functions (rawurldecode()), 185
Uniform Resource Locator. See URL
Unix

CD, back-of-the-book, 557
epoch, time since, 730
installation, MySQL/PHP

described, 575–578
PHP/Apache, 578–580

seconds since Epoch (MICROTIME()),
169–170

string, encrypting, 731–732
timestamp, 729–730

unmapped root-level styles, retrieving
(LIST_UNMAPPED_STYLES()), 425

unmask value, setting (UMASK()), 173
unordered (ul_list()), 672
unsetting variable functions, 148
update

anomalies, 5, 8
SQL statements, running, 677–678

update queries
adding slashes (ADDSLASHES()), 138
removing slashes (STRIPSLASHES()),

138–139
testing, 124

updating
catalog record (UPDATE_RECORD()), 419
content-management system

authors table (write_author()),
381–382

stories table (write_story()),
382–387

data in tables, 55–59
problem-tracking system

individual entries (history_entry()),
459–461

script (problem.php), 464–465
uploaded file

check and then move
(MOVE_UPLOADED_FILE()), 175

HTTP, checking (IS_UPLOADED_FILE()),
174

uploading files
to catalog, 409–410
project management, 545, 552

uppercase
letters, changing (STRTOLOWER(),

STRTOUPPER(), UCFIRST(), and
UCWORDS()), 141

string, changing (STRTOLOWER(),
STRTOUPPER(), UCFIRST(), and
UCWORDS()), 141

URL (Uniform Resource Locator)
control characters, 186
described, 184–185
file pointer, opening to indicated (FOPEN()),

171–172
non-alphanumeric characters, 185
string, encoding (urlencode()), 185
undoing encoding (urldecode()), 185

U.S. dollar value, formatting (money()), 670
user

error message, sending (trigger_error()
and user_error()), 187

postings, finding all (fetch_user()),
378–379

project management database
adding information, 545
design, 542
mapping, 543
types, 541–542
verifying information

(CREATE_ENTRY()), 250–253
validating (connect_validate_login()),

374–375

Index 761

user administration
database table, 600–601
grant statement, 602–604
reloading grants, 605
revoke statement, 602, 604
rights, granting, 597–598
tables_priv, 601–602
user table, 599–600
viewing grants, 604

user authentication
content-management system

(content/authenticate.php),
387–389

getting from browser or verifying against
database table (authenticate()), 669

Guestbook 2003 library
(GUESTBOOK_AUTHENTICATE()),
244–248

user-defined function
arguments, variable number of, 205–206
authentication and text manipulation,

669–670
basics, 200–203
calling (call_user_func()), 176
database, working with, 670–671
email validation, 682–688
form elements, 673–675
HTML elements, creating, 671–673
passing array (call_user_func_array()),

176
queries, dealing with common, 676–680
returning values, 203–205
session handling, 680–682
variable scope, 206–208
Web server documents, examining, 688–690

username
current, 731
guestbook, verifying, 257–258

utilities
administrative tasks, performing

(mysqladmin), 586–587
command-line interface (mysql), 583–586
status-information commands, 587–590

V
validating

email, 682–688
email addresses, 266
user and password

(connect_validate_login()), 374–375

value
of all defined constants

(get_defined_constants()), 149
array

returning all (ARRAY_VALUES()), 161
returning defined in enum field

(enum_to_array()), 679–680
catalog classes, saving them

(WRITE_TO_DB()), 420
configuration option, assigning

(ini_set()), 189
of defined constant (constant()), 149
defined superset, storing (set), 32–33
finding (isset()), 112
in first argument is found in second

argument (IN_ARRAY()), 159
key, seeking in array

(ARRAY_KEY_EXISTS()), 159–160
and keys, exchanging (ARRAY_FLIP()),

155–156
limited potential (enum), 32
lowest, removing (min() function), 78
matching field, getting all (FETCH_ALL()),

417
NULL, checking for (nullop()), 373–374
PHP functions, 135–136
property, setting in catalog classes

(BUILD()), 414
removing highest (max() function), 78
retrieving

with predicate (in/not in), 71–72
within a range (between), 70–71
user-defined functions, 203–205
with wildcard characters (like clause), 72

selecting database (db_fetch_record()),
670

of specified type, returning (intval(),
doubleval(), and stringval()), 115

of string argument, writing to file
(FWRITE()), 172

unmask, setting (UMASK()), 173
variable, defining (define()), 149

vandals, blocking form input, 231–234
variable

array elements, converting (COMPACT()), 153
formatting (SESSION_ENCODE()), 485
global, 580
PHP scripts

arrays, assigning, 96–99
creating (SESSION_DECODE()), 485

762 Index

declaring, 91–93
strings, delimiting, 94–96
two-dimensional arrays, assigning, 99

printing, 166
setting to specified type (SETTYPE()), 153
static, using in methods (DBH()), 413–414
type

changing, 114–115
returning as string (GETTYPE()), 153
returning (GETTYPE()), 153
setting, 634–635
testing (is_array(), is_numeric(),

and is_string()), 148
variable functions

defining with specified name and value
(define()), 149

name and value of all defined constants
(get_defined_constants()), 149

rounding down floating-point (floor()),
149

true/false (isset()), 148
unsetting, 148
user-defined, 206–208
value of defined constant (constant()), 149

variable variables, PHP scripts, 115–116
verifying

user information (CREATE_ENTRY()),
250–253

username and password (authenticate()),
669

version
MySQL server, 731
PHP, 188
version of story, getting in

content-management system
(fetch_story_version()), 376–378

viewing
files, project management, 545
Guestbook 2003 entries, 255–257
Guestbook 2003 library (FROM

/GUESTBOOK2K/FUNCTIONS.PHP)
arguments, printing

(PRINT_INPUT_FIELDS()), 249–250
database call, putting together

(SELECT_ENTRIES()), 253–254
disconnecting (MYSQL_DBCONNECT()),

242–243
navigational elements, creating (NAV()),

254–255

query, printing (PRINT_ENTRY()),
248–249

user authentication
(GUESTBOOK_AUTHENTICATE()),
244–248

verifying user information
(CREATE_ENTRY()), 250–253

project status, 548–552
user grants, 604

W
WDDX functions, 639
Web server documents, examining, 688–690
Web-development site, 694
Webmonkey Web site, 695
week

beginning with Monday index (WEEKDAY),
720

beginning with Sunday index (DAYOFWEEK),
719–720

full name of day (DAYNAME), 721
of year (YEARWEEK), 722

where clause, updating, 55–56
while loop

with list() = each() structure, 128
multiple, 129
syntax, 127

white spaces, trimming (TRIM()), 139
width, image (GETIMAGESIZE()), 181
wildcard characters

strings, matching, 697
values, retrieving with, 72

Windows (Microsoft)
CD, back-of-the-book, 557
installation, MySQL/PHP

binaries, assorted, 572–575
NuSphere, 572
phpdev bundle, 571–572

winner
claim code, checking (claim.php), 304–308
random, drawing in survey

(admin/get_winner.php), 303
survey, notifying (admin/winners.php),

303–304
workflow stages, table

building for content management system
(stage_table_name()), 380–381

building for workflow stages
(stage_table_name()), 380–381

Index 763

writing
custom handlers

(SESSION_SET_SAVE_HANDLER()),
shopping cart session, 485

queries to Guestbook 2003
(SAFE_MYSQL_QUERY()), 243–244

X
X, absolute value of, 702
XML (eXtensible Markup Language) parsing

application scope and goals, 506–508
displaying, 512–518
parsers, described, 508–509
reasons to use, 505
Simplexml, 509–511
Slashdot headline, 511–512

XPAT functions, 637–639

Y
year

calculating day from specified (FROM_DAYS),
726

day of, 720
month, day format, 36
quarter, 721
week of (YEARWEEK), 722

Z
zend.com Web site, 692–693
zero-length string, 24

764 Index

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between
you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and conditions, promptly return the Book
and the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software,” solely for your own personal or business purposes on a single computer
(whether a standard computer or a workstation component of a multi-user net-
work). The Software is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other
storage device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in
and to the compilation of the Software recorded on the disk(s) or CD-ROM
“Software Media”. Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights relating thereto remain
with WPI and its licensers.

3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival pur-

poses, or (ii) transfer the Software to a single hard disk, provided that you keep
the original for backup or archival purposes. You may not (i) rent or lease the
Software, (ii) copy or reproduce the Software through a LAN or other network
system or through any computer subscriber system or bulletin-board system, or
(iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis,
provided that the transferee agrees to accept the terms and conditions of
this Agreement and you retain no copies. If the Software is an update or has
been updated, any transfer must include the most recent update and all prior
versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the About
the CD-ROM appendix of this Book. These limitations are also contained in the
individual license agreements recorded on the Software Media. These limitations
may include a requirement that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restrictions
for these individual programs that are detailed in the About the CD-ROM appendix
and on the Software Media. None of the material on this Software Media or listed
in this Book may ever be redistributed, in original or modified form, for commer-
cial purposes.

5. Limited Warranty.
(a) WPI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If WPI receives notification within the
warranty period of defects in materials or workmanship, WPI will replace the
defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE
CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFT-
WARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which
may be returned to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: MySQL/PHP Database
Applications, Second Edition, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks
for delivery. This Limited Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any replacement Software
Media will be warranted for the remainder of the original warranty period or
thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) arising
from the use of or inability to use the Book or the Software, even if WPI has
been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion may
not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software
for or on behalf of the United States of America, its agencies and/or instrumentali-
ties “U.S. Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013,
or subparagraphs (c) (1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR supple-
ment, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibil-
ities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a por-
tion of it, either verbatim or with modifications and/or translated into another lan-
guage. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.
You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:
(a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
(b) You must cause any work that you distribute or publish, that in whole or in

part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose

permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above pro-
vided that you also do one of the following:
(a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi-
fications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriv-
ative works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distrib-
ute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as
if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

*****END OF TERMS AND CONDITIONS*****

	MySQL/PHP

 Database

 Applications,

Second Edition
	MySQL/PHP Database Applications, Second Edition
	Copyright
	About the Authors
	Credits
	Preface
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction

	Part I Working with MySQL
	Chapter 1 Database Design with MySQL
	Why Use a Relational Database?
	Blasted Anomalies
	The update anomaly
	The delete anomaly
	The insert anomaly

	Normalization
	First normal form
	Second normal form
	Third normal form

	Types of Relationships
	The one- to- many relationship
	The one- to- one relationship
	The many- to- many relationship

	Advanced Database Concepts
	Referential integrity
	Transactions
	Stored procedures

	Summary

	Chapter 2 The Structured Query Language for Creating

 and Altering Tables
	Essential Definitions
	Null values
	Indexes

	The create database Statement
	The use database Statement
	The create table Statement
	Column Types
	String column types
	Numeric column types
	Date and time types

	Creating Indexes
	Table Types
	MyISAM
	InnoDB Tables
	BerkeleyDB
	Heap

	The alter table Statement
	Changing a table name
	Adding columns
	Dropping columns
	Adding indexes
	Dropping indexes
	Changing column definitions

	Using the show Command
	show databases
	show tables
	show columns
	show index
	show table status
	show create table

	GUI Tools for Manipulating MySQL Tables and Data
	Using phpMyAdmin
	MySQL Control Center
	Using MacSQL

	Summary

	Chapter 3 The Structured Query Language for Inserting,

Editing, and Selecting Data
	The insert Statement
	The update Statement
	The delete Statement
	The replace Statement
	The Basic select Statement
	The where clause
	order by
	limit
	group by and aggregate functions

	Joining Tables
	The two- table join (equi- join)
	The multi- table join
	The outer join
	The self join
	Unions
	Correlated subqueries

	Summary

	Part II Working with PHP
	Chapter 4 Getting Started with PHP-Variables
	Assigning Simple Variables Within a Script
	Delimiting strings
	Assigning arrays within a script
	Assigning two- dimensional arrays in a script

	Accessing Variables Passed from the Browser
	HTML forms variables
	Passing arrays
	Cookies
	Sessions

	Using Built- In Variables
	PHP variables
	Apache variables
	Other Web server variables

	Testing Variables
	isset()
	empty()
	is_ null()
	is_ int()
	is_ double()
	is_ string()
	is_ array()
	is_ bool()
	is_ object()
	is_ resource()
	is_ scalar()
	gettype()

	Changing Variable Types
	Type casting
	Using settype()
	intval(), doubleval(), and stringval()

	Variable Variables
	Summary

	Chapter 5 Control Structures
	The if Statement
	Determining true or false in PHP
	Comparison operators
	Logical operators
	Complex if statements
	if ... else statements
	if ... elseif statements

	switch ... case
	Loops
	while ...
	do ... while
	for
	foreach
	continue and break

	Summary

	Chapter 6 PHP's Built-in Functions
	Function Basics
	Arguments
	Return values

	Function Documentation
	Important PHP Functions
	String handling functions
	Regular expression functions
	Variable functions
	Type- conversion functions
	Array functions
	Object/ class functions
	Print functions
	Date/ time functions
	File- system functions
	Script Control functions
	Random number generator functions
	Session functions
	MySQL functions
	HTTP header functions
	Image functions
	Mail function
	URL functions
	Error functions
	Output buffering
	Information functions

	Summary

	Chapter 7 Writing Organized and Readable Code
	Indenting
	Code blocks
	Function calls
	SQL statements

	Includes
	include() and require()
	include_ once() and require_ once()

	User- Defined Functions
	Function basics
	Returning values
	Using a variable number of arguments
	Variable scope

	Object- Oriented Programming
	Classes, Continued
	Object cloning
	Destructors
	Exceptions

	Object- Oriented Code versus Procedural Code
	Comments
	Summary

	Part III Simple Applications
	Chapter 8 Guestbook 2003, the (Semi-)Bulletproof

Guestbook
	Determining the Scope and Goals of the Application
	Necessary pages
	What do we need to prevent?

	Designing the Database
	Code Overview
	Code Breakdown
	From functions/ basic. php
	Interesting code flow

	Scripts
	Summary

	Chapter 9 Survey
	Determining the Scope and Goals of the Application
	Necessary pages
	Preventive measures

	Designing the Database
	Code Overview
	Code Breakdown
	HTML functions
	The survey application

	Interesting Code Flow
	admin/ questions. php
	admin/ get_ winner. php
	admin/ winners. php
	claim. php

	Summary

	Part IV Not So Simple Applications
	Chapter 10 Threaded Discussion
	Determining the Scope and Goals of the Application
	What do you need?
	What do you need to prevent?

	The Data
	Code Overview
	Code Breakdown
	Reusable functions
	Functions from / book/ discussion/ functions
	Error- handling and debugging functions

	Summary

	Chapter 11 Content-Management System
	Determining the Scope and Goals of the Application
	Necessary pages
	What do we need to prevent?

	Designing the Database
	Code Overview
	Code Breakdown
	Functions from / dsn
	Functions from / book/ functions/ database
	Functions from / content/ functions

	Interesting Code Flow
	content/ authenticate. php
	content/ admin/ user. php
	content/ story. php

	Summary

	Chapter 12 Catalog
	Determining the Scope and Goals of
	Determining the Scope and Goals of the Application
	Necessary pages
	What do we need to prevent?

	The Data
	Code Overview
	The object- oriented approach
	Accessing the file system
	Uploading files

	Code Breakdown
	Objects in theory
	Classes
	Sample script

	Summary

	Chapter 13 Problem-Tracking System
	Determining the Scope and Goals of the Application
	What do you need?
	What do you need to prevent?

	Designing the Database
	Code Overview
	Code Breakdown
	Reusable functions from / book/ tracking/functions. php
	Scripts

	Summary

	Chapter 14 Shopping Cart
	Determining the Scope and Goals of the Application
	What do you need?
	What do you need to prevent?

	The Data
	Configuration Overview
	Configuring for encryption and security
	Configuring Apache for credit- card authorization
	Configuring for session handling

	Code Overview
	Session functions
	Dealing with the credit- card processor

	Code Breakdown
	Classes
	Scripts

	Summary

	Chapter 15 XML Parsing
	Scope and Goals of Application
	Code Overview
	An introduction to parsers
	Using Simplexml

	Code Breakdown
	Laying the groundwork

	Summary

	Chapter 16 SOAP
	Overview of SOAP
	The SOAP envelope
	The SOAP body
	A typical request/ response pair

	Code Overview
	The essence of NuSOAP
	A simple NuSOAP service call

	Determining the Goals of the Application
	Code Breakdown
	The Barnes & Noble application
	The Babelfish application
	Writing a SOAP server application

	Summary

	Chapter 17 Project Management
	Determining the Goals of the Application
	Necessary pages

	Designing the Database
	User types
	Application users
	Project and task status
	Projects
	Project- user mappings
	Tasks
	Files

	Code Overview
	Logging in and establishing a session
	Showing active projects
	Creating a new project
	Uploading a file
	Viewing a file
	Adding a user

	Code Breakdown
	Session management
	Authentication
	Viewing projects¡¯ status
	Uploading a file
	Displaying the contents of a file

	Summary

	Part V Appendixes
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Index
	Wiley Publishing, Inc.End- User License Agreement

